
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	72MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x14b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8lb11f16e-b-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Low Pin Count Package Description

AT83C5123 version

Figure 6. VQFP32 Package Pinout

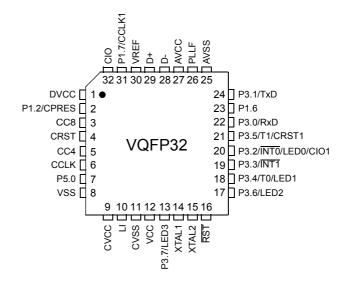
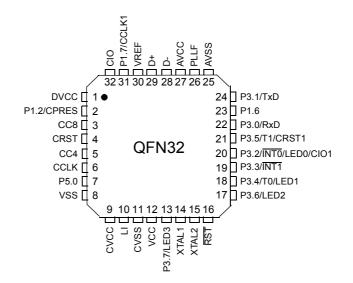
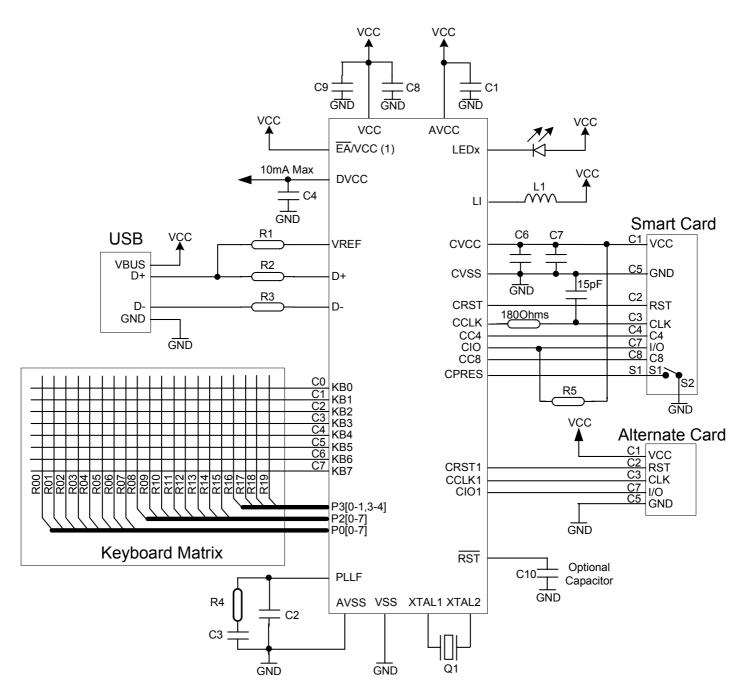




Figure 7. QFN32 Package Pinout

USB Keyboard with Smart Card Reader Using AT83R5122, AT8xC5122/AT89C5122DS

Notes : 1 - Pin configuration depends on product versions

¹⁶ AT83R5122, AT8xC5122/23

USB Smart Card Reader Using the AT83C5123 Version

Registers

7	6	5	4	3	2	1	0				
DPU	-	-	-		XRS0	EXTRAM	AO				
Bit Number	Bit Mnemonic	Description	Description								
7	DPU	Disable weak 0 1									
6-3	-	Reserved The value read from this bit is indeterminate. Do not change these bits.									
2	XRS0	XRAM Size 0 1	0 256 bytes (default)								
1	EXTRAM	Set to access Programmed b	EXTRAM bit Cleared to access internal XRAM using MOVX @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting , XRAM selected.								
0	AO	Cleared , ALE X2 mode is us	(HSB), default setting , XRAM selected. ALE Output bit Cleared , ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 i X2 mode is used)(default). Set , ALE is active only when a MOVX or MOVC instruction is used.								

Table 5. Auxiliary Register - AUXR (8Eh)

Reset Value = 0XXX X000b

7	6	5	4	3	2	1	0			
-	-	ENBOOT	-	GF3	0	-	DPS			
Bit Number	Bit Mnemonic	Description	Description							
7 - 6	-	Reserved The value read	eserved he value read from this bit is indeterminate. Do not change these bits.							
5	ENBOOT	Set this bit to n beyond 7FFFh Clear this bit to the code is feto	Enable Boot ROM (CRAM / E2PROM version only) Set this bit to map the Boot ROM from 8000h to FFFFh. If the PC increments beyond 7FFFh address, the code is fetch from internal ROM Clear this bit to disable Boot ROM. If the PC increments beyond 7FFFh address, the code is fetch from external code memory (C51 standard roll over function) This bit is forced to 1 at reset							
4	-	Reserved The value read	from this bit	is indetermina	te. Do not cha	inge this bit.				
3	GF3	This bit is a ge	neral-purpose	user flag.						
2	0	Always cleared	-							
1	-	Reserved The value read from this bit is indeterminate. Do not change this bit.								
0	DPS	Data Pointer S Cleared to sele		t to select DP	TR1.					

