

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	48MHz
Connectivity	SmartCard, SPI, UART/USART, USB
Peripherals	LED, POR, WDT
Number of I/O	46
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c5122d-z1tum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description

Table 2. Pin Description

Dort	QFP64	QFP32	LCC68	LCC28	QFN64	QFN32	Internal Power	FSD	1/0	Reset	A 14	Reset	Conf 1	Cont 2	Cont 2	Lad
POR	> 30	>	L	-	30	-	VCC	2KV	1/0	Float		P0	Conri		Push-pull	Lea
P0.1	29	-	40	-	29	-	VCC	2KV	1/O	Float	AD1	P0		KB_OUT	Push-pull	
P0.2	28	-	39	-	28	-	VCC	2KV	I/O	Float	AD2	P0		– KB_OUT	Push-pull	
P0.3	27	-	38	-	27	-	VCC	2KV	I/O	Float	AD3	P0		KB_OUT	Push-pull	
P0.4	25	-	36	-	25	-	VCC	2KV	I/O	Float	AD4	P0		KB_OUT	Push-pull	
P0.5	24	-	35	-	24	-	VCC	2KV	I/O	Float	AD5	P0		KB_OUT	Push-pull	
P0.6	23	-	34	-	23	-	VCC	2KV	I/O	Float	AD6	P0		KB_OUT	Push-pull	
P0.7	22	-	33	-	22	-	VCC	2KV	I/O	Float	AD7	P0		KB_OUT	Push-pull	
CIO	64	32	9	4	64	32	CVCC	6KV	I/O	0		Port51	CVC ESD tester An exter recomme with too v	C inactive at d with a 10µ rnal pull-up ended to sup weak interna	reset. F on CVCC of 10K is port ICC's I pull-ups.	
CC4	3	3	12	7	3	3	CVCC	6KV	I/O	0		Port51	CVC ESD teste	C inactive at d with a 10µ	reset F on CVCC	
P1.2	2	2	11	6	2	2	VCC	2KV	I/O	1	CPRES	Port51	Weak & medium pull-up can be disconnected			
CC4	9	5	18	9	9	5	CVCC	6KV	I/O	0		Port51	CVCC inactive at reset ESD tested with a 10μ F on CVCC			
CCLK	12	6	21	10	12	6	CVCC	6KV	0	0		Push-pull	CVC ESD teste	C inactive at d with a 10µ	reset F on CVCC	
CRST	6	4	15	8	6	4	CVCC	6KV	0	0		Push-pull	CVC ESD teste	C inactive at d with a 10µ	reset F on CVCC	
P1.6	47	23	58	-	47	23	VCC	2KV	I/O	1	SS	Port51				
P1.7	62	31	7	-	62	31	VCC	2KV	I/O	1	CCLK1	Port51				
P2.0	58	-	3	-	58	-	VCC	2KV	I/O	1	A8	Port51	Push-pull	KB_OUT	Input WPU	
P2.1	57	-	2	-	57	-	VCC	2KV	I/O	1	A9	Port51	Push-pull	KB_OUT	Input WPU	
P2.2	56	-	1	-	56	-	VCC	2KV	I/O	1	A10	Port51	Push-pull	KB_OUT	Input WPU	
P2.3	52	-	65	-	52	-	VCC	2KV	I/O	1	A11	Port51	Push-pull	KB_OUT	Input WPU	
P2.4	51	-	64	-	51	-	VCC	2KV	I/O	1	A12	Port51	Push-pull	KB_OUT	Input WPU	
P2.5	50	-	63	-	50	-	VCC	2KV	I/O	1	A13	Port51	Push-pull	KB_OUT	Input WPU	

USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS

Notes : 1 - Pin configuration depends on product versions

¹⁶ AT83R5122, AT8xC5122/23

Memory Organization The AT83R5122, AT8xC5122/23 devices have separated address spaces for Program and Data Memory, as shown in Figure 12 on page 27, Figure 13 on page 29 and Figure 14 on page 30. The logical separation of Program and Data memory allows the Data Memory to be accessed by 8-bit addresses, which can be more quickly stored and manipulated by an-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program MemoryDepending on the state of EA pin, the MCU fetches the code from internal or external
program memory (ROMless mode)

Warning : the EA pin can not be left floating, otherwise MCU may have an unpredictable behaviour.

