E.J. Lattice Semiconductor Corporation - <u>LFE5U-25F-6BG381C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	6000
Number of Logic Elements/Cells	24000
Total RAM Bits	1032192
Number of I/O	197
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-25f-6bg381c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	23
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	24
Figure 2.12. Memory Core Reset	26
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	29
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	31
Figure 2.17. Input Register Block for PIO on Top Side of the Device	32
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	32
Figure 2.19. Output Register Block on Top Side	33
Figure 2.20. Output Register Block on Left and Right Sides	34
Figure 2.21. Tristate Register Block on Top Side	34
Figure 2.22. Tristate Register Block on Left and Right Sides	35
Figure 2.23. DQS Grouping on the Left and Right Edges	36
Figure 2.24. DQS Control and Delay Block (DQSBUF)	37
Figure 2.25. ECP5/ECP5-5G Device Family Banks	38
Figure 2.26. On-Chip Termination	40
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	42
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	43
Figure 3.1. LVDS25E Output Termination Example	56
Figure 3.2. BLVDS25 Multi-point Output Example	57
Figure 3.3. Differential LVPECL33	58
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	60
Figure 3.6. Receiver RX.CLK.Centered Waveforms	68
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	68
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	68
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	69
Figure 3.10. DDRX71 Video Timing Waveforms	69
Figure 3.11. Receiver DDRX71 RX Waveforms	70
Figure 3.12. Transmitter DDRX71 TX Waveforms	70
Figure 3.13. Transmitter and Receiver Latency Block Diagram	73
Figure 3.14. SERDES External Reference Clock Waveforms	75
Figure 3.15. sysCONFIG Parallel Port Read Cycle	84
Figure 3.16. sysCONFIG Parallel Port Write Cycle	85
Figure 3.17. svsCONFIG Slave Serial Port Timing	85
Figure 3.18. Power-On-Reset (POR) Timing	86
Figure 3.19. svsCONFIG Port Timing	86
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	87
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	89
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	89
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Tables

Table 1.1. ECP5 and ECP5-5G Family Selection Guide	11
Table 2.1. Resources and Modes Available per Slice	14
Table 2.2. Slice Signal Descriptions	16
Table 2.3. Number of Slices Required to Implement Distributed RAM	17
Table 2.4. PLL Blocks Signal Descriptions	19
Table 2.5. DDRDLL Ports List	23
Table 2.6. sysMEM Block Configurations	25
Table 2.7. Maximum Number of Elements in a Slice	30
Table 2.8. Input Block Port Description	
Table 2.9. Output Block Port Description	34
Table 2.10. Tristate Block Port Description	35
Table 2.11. DQSBUF Port List Description	
Table 2.12. On-Chip Termination Options for Input Modes	40
Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support	
Table 2.14. Available SERDES Duals per LFE5UM/LFE5UM5G Devices	
Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support	
Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)	
Table 3.1. Absolute Maximum Ratings	
Table 3.2. Recommended Operating Conditions	
Table 3.3. Power Supply Ramp Rates	
Table 3.4. Power-On-Reset Voltage Levels	
Table 3.5. Hot Socketing Specifications	
Table 3.6. Hot Socketing Requirements	
Table 3.7. DC Electrical Characteristics	
Table 3.8. ECP5/ECP5-5G Supply Current (Standby)	
Table 3.9. ECP5UM	
Table 3.10. ECP5-5G	
Table 3.11. syst/O Recommended Operating Conditions	
Table 3.12. Single-Ended DC Characteristics	
Table 3.13. LVDS	
Table 3.14. LVDS25E DC Conditions	
Table 3.15. BLVDS25 DC Conditions	
Table 3.16. LVPECL33 DC Conditions	
Table 3.17. MLVDS25 DC Conditions	
Table 3.19. Pin-to-Pin Performance	
Table 3.20. Register-to-Register Performance	
Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed	
Table 3.22. EUPS/EUPS-SG External Switching Characteristics	
Table 3.23. sysclock PLL Timing	
Table 3.24. Serial Output Timing and Levels	
Table 3.25. Channel Output Jitter	
Table 3.25. SERDES/PCS Latency Breakdown	
Table 3.27. Serial input Data Specifications	
Table 3.20. External Deference Clerk Englishmetication (refeiler)	
Table 3.29. External Reference Clock Specification (refClkp/refClkff)	
ומור איז	
Table 2.22, CDDI 1V/2 E 49 Electrical and Timing Characteristics	
Table 2.32. CENTLVZ E.40 Electrical and Think Characteristics	
Table 2.3.1 Paraiva and litter Talerance	
Table 2.25 Transmit	
	80