Table 6. Auxiliary Register 1 AUXR1- (0A2h) for AT8xC5122

Reset Value = XX1X XX0X0b (Not bit addressable)

Table 7. Auxiliary Register 1 AUXR1- (0A2h) for AT83C5123

7	6	5	4	3	2	1	0			
-	-	-	-	GF3	0	-	DPS			
Bit Number	Bit Mnemonic	Description								
7 - 6	-	Reserved The value read	I from this bit	is indetermina	te. Do not cha	inge these bits	6.			
5		Reserved The value read	teserved The value read from this bit is indeterminate. Do not change these bits.							
4	-	Reserved The value read	I from this bit	is indetermina	te. Do not cha	inge this bit.				
3	GF3	This bit is a ge	neral-purpose	e user flag.						
2	0	Always cleared	1.							
1	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not change this bit.							
0	DPS	Data Pointer S Cleared to select D Set to select D	ect DPTR0.							

Reset Value = XXXX XX0X0b (Not bit addressable)

³² AT83R5122, AT8xC5122/23

2. Grey areas : do not write in.

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h	UEPINT 0000 0000							
F0h	B 0000 0000	LEDCON0 0000 0000						
E8h	P5 1111 1111							
E0h	ACC 0000 0000	LEDCON1 XX00 0000	UBYCTX 0000 0000					
D8h								
D0h	PSW 0000 0000	RCON XXXX 0XXX			UEPCONX 1000 0000	UEPRST 0000 0000		
C8h							UEPSTAX 0000 0000	UEPDATX 0000 0000
S 1 C COh R 0	P4 1111 1111	SCICLK ⁽¹⁾ 0X10 1111 SCWT3 ⁽¹⁾ 0000 0000	UEPIEN 0000 0000	SPCON 0001 0100	SPSTA 0000 0000	SPDAT 1111 1111	USBADDR 1000 0000	UEPNUM 0000 0000
B8h	IPL0 X000 000	SADEN 0000 0000	UFNUML 0000 0000	UFNUMH 0000 0000	USBCON 0000 0000	USBINT 0000 0000	USBIEN 0000 0000	DCCKPS 0000 0000
6 1 C Bob	P3	IEN1	IPL1	IPH1	SCGT0 ⁽¹⁾ 0000 1100	SCGT1 ⁽¹⁾ XXXX XXX0	SCICR ⁽¹⁾ 0000 0000	IPH0
BOh S 0	1111 1111	XXXX X000	00XX 00X0	00XX 00X0	SCWT0 ⁽¹⁾ 1000 0000	SCWT1 ⁽¹⁾ 0010 0101	SCWT2 ⁽¹⁾ 0000 0000	X000 0000
6 1 C Ash	IEN0	SADDR	SCIBUF	SCSR	SCETU0 ⁽¹⁾ 0111 0100	SCETU1 ⁽¹⁾ XXXX X001	SCIER ⁽¹⁾ 0X00 0000	
A8h S 0	0000 0000	0000 0000	XXXX XXXX	X000 1000	SCCON ⁽¹⁾ 0000 0000	SCISR ⁽¹⁾ 10X0 0000	SCIIR ⁽¹⁾ 0X00 0000	
A0h	P2 1111 1111	ISEL 0000 0100	AUXR1 XX1X 0XX0	PLLCON XXXX X000	PLLDIV 0000 0000		WDTRST XXXX XXXX	WDTPRG XXXX X000
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000	
90h	P1 1111 1111	PMOD0 ⁽²⁾ 0000 0000						CKRL XXXX 1111
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR 0XXX X000	CKCON0 X0X0 X000
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000	PMOD1 0000 0000	CKSEL XXXX XXX0		PCON 00X1 0000

AT8xC5122 Version

Bit addressable

Not bit addressable

SFR's Description

Table 10. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator	ACC							
В	F0h	B Register		В						
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer				S	P			
DPL	82h	Data Pointer Low byte (LSB of DPTR)		DPL						
DPH	83h	Data Pointer High byte (MSB of DPTR)		DPH						