If EA is strapped to VCC, the MCU fetches the code from the internal program memory. The way the MCU works in this mode depends on the device version. See next paragraphs for further details.

If the EA is strapped to GND, the MCU fetches the code from external program memory. This mode is common for all device versions wich supports it. After reset, the CPU begins the execution from location 0000h. There can be up to 64 KBytes of program memory. In this mode, the internal program memories are disabled.

The hardware configuration for external program execution is shown in Figure 8.

Figure 8. Executing from External Program Memory

Note that the 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory fetches. Port 0 serves as a multiplexed address/dat bus. It emits the low byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the Program Memory. During the time that the low byte of the Program Counter is valid on P0, the signal ALE (Address Latch Enable) clocks the byte into an address latch. Meanwhile, Port 2 emits the high byte of the Program Counter (PCH). Then PSEN strobes the External Program Memory and the code byte is read into the MCU.

PSEN is not activated and Ports P0 and P2 are not affected during internal program fetches.

Use of PLL Clock When the CPU cloc

When the CPU clock is fed by the PLL, the X2 mode is forbidden. The bit X2 must always remain cleared in CKCON0 register. As the PR1 prescaler is always different from 1/2, the usual X1 mode can not be defined. So it is necessary to define an equivalent X1 or X2 mode from equivalent clock circuits, as in previous section.

Example: PR1=1/4, PLL feeds the CPU. The CPU works in this case at 24 MHz. This frequency could also be obtained by an equivalent clock circuit where the on-chip oscillator would run at 48 MHz in X1 mode or at 24 MHz in X2 mode. So we can say that in this configuration, the CPU works at 48 MHz / X1 or 24 MHz / X2 (See figures below).

As the X2 bit is cleared in CKCON0 register, we have always $F_{CK \ IDLE} = F_{CK \ PERIPH}$.

SCIB Clock

The Smart Card Interface Block (SCIB) uses two clocks :

- The first one, CK_IDLE, is the peripheral clock used for the interface with the microcontroller.
- The second one, CK_ISO, is independent from the CPU clock and is generated from the PLL or XTAL1 output.
 PR2, a 6-bit prescaler, will be used to generate: 12/9.6/8/6.85/6/5.33/4.8/4.36//1MHz frequencies.
 SCIB clock frequency must be lower than CPU clock frequency.

During SCIB Reset, the CK_ISO input must be in the range 1 - 5 MHz according to ISO 7816. The SCIB clocks frequency is defined in Figure 41 on page 72 and Table 42 on page 72.

Two conditions must be met for a correct use of the SCIB:

- CK_CPU > 4/3 * CK_ISO and
- CK_CPU < 6 * CK_ISO.

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	-	SPIX2				
Bit Number	Bit Mnemo	nic Descrip	Description								
7 - 4	-	Reserve The valu	teserved The value read from this bit is indeterminate. Do not set this bit.								
3	-	Reserve The valu	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	SPIX2	SPI close This cor this bit h Cleared Set to se	SPI clock This control bit is validated when the CPU clock X2 is set. When X2 is low, his bit has no effect. Cleared to bypass the 1/2 prescaler. Set to select the 1/2 output for this peripheral.								

Table 27. Clock Configuration Register 1 - CKCON1 (S:AFh) only for AT8xC5122

Reset Value = XXXX XXX0b

Table 28. PLL Control Register - PLLCON (S:A3h)

7	6	5	4	3	2	1	0
-	-	-	-	-	EXT48	PLLEN	PLOCK

Bit Number	Bit Mnemonic	Description
7 - 3	-	Reserved The value read from these bits is always 0. Do not set this bits.
2	EXT48	External 48 MHz Enable Bit Set this bit to select XTAL1 as USB clock. Clear this bit to select PLL as USB clock. SCIB clock is controlled by EXT48 bit and XTSCS bit.
1	PLLEN	PLL Enable bit Set to enable the PLL. Clear to disable the PLL.
0	PLOCK	PLL Lock Indicator Set by hardware when PLL is locked Clear by hardware when PLL is unlocked

