E. Lattice Semiconductor Corporation - <u>LFE5U-12F-6MG285C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3000
Number of Logic Elements/Cells	12000
Total RAM Bits	589824
Number of I/O	118
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	285-LFBGA, CSPBGA
Supplier Device Package	285-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-12f-6mg285c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Acronyms in This Document	9
1. General Description	10
1.1. Features	10
2. Architecture	12
2.1. Overview	12
2.2. PFU Blocks	13
2.2.1. Slice	14
2.2.2. Modes of Operation	17
2.3. Routing	
2.4. Clocking Structure	
2.4.1. sysCLOCK PLL	
2.5. Clock Distribution Network	19
2.5.1. Primary Clocks	20
2.5.2. Edge Clock	21
2.6. Clock Dividers	22
2.7. DDRDLL	23
2.8. svsMEM Memory	24
2.8.1. sysMEM Memory Block	
2.8.2 Bus Size Matching	25
2.8.3 RAM Initialization and ROM Operation	
2.8.4 Memory Cascading	
2.8.5 Single Dual and Pseudo-Dual Port Modes	25
2.8.6 Memory Core Reset	26
2.9 svsDSP™ Slice	26
2.9.1. sysDSP Slice Approach Compared to General DSP	26
2.9.2 sysDSP Slice Architecture Features	20
2.10 Programmable I/O Cells	30
2 11 PIO	32
2 11 1 Innut Register Block	32
2 11 2 Output Register Block	32
2 12 Tristate Register Block	34
2.12. DDR Memory Support	
2 13 1 DOS Grouping for DDR Memory	
2 13 2 DLL Calibrated DOS Delay and Control Block (DOSBLE)	
2.13.2, DEL cambrated DQ3 Delay and control block (DQ3D01)	
2.14. Syst/O Buffer Banks	20 20
2.14.2 Typical cycl/O L/O Pobayiar during Dowar up	
2.14.2. Typical syst/O f/O Benaviol during Power-up	
2.14.4 On Chin Programmable Termination	
2.14.5 Hot Sockoting	40
2.14.5. Hot Socketting	40
	41
2.13.1. SERDES DIOCK	
2,12,2, PW	
2.10.5. SERVES CHEHL HILEHALE BUS	
2.10. FIEXINE DUAI SERDES AFCHILECTURE	
2.17. IEEE 1149.1-Compliant Boundary Scan Testability	
2.18. Device Configuration	
2.18.1. Ennanced Configuration Options	
2.18.2. Single Event Upset (SEU) Support	45
2.18.3. Un-Chip Uscillator	
2.19. Density Shifting	
3. DC and Switching Characteristics	47

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

1. General Description

The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.

The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/Os. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards.

The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS.

The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.

The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for users to port designs from ECP5UM to ECP5-5G devices to get higher performance. The Lattice Diamond[™] design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

1.1. Features

- Higher Logic Density for Increased System Integration
 - 12K to 84K LUTs
 - 197 to 365 user programmable I/Os
- Embedded SERDES
 - 270 Mb/s, up to 3.2 Gb/s, SERDES interface (ECP5)
 - 270 Mb/s, up to 5.0 Gb/s, SERDES interface (ECP5-5G)
 - Supports eDP in RDR (1.62 Gb/s) and HDR (2.7 Gb/s)
 - Up to four channels per device: PCI Express, Ethernet (1GbE, SGMII, XAUI), and CPRI
- sysDSP™
 - Fully cascadable slice architecture
 - 12 to 160 slices for high performance multiply and accumulate
 - Powerful 54-bit ALU operations
 - Time Division Multiplexing MAC Sharing
 - Rounding and truncation
 - Each slice supports
 - Half 36 x 36, two 18 x 18 or four 9 x 9 multipliers
 - Advanced 18 x 36 MAC and 18 x 18 Multiply-Multiply-Accumulate (MMAC) operations
- Flexible Memory Resources
 - Up to 3.744 Mb sysMEM[™] Embedded Block RAM (EBR)
 - 194K to 669K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)

2.2. **PFU Blocks**

The core of the ECP5/ECP5-5G device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0-3, as shown in Figure 2.2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

The PFU block can be used in Distributed RAM or ROM function, or used to perform Logic, Arithmetic, or ROM functions. Table 2.1 shows the functions each slice can perform in either mode.