Table 11. Clock SFRs

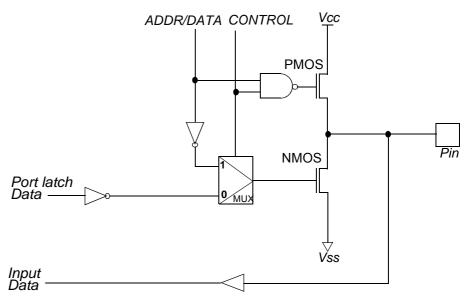
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Controller	SMOD1	SMOD0		POF	GF1	GF0	PD	IDL
CKCON0	8Fh	Clock Controller 0		WDX2		SIX2		T1X2	T0X2	X2
CKCON1	AFh	Clock Controller 1								SPIX2
CKSEL	85h	Clock Selection								CKS
CKRL	97h	Clock Reload Register					CKREL 3-0			
PLLCON	A3h	PLL Controller Register						EXT48	PLLEN	PLOCK
PLLDIV	A4h	PLL Divider register		F	3-0			N	3-0	
AUXR	8Eh	Auxiliary Register 0	DPU					XRS0	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1			ENBOOT ⁽¹⁾		GF3			DPS
RCON ⁽¹⁾	D1h	CRAM memory Configuration					RPS			

Note: 1. Only for AT8xC5122

Table 12. I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0 ⁽¹⁾	80h	Port 0		P0						
P1	90h	Port 1		P1						
P2 ⁽¹⁾	A0h	Port 2		P2						
P3	B0h	Port 3					P3			
P4 ⁽¹⁾	C0h	Port 4					P4			
P5	E8h	Port 5				P5 (only P5.0) for AT8xC5122	2)		
PMOD0	91h	Port Mode Register 0	P3C1	P3C0	P2C1 ⁽¹⁾	P2C0 ⁽¹⁾	CPRESRES	-	P0C1 ⁽¹⁾	P0C0 ⁽¹⁾
PMOD1	84h	Port Mode Register 1	P5HC1 ⁽¹⁾	P5HC0 ⁽¹⁾	P5MC1 ⁽¹⁾	P5MC0 ⁽¹⁾	P5LC1	P5LC0	P4C1 ⁽¹⁾	P4C0 ⁽¹⁾

Note: 1. Only for AT8xC5122


³⁴ AT83R5122, AT8xC5122/23

Port Configuration

Standard I/O P0

The P0 port is described in Figure 22.

Figure 22. Standard Input/Output Port

Quasi Bi-directional Port The default port output configuration for standard I/O ports is the quasi-bi-directional output that is common on the 80C51 and most of its derivatives. The "Port51" output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low.

When the port outputs a logic low state, it is driven strongly and is able to sink a fairly large current.

These features are somewhat similar to an open-drain output except that there are three pull-up transistors in the quasi-bi-directional output that serve different purposes.

One of these pull-ups, called the weak pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. The weak pull-up can be turned off by the DPU bit in AUXR register.

A second pull-up, called the medium pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bi-directional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

Note: for CIO, CC4, CC8 ports of SCIB interface , in input mode when the ICC (smart card) is driving the port pin :

- if 0 < Vin < CVCC/2 : weak pull-up is active (~100KOhm)
- if CVCC/2 < Vin < CVCC : weak (~100KOhm) and medium (~12KOhm) pullup's are active

Table 44.	Smart Card	Interface	Control	Register	- SCICR	(S:B6h, SCRS =	1)
-----------	------------	-----------	---------	----------	---------	----------------	----