Reset Value = 0000 0000b

Table 29. PLL Divider Register - PLLDIV (S:A4h)

7	6	5	4	3	2	1	0
R3	R2	R1	R0	N3	N2	N1	NO
Bit Number	Bit Mnemor	nic Descript	lion				
7 - 4	R3:0	PLL R D	ivider Bits				
3 - 0	N3:0	PLL N D	ivider Bits				

Reset Value = 0000 0000b

Registers

Table 36. Port Mode Register 0 - PMOD0 (91h) for AT8xC5122

7	6		5	4	3	2	1	0				
P3C1	P3C0	I	P2C1	P2C0	CPRESRES	-	P0C1	P0C0				
Bit Number	Bit Mnemo	onic	Descrip	Description								
7 - 6	Port 3 Configuration bits (Applicable to 00 Quasi bi-directional 01 Push-pull 10 Output Low Speed 11 Input with weak pull-up						3.1, P3.3, P3.	4 only)				
5-4	P2C1-P2	C0	Port 2 (00 Quas 01 Push 10 Outp 11 Input	Yort 2 Configuration bits 10 Quasi bi-directional 11 Push-pull 10 Output Low Speed 11 Input with weak pull-down								
3	CPRESR	ES	Card Pr Cleared Set to d	to connect the	-up resistor ne internal 100K internal pull-up	pull-up						
2	-		Reserve The valu	ed ue read from [·]	this bit is indete	rminate. Do n	ot set this bit.					
1-0	P0C1-P0	C0	Port 0 0 00 C51 01 Rese 10 Outp 11 Push	Port 0 Configuration bits 00 C51 Standard P0 01 Reserved 10 Output Low Speed 11 Push-pull								

Reset Value = 0000 0x00b

Table 37. Port Mode Register 0 - PMOD0 (91h) for AT83C5123

7	6		5	4	3	2	1	0		
P3C1	P3C0		-	-	CPRESRES	-	-	-		
Bit Number	Bit Mnemo	onic	Descrip	Description						
7 - 6	P3C1-P3	C0	Port 3 0 00 Quas 01 Push 10 Outp 11 Input	 Port 3 Configuration bits (Applicable to P3.0, P3.1, P3.3, P3.4 only) D0 Quasi bi-directional D1 Push-pull I0 Output Low Speed I1 Input with weak pull-up 						
5-4			Reserve The valu	ed ue read from t	these bits are in	determinate.	Do not set the	ese bit.		
3	CPRESR	ES	Card Pr Cleared Set to d	Card Presence Pull-up resistor Cleared to connect the internal 100K pull-up Set to disconnect the internal pull-up						
2-0	-		Reserve The valu	Reserved The value read from these bits are indeterminate. Do not set these bit.						

Reset Value = 00xx 0xxxb

The Guard Time counter is an 9 bit counter It is initialized at 001h at the start of a transmission by the Terminal. It then increments itself at each ETU until it reach the 9 bit value loaded into the SCGT1[0] concatenated with SCGT0[7:0]. At this time a new Terminal transmission is enabled and the Guard Time Counter stop incrementing. As soon as a new transmission start, the Guard Time Counter is re-initialized at 1 decimal value.

It should be noted that the value of the Guard Time Counter cannot be red. Reading SCGT1,0 only gives the minimum time between 2 characters that the Guard Time Counter will allow.

Care must be taken with the Guard Time Counter which counts the duration between the leading edges of 2 consecutive characters. This correspond to the character duration (10 ETU) plus the Guard Time as defined by the ISO and EMV recommendations. To program Guard Time = 2:2 stop bits between 2 characters which is equivalent to the minimum delay of 12 ETUs between the leading edges of 2 consecutive characters, SCGT1[0],SCGT0[7:0] should be loaded with the value 12 decimal. See Figure 30

Figure 30. Guard Time.

TRANSMISSION to ICC

Block Guard Time Counter

The Block Guard Time counter provides a way to program a minimum time between the leading edge of the start bit of a character received from the ICC and the leading edge of the start bit of a character sent by the terminal. ISO IEC 7816-3 and EMV recommend a fixed Block Guard Time of 22 ETUs. The AT8xC5122/23 offer the possibility to extend this delay up to 512 ETUs.