2.2.2. Modes of Operation

Slices 0-2 have up to four potential modes of operation: Logic, Ripple, RAM and ROM. Slice 3 is not needed for RAM mode, it can be used in Logic, Ripple, or ROM modes.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note that LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed in one PFU using each LUT block in Slice 0 and Slice 1 as a 16 x 2-bit memory in each slice. Slice 2 is used to provide memory address and control signals. A 16 x 2-bit pseudo dual port RAM (PDPR) memory is created in one PFU by using one Slice as the read-write port and the other companion slice as the read-only port. The slice with the read-write port updates the SRAM data contents in both slices at the same write cycle.

ECP5/ECP5-5G devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2.3 lists the number of slices required to implement different distributed RAM primitives. For more information about using RAM in ECP5/ECP5-5G devices, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

Table 2.3. Number of Slices Required to Implement Distributed RAM

	SPR 16 X 4	PDPR 16 X 4				
Number of slices	3	6				

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

2.3. Routing

There are many resources provided in the ECP5/ECP5-5G devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The ECP5/ECP5-5G family has an enhanced routing architecture that produces a compact design. The Diamond design software tool suites take the output of the synthesis tool and places and routes the design.

2.4. Clocking Structure

ECP5/ECP5-5G clocking structure consists of clock synthesis blocks (sysCLOCK PLL); balanced clock tree networks (PCLK and ECLK trees); and efficient clock logic modules (CLOCK DIVIDER and Dynamic Clock Select (DCS), Dynamic Clock Control (DCC) and DLL). All of these functions are described below.

2.4.1. sysCLOCK PLL

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the ECP5/ECP5-5G family support two to four full-featured General Purpose PLLs. The sysCLOCK PLLs provide the ability to synthesize clock frequencies.

The architecture of the PLL is shown in Figure 2.5. A description of the PLL functionality follows.

CLKI is the reference frequency input to the PLL and its source can come from two different external CLK inputs or from internal routing. A non-glitchless 2-to-1 input multiplexor is provided to dynamically select between two different external reference clock sources. The CLKI input feeds into the input Clock Divider block.

CLKFB is the feedback signal to the PLL which can come from internal feedback path, routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLL has four clock outputs CLKOP, CLKOS, CLKOS2 and CLKOS3. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the primary clock network. Only CLKOP and CLKOS outputs can go to the edge clock network.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically using the PHASESEL, PHASEDIR, PHASESTEP, and PHASELOADREG ports.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected.

- 5*5 and larger size 2D blocks Semi internal DSP Slice support
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such as, overflow, underflow and convergent rounding.
 - Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2.14, the ECP5/ECP5-5G sysDSP slice is backwards-compatible with the LatticeECP2[™] and LatticeECP3[™] sysDSP block, such that, legacy applications can be targeted to the ECP5/ECP5-5G sysDSP slice. Figure 2.14 shows the diagram of sysDSP, and Figure 2.15 shows the detailed diagram.

Figure 2.14. Simplified sysDSP Slice Block Diagram

2.11.1.1. Input FIFO

The ECP5/ECP5-5G PIO has dedicated input FIFO per single-ended pin for input data register for DDR Memory interfaces. The FIFO resides before the gearing logic. It transfers data from DQS domain to continuous ECLK domain. On the Write side of the FIFO, it is clocked by DQS clock which is the delayed version of the DQS Strobe signal from DDR memory. On the Read side of FIFO, it is clocked by ECLK. ECLK may be any high speed clock with identical frequency as DQS (the frequency of the memory chip). Each DQS group has one FIFO control block. It distributes FIFO read/write pointer to every PIC in same DQS group. DQS Grouping and DQS Control Block is described in DDR Memory Support section on page 35.