7	6	5	4	3	2	1	0
RESET	CARDDET	VCARD1	VCARD0	UART	WTEN	CREP	CONV
Bit Number	Bit Mnemonic	Description					
7	RESET	Reset Set this bit to reset ar Clear this bit to activa This bit acts as an ac	te the Smart Card	Interface.			
6	CARDDET	Card Presence Dete Clear this bit to indica Set this bit to indicate	te the card present			``	0,
5-4	VCARD[1:0]	Card Voltage Select VCARD[1] VCARD[0] 0 0 0 1 1 0 1 1					
3	UART	Card UART Selectio Clear this bit to use th Set this bit to use the Controls also the Wai	ne CARDIO bit (P1. Smart Card UART	to drive the Card I/	O pin (P1.0 pin).	WT) Counter", pag	je 67
2	WTEN	Waiting Time Counter Clear this bit to stop t The hold registers are Set this bit to start the If the UART bit is set, sent or received.	he counter and ena e loaded with SCW e Waiting Time Cou	T0, SCWT1, SCWT nter. The counters s	2 and SCWT3 value stop when it reaches	es when SCWT2 is the timeout value	e.
1	CREP	Character Repetition Clear this bit to disable character repetition in Set this bit to enable repetition when a pari Depending upon CRE up to 5times (4 repetit is enabled, the SCPI Alternately, the transr (depending on CREP register. If parity intern Note : Character repe oriented protocol)	le parity error detec n transmit mode. parity error indicatio ity error is indicated EPSET bit is SCSR tions) after which it bit in SCIIR register nitter will detect ICC SEL bit in SCSR re rupt is enabled, the	on on the Card I/O p I in transmit mode. register, the receive will raise the parity of r will be set too. C character repetitio gister), the transmit SCPI bit in SCIIR r	oin in receive mode a er can indicate parity error bit SCPE bit in on request. After 3 o ter will raise the par egister will be set to	and to set automat / error up to 4time: the SCISR register r 4 unsuccessful re- ity error bit SCPE 0.	tic character s (3 repetitions) of r. If parity interrup epetitions bit in the SCISR
0	CONV	ISO Convention Clear this bit to use th on the Card I/O pin re Set this bit to use the the Card I/O pin repres	presents a'0'.	× ,			

Reset Value = 0000 0000b

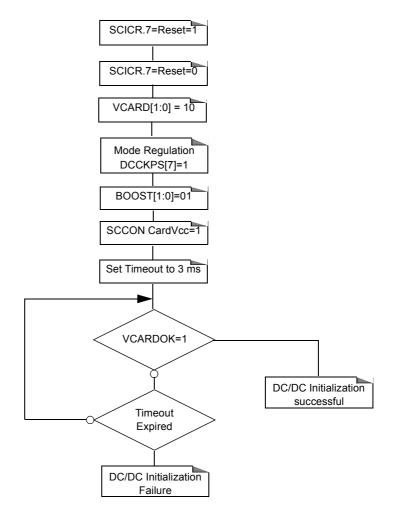


Figure 46. Card Vcc = 3V Initialization Procedure

advised to decrement the BOOST[1:0] bits to restore the overflow current to its normal or desired value.

Monitoring ProcedureOnce the DC/DC has been successfuly initialized, it is necessary to monitor the DC/DC
converter by means of bits VCARDOK and ICARDOVF in the SCISR register.

VCARDOK	ICARDOVF	DC/DC Status
0	0	- Not Started or switched off by application. The current overflow sensor is disabled during the DC/DC converter startup. Then if a current overflow condition is applied during the DC/DC converter startup, the DC/DC converter is unable to start and both bits VCARDOK and ICARDOVF remains at 0.
		DC/DC converter correctly started then the output voltage is out of ISO/IEC 7816-3 specifications. In this case the firmware must take appropriate actions like deactivating the DC/DC converter in compliance with ISO/IEC 7816.
0	1	Started and automatically switched off by a current overflow condition
1	0	Operating properly according to ISO/IEC 7816-3 and EMV recommendations
1	1	Not applicable