The Block Guard Time is a 9 bit counter. When the Block Guard Time mode is enabled (BGTEN=1 in SCSR register) The Block Guard Time counter is initialized at 000h at the start of each character transmissions from the ICC. It then increments at each ETU until it reach the 9 bit value loaded into shadow SCGT1,0 registers, or until it is re-initialized by the start of an new transmission from the ICC. If the Block Guard Time counter reaches the 9 bit value loaded into shadow SCGT1,0 registers, a transmission by the TERMINAL is enabled, and the Block Guard Time counter stop incrementing. The Block Guard Time counter is re-initialized at the start of each TERMINAL transmission.

The SCGT1 SCGT0 shadow registers are loaded with the content of GT[8-0] contained in the registers SCGT1[0),SCGT0(7:0] with the rising edge of the bit BGTEN in the SCSR register. See Figure 32.

Table 48.	Smart Card UART	Interrupt Enabling Register	- SCIER (S:AEh, SCRS=1)
-----------	-----------------	-----------------------------	-------------------------

7	6	5	4	3	2	1	0			
ESCTBI	-	ICARDER	EVCARDER	ESCWTI	ESCTI	ESCRI	ESCPI			
Bit Number	Bit Mnemonic	Description	escription							
7	ESCTBI	UART Trans Clear this bit Set this bit to	ART Transmit Buffer Empty Interrupt Enabled lear this bit to disable the Smart Card UART Transmit Buffer Empty interrupt. et this bit to enable the Smart Card UART Transmit Buffer Empty interrupt.							
6	-	Reserved The value rea	∋served evalue read from this bit is indeterminate. Do not change this bit.							
5	ICARDER	Card Curren Clear this bit Set this bit to	ard Current Overflow Interrupt Enabled lear this bit to disable the Card Current Overflow interrupt. et this bit to enable the Card Current Overflow interrupt.							
4	EVCARDER	Card Voltage Clear this bit Set this bit to	Card Voltage Error Interrupt Enabled Clear this bit to disable the Card Voltage Error interrupt. Set this bit to enable the Card Voltage Error interrupt.							
3	ESCWTI	WaitingTime Clear this bit Set this bit to	Counter Timeout Into to disable the Waiting enable the Waiting Time	t errupt Enabled Time Counter time me Counter timeou	out interrupt. t interrupt.					
2	ESCTI	UART Trans Clear this bit Set this bit to	mitted Character Inter to disable the Smart C enable the Smart Car	errupt Enabled Card UART Transm rd UART Transmitte	itted Character inte d Character interru	rrupt. ıpt.				
1	ESCRI	UART Receive Clear this bit Set this bit to	UART Received Character Interrupt Enabled Clear this bit to disable the Smart Card UART Received Character interrupt. Set this bit to enable the Smart Card UART Received Character interrupt.							
0	ESCPI	Character Re Clear this bit Set this bit to	Character Reception Parity Error Interrupt Enabled Clear this bit to disable the Smart Card Character Reception Parity Error interrupt. Set this bit to enable the Smart Card Character Reception Parity Error interrupt.							

Reset Value = 0X00 0000b

Table 49. Smart Card Selection Register - SCSR (S:ABh)

7	6	5	4	3	2	1	0				
-	BGTEN	-	CREPSEL	ALTKPS1	ALTKPS0	SCCLK1	SCRS				
Bit Number	Bit Mnemonic	Description									
7	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not change this bit.								
6	BGTEN	Block Guard Ti Set this bit to se received from th counter is done Clear this bit to	Block Guard Time Enable Set this bit to select the minimum interval between the leading edge of the start bits of the last character received from the ICC and the first character sent by the Terminal. The transfer of GT[8-0] value to the BGT counter is done on the rising edge of the BGTEN. Clear this bit to suppress the minimum time between reception and transmission.								
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not change this bit.								
4	CREPSEL	Character repe Clear this bit to s EMV) Set this bit to se	Character repetition selection Clear this bit to select 5 times transmission (1 original + 4 repetitions) before parity error indication (conform to EMV) Set this bit to select 4 times transmission (1 original + 3 repetitions) before parity error indication								
3-2	ALTKPS1:0	Alternate Card 00 ALTKPS = 0 01 ALTKPS = 1 10 ALTKPS = 2 11 ALTKPS = 3	Alternate Card Clock prescaler factor 00 ALTKPS = 0: prescaler factor equals 1 01 ALTKPS = 1: prescaler factor equals 2 10 ALTKPS = 2: prescaler factor equals 4 (reset value) 11 ALTKPS = 3: prescaler factor equals 8								
1	SCCLK1	Alternate card Set to select the Clear to select F	clock selection prescaled PR3 clo 21.7 port bit	ock for CCLK1 (P1.7	7) pin						
0	SCRS	Smart Card Re The SCRS bit se	gister Selection elects which set of	the SCIB registers i	s accessed.						