Name	Туре	Description
D	Input	High Speed Data Input
Q[1:0]/Q[3:0]/Q[6:0]	Output	Low Speed Data to the device core
RST	Input	Reset to the Output Block
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQS	Input	Clock from DQS control Block used to clock DDR memory data
ALIGNWD	Input	Data Alignment signal from device core.

Table 2.8. Input Block Port Description

2.11.2. Output Register Block

The output register block registers signal from the core of the device before they are passed to the sysIO buffers.

ECP5/ECP5-5G output data path has output programmable flip flops and output gearing logic. On the left and right sides, the output register block can support 1x, 2x and 7:1 gearing enabling high speed DDR interfaces and DDR memory interfaces. On the top side, the banks support 1x gearing. ECP5/ECP5-5G output data path diagram is shown in Figure 2.19. The programmable delay cells are also available in the output data path.

For detailed description of the output register block modes and usage, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.19. Output Register Block on Top Side

2.15. SERDES and Physical Coding Sublayer

LFE5UM/LFE5UM5G devices feature up to 4 channels of embedded SERDES/PCS arranged in dual-channel blocks at the bottom of the devices. Each channel supports up to 3.2 Gb/s (ECP5), or up to 5 Gb/s (ECP5-5G) data rate. Figure 2.27 shows the position of the dual blocks for the LFE5-85. Table 2.13 shows the location of available SERDES Duals for all devices. The LFE5UM/LFE5UM5G SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express Gen1 and Gen2 (2.5 Gb/s) on ECP5UM; Gen 1, Gen2 (2.5 Gb/s and 5 Gb/s) on ECP5-5G
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- SMPTE SDI (3G-SDI, HD-SDI, SD-SDI)
- CPRI (E.6.LV: 614.4 Mb/s, E.12.LV: 1228.8 Mb/s, E.24.LV: 2457.6 Mb/s, E.30.LV: 3072 Mb/s), also E.48.LV2:4915 Mb/s in ECP5-5G
- JESD204A/B ADC and DAC converter interface: 312.5 Mb/s to 3.125 Gb/s (ECP5) / 5 Gb/s (ECP5-5G)

Each dual contains two dedicated SERDES for high speed, full duplex serial data transfer. Each dual also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in duals, multiple baud rates can be supported within a dual with the use of dedicated, per channel /1, /2 and /11 rate dividers. Additionally, two duals can be arranged together to form x4 channel link.

ECP5UM devices and ECP5-5G devices are pin-to-pin compatible. But, the ECP5UM devices require 1.1 V on VCCA, VCCHRX and VCCHTX supplies. ECP5-5G devices require 1.2 V on these supplies. When designing either family device with migration in mind, these supplies need to be connected such that it is possible to adjust the voltage level on these supplies.

When a SERDES Dual in a 2-Dual device is not used, the power VCCA power supply for that Dual should be connected. It is advised to connect the VCCA of unused channel to core if the user knows he will not use the Dual at all, or it should be connected to a different regulated supply, if that Dual may be used in the future.

For an unused channel in a Dual, it is advised to connect the VCCHTX to VCCA, and user can leave VCCHRX unconnected.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

3.10. Supply Current (Standby)

Over recommended operating conditions.

Table 3.8. ECP5/ECP5-5G Supply Current (Standby)

Symbol	Parameter	Device	Typical	Unit
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F	77	mA
Icc		LFE5UM5G-25F	77	mA
	Come Devices Commission Comment	LFE5U-45F/ LFE5UM-45F	116	mA
	Core Power Supply Current	LFE5UM5G-45F	116	mA
		LFE5U-85F/ LFE5UM-85F	212	mA
		LFE5UM5G-85F	212	mA
I _{CCAUX}		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	16	mA
	Auxiliary Power Supply Current	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	17	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	26	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	0.5	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	0.5	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	0.5	mA
		LFE5UM-25F	11	mA
		LFE5UM5G-25F	12	mA
	SERDES Power Supply Current (Per	LFE5UM-45F	9.5	mA
ICCA	Dual)	LFE5UM5G-45F	11	mA
		LFE5UM-85F	9.5	mA
		LFE5UM5G-85F	11	mA

Notes:

- For further information on supply current, see the list of technical documentation in Supplemental Information section on page 102.
- Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

• Frequency 0 Hz.