Table 60. DC/DC converter status

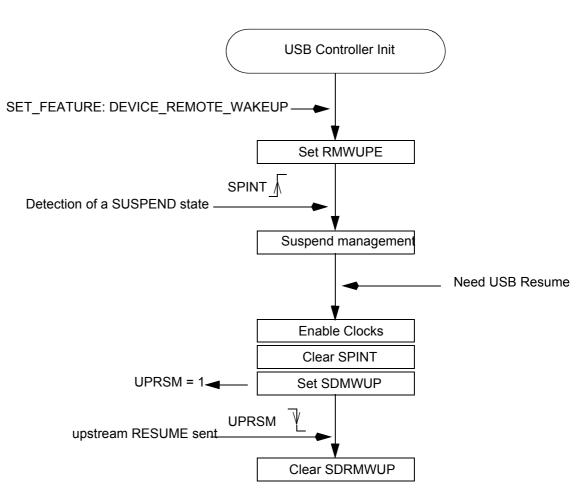
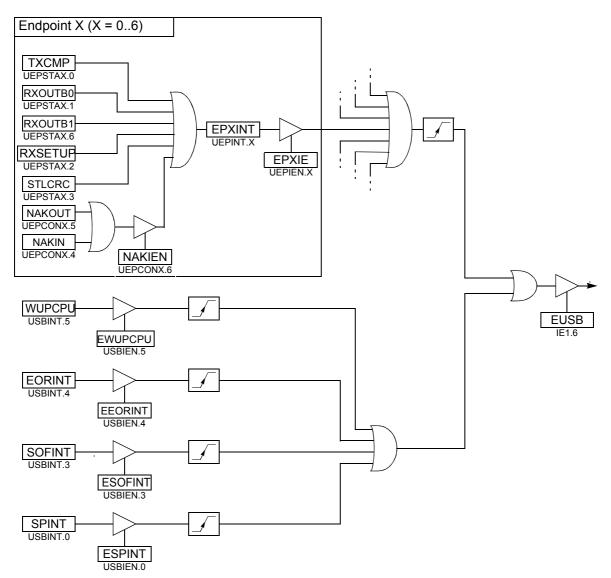



Figure 59. Example of REMOTE WAKEUP Management

Figure 63. USB Interrupt Control Block Diagram

7	6	5	4	3	2	1	0				
-	-	EWUPCPU	WUPCPU EEORINT ESOFINT ESPIN								
Bit Number	Bit Mnemonic	Description	Description								
7 - 6	-	Reserved The value rea	eserved he value read from these bits is always 0. Do not change these bits.								
5	EWUPCPU	Set this bit to	Enable Wake-up CPU Interrupt Set this bit to enable Wake-up CPU Interrupt. Clear this bit to disable Wake-up CPU Interrupt.								
4	EEORINT	Set this bit to		errupt of Reset Intern d of Reset Int		s set after res	et.				
3	ESOFINT		Interrupt enable SOF to disable SC	•							
2-1	-	Reserved The value rea	Reserved The value read from these bits is always 0. Do not change these bits.								
0	ESPINT	Set this bit to	•	ot end Interrupts spend Interru	•	5 on page 11	6).				

Table 66. USB Global Interrupt Enable Register - USBIEN (S:BEh)

Reset Value = 0001 0000b

Table 67. USB Address Register - USBADDR (S:C6h)

7	6	5	4	3	2	1	0	
FEN	UADD6	UADD5	UADD4	UADD3	UADD2	UADD1	UADD0	
Bit Number	Bit Mnemonic	Description	Description					
7	FEN	Set this bit to	Function Enable Set this bit to enable the function. FADD is reset to 1. Cleared this bit to disable the function.					
6-0	UADD[6:0]	USB Address This field contains the default address (0) after power-up or USB bus reset. It should be written with the value set by a SET_ADDRESS request received by the device firmware.						

Reset Value = 1000 0000b

Table 68. USB Endpoint Number - UEPNUM (S:C7h)

7	6	5	4	3	2	1	0	
		-	-	EPNUM3	EPNUM2	EPNUM1	EPNUM0	
Bit Number	Bit Mnemonic	Description						
7 - 4	-	Reserved The value read fro	Reserved The value read from these bits is always 0. Do not change these bits.					
3 - 0	EPNUM[3:0]	Set this field with t Count Register X	Endpoint Number Set this field with the number of the endpoint which should be accessed when reading or writing to, USB Byte Count Register X (X=EPNUM set in UEPNUM Register) - UBYCTX (S:E2h) or USB Endpoint X Control Register UEPCONX (S:D4h). This value can be 0, 1, 2, 3, 4, 5 or 6.					

Reset Value = 0000 0000b

Table 69. USB Endpoint X Control Register - UEPCONX (S:D4h)