Reset Value = X000 1000b

Table 50. Smart Card Transmit / Receive Buffer - SCIBUF (S:AA)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
-	-	Smart Card Trans - A new byte can b The bits are sorted - A new byte receiv The bits are sorted	mit / Receive Buff e written in the buff and copied on the red from I/O pin is a versus the active of	fer fer to be transmitted I/O pin versus the ready to be read wh convention.	d on the I/O pin whe active convention. nen SCRI bit is set.	en SCTBE bit is set	

Reset Value = 0000 0000b

Table 53. Smart Card Transmit Guard Time Register 0 - SCGT0 (S:B4h, SCRS=1)

7	6	5	4	3	2	1	0		
GT7	GT6	GT5	GT4	GT3	GT2	GT1	GT0		
Bit Number	Bit Mnemonic	Description							
7 - 0	GT[7:0]	Transmit Guard T The minimum time Guard Time +10 (s According to ISO 266 (11 to 254+12	Transmit Guard Time LSB The minimum time between two consecutive start bits in transmit mode is GT[8:0] * ETU. This is equal to ISO IEC Guard Time +10 (see Guard Time Counter description. According to ISO IEC 7816,the time between 2 consecutive leading edge start bits can be set between 11 and 266 (11 to 254+12 ETUs).						

Reset Value = 0000 1100b

Table 54. Smart Card Transmit Guard Time Register 1 - SCGT1 (S:B5h, SCRS=1)

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	GT8		
Bit Number	Bit Mnemonic	Description	Description						
7 - 1	-	Reserved The value read fro	eserved The value read from these bits is indeterminate. Do not change these bits.						
0	GT8	Transmit Guard T Used together with	Fransmit Guard Time MSB Jsed together with the Transmit Guard Time LSB in SCGT0 register (Table 53).						

Reset Value = XXXX XXX0b

Table 55. Smart Card Character/Block Waiting Time Register 3

SCWT3 (S:C1h, SCRS=0)

7	6	5	4	3	2	1	0	
WT31	WT30	WT29	WT28	WT27	WT26	WT25	WT24	
Bit Number	Bit Mnemonic	Description						
		-						

Reset Value = 0000 0000b

mode by 20% by means of bit OVFADJ in DCCKPS register. When the current overflow controller is operating, the ICARDOVF is set by the hardware in SCISR register.

The current drawn from power supply by the DC/DC converter is controlled during the startup phase in order to avoid high transient current mainly in Pump Mode which could cause the power supply voltage to drop dramatically. This control is done by means of bits BOOST[1:0], which increases progressively the startup current level.

Initialization ProcedureThe initialization procedure is different depending upon the required Card Vcc. One procedure apply for Card Vcc =< 3 volts and one procedure for Card Vcc = 5 volts.</th>

The initialization procedure involves :

- Select the CVCC level by means of bits VCARD[1:0] in SCICR register,
- Set bits BOOST[1:0] in DCCKPS register following the current level control wanted.
- Switch the DC/DC on by means of bit CARDVCC in SCCON register,
- Monitor bit VCARDOK in SCISR register in order to know when the DC/DC Converter is ready (CVCC voltage has reached the expected level)

Procedure for CVcc =< 3 volts The DC/DC regulation mode must be selected for Card Vcc = 1.8 volts and Card Vcc = 3 volts (MODE = 1 in DCCKPS register) The detailed procedures is described in flow chart of Figure 45. for Card Vcc = 1.8 volts and in the flow chart of Figure 46. for Card Vcc = 3 volts

Procedure for CVcc = 5volts

The DC/DC pump mode must be selected (MODE = 0 in DCCKPS register). The detailed procedure is described in flow chart of Figure 47.