- Pattern represents a "blank" configuration data file.
- T_J = 85 °C, power supplies at nominal voltage.
- To determine the ECP5/ECP5-5G peak start-up current, use the Power Calculator tool in the Lattice Diamond Design Software.

3.14.4. LVDS25E

The top and bottom sides of ECP5/ECP5-5G devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3.1 is one possible solution for point-to-point signals.

Figure 3.1. LVDS25E Output Termination Example

Table 3.14. LVDS25E DC Conditions

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
Rs	Driver Series Resistor (±1%)	158	Ω
R _P	Driver Parallel Resistor (±1%)	140	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 3.6. Receiver RX.CLK.Centered Waveforms

Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms

Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.20. SERDES High-Speed Data Transmitter

Table 3.24. Serial Output Timing and Levels

Symbol	Description	Min	Тур	Max	Unit
V _{TX-DIFF-PP}	Peak-Peak Differential voltage on selected amplitude ^{1, 2}	-25%	—	25%	mV, p-p
V _{TX-CM-DC}	Output common mode voltage	—	V _{CCHTX} / 2	—	mV, p-p
T _{TX-R}	Rise time (20% to 80%)	50	—	—	ps
T _{TX-F}	Fall time (80% to 20%)	50	—	—	ps
T _{TX-CM-AC-P}	RMS AC peak common-mode output voltage	—	—	20	mV
Z _{TX_SE}	Single ended output impedance for 50/75 $\boldsymbol{\Omega}$	-20%	50/75	20%	Ω
	Single ended output impedance for 6K $\boldsymbol{\Omega}$	-25%	6K	25%	Ω
RL _{TX_DIFF}	Differential return loss (with package included) ³	—	—	-10	dB
RL _{TX_COM}	Common mode return loss (with package included) 3	_	_	-6	dB

Notes:

1. Measured with 50 Ω Tx Driver impedance at V_{CCHTx} \pm 5\%.

2. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for settings of Tx amplitude.

3. Return los = -10 dB (differential), -6 dB (common mode) for 100 MHz \leq f <= 1.6 GHz with 50 Ω output impedance configuration. This includes degradation due to package effects.

Table 3.25. Channel Output Jitter

Description	Frequency	Min	Тур	Max	Unit
Deterministic	5 Gb/s	—	—	TBD	UI, p-p
Random	5 Gb/s	—	—	TBD	UI, p-p
Total	5 Gb/s	—	—	TBD	UI, p-p
Deterministic	3.125 Gb/s	—	_	0.17	UI, p-p
Random	3.125 Gb/s	—	—	0.25	UI, p-p
Total	3.125 Gb/s	—	—	0.35	UI, p-p
Deterministic	2.5 Gb/s	—	—	0.17	UI, p-p
Random	2.5 Gb/s	—	—	0.20	UI, p-p
Total	2.5 Gb/s	—	—	0.35	UI, p-p
Deterministic	1.25 Gb/s	—	—	0.10	UI, p-p
Random	1.25 Gb/s	—	—	0.22	UI, p-p
Total	1.25 Gb/s	_	_	0.24	UI, p-p

Notes:

1. Values are measured with PRBS 2⁷-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, reference clock @ 10X mode.

2. For ECP5-5G family devices only.

3.26. CPRI LV2 E.48 Electrical and Timing Characteristics – Preliminary

Symbol	Description	escription Test Conditions Min			Max	Unit
Transmit			L	1	I	1
UI	Unit Interval	_	203.43	203.45	203.47	ps
T _{DCD}	Duty Cycle Distortion	-	_	—	0.05	UI
J _{UBHPJ}	Uncorrelated Bounded High Probability Jitter	-	_	-	0.15	UI
J _{TOTAL}	Total Jitter	-	_	-	0.3	UI
Z _{RX-DIFF-DC}	DC differential Impedance	-	80	_	120	Ω
T _{SKEW}	Skew between differential signals	-	_	-	9	ps
D	Tx Differential Return Loss (S22),	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
LTX-DIFF	including package and silicon	3.6864 GHz < freq < 4.9152 GHz	—	_	-8 + 16.6 *log (freq/3.6864)	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	100 MHz < freq < 3.6864 GHz	6	-	-	dB
I _{TX-SHORT}	Transmitter short-circuit current	_	_	_	100	mA
T _{RISE_FALL} -DIFF	Differential Rise and Fall Time	_		—	_	ps
L _{TX-SKEW}	Lane-to-lane output skew	_	_	—		ps
Receive		·				
UI	Unit Interval	_	203.43	203.45	203.47	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	-	_	—	1.2	V, p-p
V _{RX-EYE_Y1_Y2}	Receiver eye opening mask, Y1 and Y2	_	62.5	_	375	mV, diff
V _{RX-EYE_X1}	Receiver eye opening mask, X1	-	_	-	0.3	UI
T _{RX-TJ}	Receiver total jitter tolerance (not including sinusoidal)	_	_	_	0.6	UI
D	Receiver differential Return Loss,	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
nLRX-DIFF	package plus silicon	3.6864 GHz < freq < 4.9152 GHz	-	-	-8 + 16.6 *log (freq/3.6864)	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	_	_	dB
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	100	120	Ω

Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics

Note: Data is measured with PRBS7 data pattern, not with PRBS-31 pattern.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.31. sysCONFIG Port Timing Specifications

Over recommended operating conditions.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications

Symbol	Parameter		Min	Max	Unit
POR, Config	uration Initialization, and Wakeup			•	
t _{ICFG}	Time from the Application of V_{CC} , V_{CCAUX} or V_{CCI08} (whichever is the last) to the rising edge of INITN	-	_	33	ms
t _{VMC}	Time from t _{ICFG} to the valid Master CCLK	_	_	5	us
t _{cz}	CCLK from Active to High-Z	_	_	300	ns
Master CCL	K		1	1	
f _{MCLK}	Frequency	All selected frequencies	-20	20	%
t _{MCLK-DC}	Duty Cycle	All selected frequencies	40	60	%
All Configur	ation Modes				
t _{PRGM}	PROGRAMN LOW pulse accepted	-	110	_	ns
t _{PRGMRJ}	PROGRAMN LOW pulse rejected	_	_	50	ns
t _{INITL}	INITN LOW time	_	—	55	ns
t _{dppint}	PROGRAMN LOW to INITN LOW	_	—	70	ns
t _{dppdone}	PROGRAMN LOW to DONE LOW	_	_	80	ns
t _{IODISS}	PROGRAMN LOW to I/O Disabled	_	—	150	ns
Slave SPI			'	'	
f _{CCLK}	CCLK input clock frequency	-	_	60	MHz
t _{CCLKH}	CCLK input clock pulsewidth HIGH	-	6	_	ns
t _{CCLKL}	CCLK input clock pulsewidth LOW	_	6	_	ns
t _{stsu}	CCLK setup time	-	1	_	ns
t _{sth}	CCLK hold time	-	1	_	ns
t _{sтсо}	CCLK falling edge to valid output	-	_	10	ns
t _{stoz}	CCLK falling edge to valid disable	-	_	10	ns
t _{stov}	CCLK falling edge to valid enable	-	_	10	ns
t _{scs}	Chip Select HIGH time	-	25	_	ns
t _{scss}	Chip Select setup time	-	3	_	ns
t _{scsн}	Chip Select hold time	-	3	_	ns
Master SPI			,		
f _{CCLK}	Max selected CCLK output frequency	_	—	62	MHz
t _{CCLKH}	CCLK output clock pulse width HIGH	_	3.5	—	ns
t _{CCLKL}	CCLK output clock pulse width LOW	_	3.5	—	ns
t _{stsu}	CCLK setup time	_	5	—	ns
t _{sтн}	CCLK hold time	_	1	—	ns
t _{CSSPI}	INITN HIGH to Chip Select LOW	_	100	200	ns
t _{CFGX}	INITN HIGH to first CCLK edge	_	—	150	ns
Slave Serial					
f _{CCLK}	CCLK input clock frequency	-	_	66	MHz
t _{ssch}	CCLK input clock pulse width HIGH	_	5	_	ns
t _{SSCL}	CCLK input clock pulse width LOW	_	5	-	ns
t _{suscdi}	CCLK setup time	_	0.5	_	ns
t _{HSCDI}	CCLK hold time	_	1.5	—	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