7	6	5	4	3	2	1	0
EPEN	NAKIEN	NAKOUT	NAKIN	DTGL	EPDIR	EPTYPE1	EPTYPE0
Bit Number	Bit Mnemonic	Description					
7	EPEN	a hardware or l	able the endpoint JSB bus reset and	according to the dev participate in the de int according to the	evice configuration.		s be enabled after
6	NAKIEN		hable NAKIN and I	NAKOUT Interrupt. d NAKOUT Interrup	t.		
5	NAKOUT	the Host. This g	y hardware when t	he a NAK handshak upt if the NAKIEN b are.		B controller to an C	OUT request from
4	NAKIN	Host. This gene	•	he a NAK handshak if the NAKIEN bit is are.		B controller to an IN	I request from the
3	DTGL		y hardware when a	a valid DATA0 packe nen a valid DATA1 p		•	
2	EPDIR	Set this bit to co Clear this bit to	Endpoint Direction Set this bit to configure IN direction for Bulk, Interrupt and Isochronous endpoints. Clear this bit to configure OUT direction for Bulk, Interrupt and Isochronous endpoints. This bit has no effect for Control endpoints.				
1-0	EPTYPE[1:0]	Endpoint Type Set this field ac 00Control endp 01Isochronous 10Bulk endpoin 11Interrupt end	cording to the end oint endpoint t	point configuration (Endpoint 0 will alwa	ays be configured a	s control):

Reset Value = 1000 0000b when UEPNUM = 0 Reset Value = 0000 0000b otherwise

	Figure 66. UART Timings in Mode	·			
	^I Start ^I bit	Data byte	Ninth ^I Stop ^I bit bit		
	RI SMOD0=0				
	RI SMOD0=1				
	FE SMOD0=1				
Automatic Address Recognition	The automatic address recognition nication feature is enabled (SM2 bi		e multiprocessor commu-		
	Implemented in hardware, automatic communication feature by allowin incoming command frame. Only w receiver sets RI bit in SCON register is not interrupted by command fram	ng the serial port to exami when the serial port recognizer to generate an interrupt. T	ne the address of each zes its own address, the his ensures that the CPU		
	If desired, you may enable the auto configuration, the stop bit takes the received command frame address valid stop bit. To support automatic address reco a broadcast address.	place of the ninth data bit. E matches the device's addres	Bit RI is set only when the ss and is terminated by a		
		cation and automatic address ting SM2 bit in SCON register i			
Given Address	Each device has an individual addured register is a mask byte that conta device's given address. The don't conta slaves at a time. The following examples	ains don't care bits (define are bits provide the flexibilit	ed by zeros) to form the y to address one or more		
	To address a device by its individ 1111b.	ual address, the SADEN m	nask byte must be 1111		
	For example: SADDR0101 0110b <u>SADEN1111 1100b</u> Given0101 01XXb				
	The following is an example of how Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Given1111 0X0Xb	v to use given addresses to a	address different slaves:		
	Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Given1111 0XX1b				
	Slave C:SADDR1111 0011b <u>SADEN1111 1101b</u> Given1111 00X1b				

Slave Select (SS)	Each Slave peripheral is selected by one Slave Select pin (\overline{SS}). This signal must stay low for any message for a Slave. Only one Master (\overline{SS} high level) can drive the network. The Master may select each Slave device by software through port pins (Figure 82). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission.
	In a Master configuration, the $\overline{\text{SS}}$ line can be used in conjunction with the MODF flag in the SPI Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see Section "Error Conditions", page 140).
	A high level on the $\overline{\text{SS}}$ pin puts the MISO line of a Slave SPI in a high-impedance state.
	The \overline{SS} pin could be used as a general-purpose if the following conditions are met:
	 The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can be found when only one Master is driving the network and there is no way that the SS pin will be pulled low. Therefore, the MODF flag in the SPSTA will never be set⁽¹⁾.
	 The Device is configured as a Slave with CPHA and SSDIS control bits set ⁽²⁾. This kind of configuration can happen when the system comprises one Master and one Slave only. Therefore, the device should always be selected and there is no reason that the Master uses the SS pin to select the communicating Slave device.
Baud Rate	In Master mode, the baud rate can be selected from a baud rate generator which is con- troled by three bits in the SPCON register: SPR2, SPR1 and SPR0. The Master clock is

troled by three bits in the SPCON register: SPR2, SPR1 and SPR0. The Master clock is chosen from one of six clock rates resulting from the division of the internal clock by 4, 8, 16, 32, 64 or 128.

Table 83 gives the different clock rates selected by SPR2:SPR1:SPR0

SPR2:SPR1:SPR0	Clock Rate	Baud Rate Divisor (BD)
000	Reserved	N/A
001	F _{CK_SPI} /4	4
010	F _{CK_SPI} / 8	8
011	F _{CK_SPI} /16	16
100	F _{CK_SPI} /32	32
101	F _{CK_SPI} /64	64
110	F _{CK_SPI} /128	128
111	Reserved	N/A

Table 83. SPI Master Baud Rate Selection

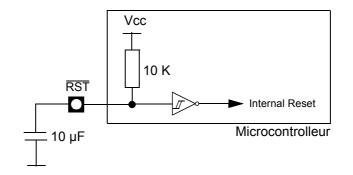
- 1. Clearing SSDIS control bit does not clear MODF.
- 2. Special care should be taken not to set SSDIS control bit when CPHA = '0' because in this mode, the \overline{SS} is used to start the transmission.