While VCC remains higher than 4.0V and startup current lower than 30 mA (depending on the load type), the DC/DC converter should be ready without having to increment BOOST[1:0] bits beyond [0:0] level. If VCC > 4.0V and startup current > 30 mA, it will be necessary to increment the BOOST[1:0] bits until the DC/DC converter is ready.

Incrementation of BOOST[1:0] bits increases at the same time the current overflow level in the same proportion as the startup current. So once the DC/DC converter is ready it is

⁹⁰ AT83R5122, AT8xC5122/23

7	6	5	4	3	2	1	0		
-	-	EWUPCPU	EEORINT	ESOFINT	-	-	ESPINT		
Bit Number	Bit Mnemonic	Description	Description						
7 - 6	-	Reserved The value re	Reserved The value read from these bits is always 0. Do not change these bits.						
5	EWUPCPU	Enable Wak Set this bit to Clear this bit	Enable Wake-up CPU Interrupt Set this bit to enable Wake-up CPU Interrupt. Clear this bit to disable Wake-up CPU Interrupt.						
4	EEORINT	Enable End Set this bit to Clear this bit	Enable End of Reset Interrupt Set this bit to enable End of Reset Interrupt. This bit is set after reset. Clear this bit to disable End of Reset Interrupt.						
3	ESOFINT	Enable SOF Set this bit to Clear this bit	Enable SOF Interrupt Set this bit to enable SOF Interrupt. Clear this bit to disable SOF Interrupt.						
2-1	-	Reserved The value re	Reserved The value read from these bits is always 0. Do not change these bits.						
0	ESPINT	Enable Sus Set this bit to Clear this bit	pend Interrup enable Susp to disable Su	ot pend Interrupts spend Interru	s (See Table 6 pts.	65 on page 11	6).		

Table 66. USB Global Interrupt Enable Register - USBIEN (S:BEh)

Reset Value = 0001 0000b

Table 67. USB Address Register - USBADDR (S:C6h)

7	6	5	4	3	2	1	0	
FEN	UADD6	UADD5	UADD4	UADD3	UADD2	UADD1	UADD0	
Bit Number	Bit Mnemonic	Description						
7	FEN	Function Ena Set this bit to Cleared this b	Function Enable Set this bit to enable the function. FADD is reset to 1. Cleared this bit to disable the function.					
6-0	UADD[6:0]	USB Address This field contains the default address (0) after power-up or USB bus reset. It should be written with the value set by a SET_ADDRESS request received by the device firmware.						

Reset Value = 1000 0000b

Table 70. USB Endpoint Status and Control Register X - UEPSTAX (S:CEh) X=EPNUM set in UEPNUM Register)