- 1. Time taken from V_{CC} , V_{CCAUX} or V_{CCIO8} , whichever is the last to cross the POR trip point.
- 2. Device is in a Master Mode (SPI, SPIm).
- 3. The CFG pins are normally static (hardwired).

Figure 3.19. sysCONFIG Port Timing

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 3.22. Master SPI Configuration Waveforms

3.32. JTAG Port Timing Specifications

Over recommended operating conditions.

Table 3.43. JTAG Port Timing Specifications

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{btcpl}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	_	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{btcoen}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	ns
t _{btcrh}	BSCAN test capture register hold time	25	_	ns
t _{витсо}	BSCAN test update register, falling edge of clock to valid output		25	ns
t _{btuodis}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t btupoen	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 3.23. JTAG Port Timing Waveforms

3.33. Switching Test Conditions

Figure 3.24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 3.44.

*CL Includes Test Fixture and Probe Capacitance

Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards

4.3.2. LFE5U

Pin Information Summary		LFE5U-12		LFE5U-25			LFE5U-45				LFE5U-85				
Pin Type		256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	554 caBGA	285 csfBG	381 caBGA	554 caBGA	756 caBG
	Bank 0	24	6	24	24	6	24	24	6	27	32	6	27	32	56
	Bank 1	32	6	32	32	6	32	32	6	33	40	6	33	40	48
General	Bank 2	32	21	32	32	21	32	32	21	32	32	21	34	32	48
Purpose	Bank 3	32	28	32	32	28	32	32	28	33	48	28	33	48	64
Inputs/Outputs	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	14	24
per Bank	Bank 6	32	26	32	32	26	32	32	26	33	48	26	33	48	64
	Bank 7	32	18	32	32	18	32	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Total Single-Ende	d User	197	118	197	197	118	197	197	118	203	245	118	205	259	365
VCC		6	13	20	6	13	20	6	13	20	24	13	20	24	36
VCCAUX (Core)		2	3	4	2	3	4	2	3	4	9	3	4	9	8
	Bank 0	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 1	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 2	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 3	2	2	3	2	2	3	2	2	3	3	2	3	3	4
VCCIO	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	2	2
	Bank 6	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 7	2	2	3	2	2	3	2	2	3	3	2	3	3	4
	Bank 8	1	2	2	1	2	2	1	2	2	2	2	2	2	2
ТАР		4	4	4	4	4	4	4	4	4	4	4	4	4	4
Miscellaneous De	dicated	7	7	7	7	7	7	7	7	7	7	7	7	7	7
GND		27	123	99	27	123	99	27	123	99	198	123	99	198	267
NC		0	1	26	0	1	26	0	1	26	33	1	26	33	29
Reserved		0	4	6	0	4	6	0	4	6	12	4	6	12	12
Total Balls		256	285	381	256	285	381	256	285	381	554	285	381	554	756
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8
High Speed Differ	ential	Bank	16/8	14/7	16/8	16/8	14/7	16/8	16/8	14/7	16/8	24/12	14/7	16/8	24/1
Input / Output Pa	irs	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	13/6	16/8	16/8	13/6	16/8	16/8	13/6	16/8	24/12	13/6	16/8	24/1
		Bank	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total High Speed		64/32	45/27	64/32	64/32	45/27	64/32	64/32	45/27	64/32	80/40	45/27	65/33	80/40	112/
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
DQS Groups		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
(> 11 pins in grou	p)	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total DQS Groups	5	8	6	8	8	6	8	8	6	8	10	6	8	10	14

Supplemental Information

For Further Information

A variety of technical notes for the ECP5/ECP5-5G family are available.