Interrupt Sources and Vectors

Table 108. Interrupt Vectors

Interrupt Source	Polling Priority at Same Level	Vector Address	
Reset	0 (Highest Priority)	C:0000h	
INTO	1	C:0003h	
Timer 0	2	C:000Bh	
INT1	3	C:0013h	
Timer 1	4	C:001Bh	
UART	6	C:0023h	
Reserved	7	C:002Bh	
Reserved	5	C:0033h	
Keyboard Controller ⁽¹⁾	8	C:003Bh	
Reserved	9	C:0043h	
SPI Controller ⁽¹⁾	10	C:004Bh	
Smart Card Controller	11	C:0053h	
Reserved	12	C:005Bh	
Reserved	13	C:0063h	
USB Controller	14	C:006Bh	
Reserved	15 (Lowest Priority)	C:0073h	

Note: 1. Only fot AT8xC5122



Reset pin

As explained in the POR section there is no need to use the reset pin as the internal reset function at power up is ensured by the POR. Anyway, if some applications requires a long reset, a reset controlled by the user or a reset controlled by external superviser device, the use of the reset pin is necessary.

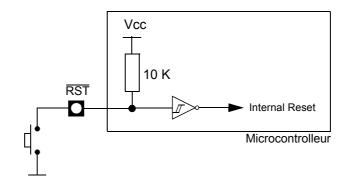

Long Reset As the pad integrates an internal pull-up of 10K, only an external capacitor of at least 10 μ F is required to have an impact on the reset duration.

Figure 103. Long Reset

Reset Controlled by the User The external capacitor is not needed if no long reset is required.

Figure 104. Reset Controlled by the User

Electrical Characteristics

Absolute Maximum Ratings

Ambiant Temperature Under Bias25°C to 85°C
Storage Temperature65°C to + 150°C
Voltage on V _{CC} to V _{SS} 0.5 V to + 6.0V
Voltage on Any Pin to $V_{\rm SS}$ -0.5 V to $V_{\rm CC}$ + 0.5 V
Power Dissipation 1 W

Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Power Dissipation value is based on the maximum allowable die temperature and the thermal resistance of the package.

DC Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage: P0, ALE, PSEN			0.45	V	I _{OL} = 1.6 mA
V _{OH}	Output High Voltage: P0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = 10 μA
V _{OL1}	Output Low Voltage: P2, P3, P4, P5, P1.2, P1.6, P1.7			0.45	V	I _{OL} = 0.8 mA
V _{OH1}	Output High Voltage: P2, P3, P4, P5, P1.2, P1.6, P1.7	0.9 V _{CC}			V	Ι _{ΟΗ} = -10 μΑ
l _{IL}	Logical 0 Input Current ports 2 to 5 and P1.2, P1.6, P1.7, if Weak pull-up enabled			-50	μA	Vin = 0.45 V
LI	Input Leakage Current			±10	μA	0.45 V < V _{IN} < V _{CC}
I _{TL}	Logical 1 to O transistion Current, Port 51 configuration			-650	μA	V _{IN} = 2 V
R _{MEDIUM}	Medium Pullup Resistor		10		kΩ	
R _{WEAK}	Weak Pullup Resistor		100		kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1MHz T _A = 25°C
DV _{CC}	Digital Supply Voltage	3	3.4	3.6	V	C _L = 470 nF
DI _{CC}	Digital Supply Output Current (DVcc pin)			10	mA	С _L = 100 nF F _{CK_CPU} = 24 MHz
V _{PFDP}	Power Fail High Level Threshold		2.8	3	V	
V _{PFDM}	Power Fail Low Level Threshold	2,5	2.6		V	
t _{rise,} t _{fall}	V _{DD} rise and fall time	1µs		600	second	

 $T_{\rm A}$ = -40 to +85°C; $V_{\rm SS}$ = 0 V, $F_{\rm CK\ CPU}$ = 0 to 24 MHz , $V_{\rm CC}$ = 3.0V to 5.5V