7		6	5	4	3	2	1	0		
DI	R	RXOUTB1	STALLRQ	TXRDY	STL/CRC	RXSETUP	RXOUTB0	TXCMP		
Bit Number	Bit Mnemonic	Description								
7	DIR	Control Endpoint Direction This bit is used only if the endpoint is configured in the control type (see"USB Endpoint X Control Register - UEPCONX (S:D- on page 118). This bit determines the Control data and status direction. The device firmware should set this bit ONLY for the IN data stage, before any other USB operation. Otherwise, the device firmware should clear this bit.								
6	RXOUTB1	Received OU This bit is set Then, the end the following (Endpoints. This bit should	Received OUT Data Bank 1 for Endpoint 6 (Ping-pong Mode) This bit is set by hardware after a new packet has been stored in the endpoint FIFO Data bank 1 (only in Ping-pong mode). Then, the endpoint interrupt is triggered if enabled (see "USB Global Interrupt Register - USBINT (S:BDh)" on page 116) and all the following OUT packets to the endpoint bank 1 are rejected (NAK'ed) until this bit has been cleared, excepted for Isochronous Endpoints. This bit should be cleared by the device firmware after reading the OUT data from the endpoint FIFO.							
5	STALLRQ	Stall Handsh Set this bit to Clear this bit of For CONTRO	Stall Handshake Request Set this bit to request a STALL answer to the host for the next handshake. Clear this bit otherwise. For CONTROL endpoints: cleared by hardware when a valid SETUP PID is received.							
4	TXRDY	TX Packet Ready Set this bit after a packet has been written into the endpoint FIFO for IN data transfers. Data should be written into the endpoint FIFO only after this bit has been cleared. Set this bit without writing data to the endpoint FIFO to send a Zero Length Packet. This bit is cleared by hardware, as soon as the packet has been sent for Isochronous endpoints, or after the host has acknowledged the packet for Control, Bulk and Interrupt endpoints. When this bit is cleared, the endpoint interrupt is triggered if enabled (see Table 65 on page 116).								
3	STLCRC	Stall Sent / CRC error flag - For Control, Bulk and Interrupt Endpoints: This bit is set by hardware after a STALL handshake has been sent as requested by STALLRQ. Then, the endpoint interrupt is triggered if enabled (see ^{##} on page 116) It should be cleared by the device firmware. - For Isochronous Endpoints (Read-Only): This bit is set by hardware if the last received data is corrupted (CRC error on data). This bit is updated by hardware when a new data is received.						dpoint interrupt is		
2	RXSETUP	Received SETUP This bit is set by hardware when a valid SETUP packet has been received from the host. Then, all the other bits of the register are cleared by hardware and the endpoint interrupt is triggered if enabled (see Table 65 on page 116). It should be cleared by the device firmware after reading the SETUP data from the endpoint FIFO.						its of the register		
1	RXOUTB0	Received OUT Data Bank 0 (see also RXOUTB1 bit for Ping-pong Endpoints) This bit is set by hardware after a new packet has been stored in the endpoint FIFO data bank 0. Then, the endpoint interrupt is triggered if enabled (see" on page 116) and all the following OUT packets to the endpoint bank 0 are rejected (NAK'ed) until this bit has been cleared, excepted for Isochronous Endpoints. However, for control endpoints, an early SETUP transaction may overwrite the content of the endpoint FIFO, even if its Data packet is received while this bit is set. This bit should be cleared by the device firmware after reading the OUT data from the endpoint FIFO.								
0	TXCMPL	Transmitted This bit is set (ACK'ed) by t 65). This bit should	IN Data Complete by hardware after a he host for Control, d be cleared by the	an IN packet has be Bulk and Interrupt device firmware be	een transmitted for endpoints. Then, tt efore setting TXRD	Isochronous endpo ne endpoint interrup Y.	ints and after it has t is triggered if enal	been accepted oled (see Table		

Reset Value = 0000 0000b

Internal Baud Rate Generator When using the Internal Baud Rate Generator, the Baud Rate is derived from the overflow of the timer. As shown in Figure 68 the Internal Baud Rate Generator is an 8-bit auto-reload timer feed by the peripheral clock or by the peripheral clock divided by 6 depending on the SPD bit in BDRCON register (see Table 82 on page 134). The Internal Baud Rate Generator is enabled by setting BRR bit in BDRCON register. SMOD1 bit in PCON register allows doubling of the generated baud rate.

Figure 68. Internal Baud Rate Generator Block Diagram

Synchronous Mode (Mode 0) Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/0 capabilities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock pulses while the receive data (RXD) pin transmits or receives a byte of data. The 8-bit data are transmitted and received least-significant bit (LSB) first. Shifts occur at a fixed Baud Rate (see Section "Baud Rate Selection (Mode 0)"). Figure 69 shows the serial port block diagram in Mode 0.

Baud Rate Selection (Mode 0) In mode 0, baud rate can be either fixed or variable.

As shown in Figure 72, the selection is done using M0SRC bit in BDRCON register. Figure 73 gives the baud rate calculation formulas for each baud rate source.