- High-Speed PCB Design Considerations (TN1033)
- Transmission of High-Speed Serial Signals Over Common Cable Media (TN1066)
- PCB Layout Recommendations for BGA Packages (TN1074)
- Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)
- Electrical Recommendations for Lattice SERDES (FPGA-TN-02077)
- LatticeECP3, ECP-5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184)
- Using TraceID (TN1207)
- Sub-LVDS Signaling Using Lattice Devices (TN1210)
- Advanced Security Encryption Key Programming Guide for ECP5, ECP5-5G, LatticeECP3, and LatticeECP2/MS Devices (TN1215)
- LatticeECP3, LatticeECP2/M, ECP5 and ECP5-5G Dual Boot and Multiple Boot Feature (TN1216)
- ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260)
- ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261)
- ECP5 and ECP5-5G sysIO Usage Guide (TN1262)
- ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263)
- ECP5 and ECP5-5G Memory Usage Guide (TN1264)
- ECP5 and ECP5-5G High-Speed I/O Interface (TN1265)
- Power Consumption and Management for ECP5 and ECP5-5G Devices (TN1266)
- ECP5 and ECP5-5G sysDSP Usage Guide (TN1267)
- ECP5 and ECP5-5G Hardware Checklist (FPGA-TN-02038)
- Solder Reflow Guide for Surface Mount Devices (FPGA-TN-02041)
- ECP5 and ECP5-5G PCI Express Soft IP Ease of Use Guidelines (FPGA-TN-02045)
- Programming External SPI Flash through JTAG for ECP5/ECP5-5G (FPGA-TN-02050)
- Adding Scalable Power and Thermal Management to ECP5 Using L-ASC10 (AN6095)

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL): www.jedec.org
- PCI: www.pcisig.com

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

(Continued)

Date	Version	Section	Change Summary
November 2015	1.5	All	Added ECP5-5G device family.
			Changed document title to ECP5 and ECP5-5G Family Data Sheet.
	1.4	General Description	Updated Features section. Added support for eDP in RDR and HDR.
		Architecture	Updated Overview section.
			Revised Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level). Modified Flexible sysIO description and Note.
			Updated SERDES and Physical Coding Sublayer section.
			Changed E.24.V in CPRI protocol to E.24.LV.
			Removed "1.1 V" from paragraph on unused Dual.
		DC and Switching	Updated Hot Socketing Requirements section. Revised V _{CCHTX} in table
		Characteristics	notes 1 and 3. Indicated V _{CCHTX} in table note 4.
			Updated SERDES High-Speed Data Transmitter section. Revised V _{CCHTX}
			in table note 1.
		Ordering Information	Updated ECP5/ECP5-5G Part Number Description section. Changed "LFE5 FPGA" under Device Family to "ECP5 FPGA".
August 2015	1.3	General Description	Updated Features section.
			Removed SMPTE3G under Embedded SERDES.
			Added Single Event Upset (SEU) Mitigation Support.
			Removed SMPTE protocol in fifth paragraph.
		Architecture	General update.
		DC and Switching Characteristics	General update.
		Pinout Information	Updated Signal Descriptions section. Revised the descriptions of the following signals:
			• P[L/R] [Group Number]_[A/B/C/D]
			P[T/B][Group Number]_[A/B]
			D4/IO4 (Previously named D4/MOSI2/IO4)
			D5/IO5 (Previously named D5/MISO/IO5)
			VCCHRX_D[dual_num]CH[chan_num]
			VCCHTX_D[dual_num]CH[chan_num]
		Supplemental Information	Added TN1184 reference.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.