Figure 72. Baud Rate Source Selection (Mode 0)

Figure 73. Baud Rate Formulas (Mode 0)

Baud_Rate = $\frac{F_{CK_{SI}}}{6}$

a. Fixed Formula

Asynchronous Modes (Modes 1, 2 and 3) The Serial Port has one 8-bit and two 9-bit asynchronous modes of operation. Figure 74 shows the Serial Port block diagram in such asynchronous modes.

Figure 74. Serial I/O Port Block Diagram (Modes 1, 2 and 3)

Mode 1

Mode 1 is a full-duplex, asynchronous mode. The data frame (see Figure 75) consists of 10 bits: one start, eight data bits and one stop bit. Serial data is transmitted on the TXD pin and received on the RXD pin. When a data is received, the stop bit is read in the RB8 bit in SCON register.

Figure 85. Data Transmission Format (CPHA = 0)

Figure 86. Data Transmission Format (CPHA = 1)

As shown in Figure 85, the first SCK edge is the MSB capture strobe. Therefore the Slave must begin driving its data before the first SCK edge, and a falling edge on the SS pin is used to start the transmission. The SS pin must be toggled high and then low between each byte transmitted (Figure 87).

Figure 87. CPHA/SS Timing

Figure 86 shows an SPI transmission in which CPHA is "1". In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmis-

	sions (Figure 87). This format may be preferable in systems having only one Master and only one Slave driving the MISO data line.
Error Conditions	The following flags in the SPSTA signal SPI error conditions.
Mode Fault (MODF)	MODF error bit in Master mode SPI indicates that the level on the Slave Select (\overline{SS}) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may have a multi-master conflict for system control. In this case, the SPI system is affected in the following ways:
	An SPI receiver/error CPU interrupt request is generated.
	 The SPEN bit in SPCON is cleared. This disable the SPI.
	The MSTR bit in SPCON is cleared.
	When $\overline{\text{SS}}$ Disable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the $\overline{\text{SS}}$ signal becomes '0'.
	However, as stated before, for a system with one Master, if the \overline{SS} pin of the Master device is pulled low, there is no way that another Master is attempting to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the \overline{SS} pin as a general-purpose I/O pin.
	Clearing the MODF bit is accomplished by a read of SPSTA register with MODF bit set, followed by a write to the SPCON register. SPEN Control bit may be restored to its orig- inal set state after the MODF bit has been cleared.
Write Collision (WCOL)	A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence.
	WCOL does not cause an interruption, and the transfer continues uninterrupted.
	Clearing the WCOL bit is done through a software sequence of an access to SPSTA and an access to SPDAT.
Overrun Condition	An overrun condition occurs when the Master device tries to send several data bytes and the Slave device has not cleared the SPIF bit issuing from the previous data byte transmitted. In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read of the SPDAT returns this byte. All others bytes are lost.
	This condition is not detected by the SPI peripheral.
SS Error Flag (SSERR)	A Synchronous Serial Slave Error occurs when \overline{SS} goes high before the end of a received data in slave mode. SSERR does not cause in interruption, this bit is cleared by writing 0 to SPEN bit (reset of the SPI state machine).
Interrupts	Two SPI status flags can generate a CPU interrupt requests:
	Table 84 SPL Interrupts

Table 84. SPI Interrupts	
----------------------------------	--

Flag	Request
SPIF (SP data transfer)	SPI Transmitter Interrupt request
MODF (Mode Fault)	SPI Receiver/Error Interrupt Request (if SSDIS = '0')

Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been completed. SPIF bit generates transmitter CPU interrupt requests.

140 AT83R5122, AT8xC5122/23

Serial Peripheral DATa Register (SPDAT)

The Serial Peripheral Data Register (Table 87) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 87. Serial Peripheral Data Register - SPDAT (C5h)

7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0
Bit Number	Bit Mnemonic	Description					
7-0	R7:0	Receive data SPCON, SPS there is no or writing to then Do not chang Do not chang Do not chang Clearing SPE Writing to the	a bits STA and SPD/ n-going excha m while a tran le SPR2, SPR le CPHA and le MSTR SN would imm SPDAT will c	AT registers m nge. However smission is or R1 and SPR0 CPOL ediately disab ause an overf	ay be read an ; special care n-going: le the periphe low	ld written at ar should be tak ral	ny time while en when

Reset Value = XXXX XXXXb