Figure 2.2. PFU Diagram

2.2.1. Slice

Each slice contains two LUT4s feeding two registers. In Distributed SRAM mode, Slice 0 through Slice 2 are configured as distributed memory, and Slice 3 is used as Logic or ROM. Table 2.1 shows the capability of the slices along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Clico	PFU (Used in Distributed SRAM)		PFU (Not used as Distributed SRAM)		
Slice	Resources	Modes	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 1	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 2	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Table 2.1. Resources and Modes Available per Slice

Figure 2.3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Each slice has 14 input signals, 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are five outputs, four to routing and one to carry-chain (to the adjacent PFU). There are two inter slice/ PFU output signals that are used to support wider LUT functions, such as LUT6, LUT7 and LUT8. Table 2.2 and Figure 2.3 list the signals associated with all the slices. Figure 2.4 on page 16 shows the connectivity of the inter-slice/PFU signals that support LUT5, LUT6, LUT7 and LUT8.

2.2.2. Modes of Operation

Slices 0-2 have up to four potential modes of operation: Logic, Ripple, RAM and ROM. Slice 3 is not needed for RAM mode, it can be used in Logic, Ripple, or ROM modes.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note that LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed in one PFU using each LUT block in Slice 0 and Slice 1 as a 16 x 2-bit memory in each slice. Slice 2 is used to provide memory address and control signals. A 16 x 2-bit pseudo dual port RAM (PDPR) memory is created in one PFU by using one Slice as the read-write port and the other companion slice as the read-only port. The slice with the read-write port updates the SRAM data contents in both slices at the same write cycle.

ECP5/ECP5-5G devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2.3 lists the number of slices required to implement different distributed RAM primitives. For more information about using RAM in ECP5/ECP5-5G devices, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

Table 2.3. Number of Slices Required to Implement Distributed RAM

	SPR 16 X 4	PDPR 16 X 4		
Number of slices	3	6		

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 2.6. sysMEM Block Configurations

Memory Mode	Configurations		
	16,384 x 1		
	8,192 x 2		
Single Dort	4,096 x 4		
Single Port	2,048 x 9		
	1,024 x 18		
	512 x 36		
True Dual Port	16,384 x 1		
	8,192 x 2		
	4,096 x 4		
	2,048 x 9		
	1,024 x 18		
	16,384 x 1		
	8,192 x 2		
Decude Duel Deut	4,096 x 4		
PSeudo Dual Port	2,048 x 9		
	1,024 x 18		
	512 x 36		

2.8.2. Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.8.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

2.8.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.8.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- **Read-Before-Write** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

In Figure 2.15, note that A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

The ECP5/ECP5-5G sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2.7 shows the capabilities of each of the ECP5/ECP5-5G slices versus the above functions.

Table 2.7. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1*	1/2	Ι

*Note: One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

2.10. Programmable I/O Cells

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the ECP5/ECP5-5G devices, the Programmable I/O cells (PIC) are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the ECP5/ECP5-5G devices, two adjacent PIOs can be combined to provide a complementary output driver pair. All PIO pairs can implement differential receivers. Half of the PIO pairs on the left and right edges of these devices can be configured as true LVDS transmit pairs.

2.11. **PIO**

The PIO contains three blocks: an input register block, output register block, and tristate register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

2.11.1. Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIOs on the left and right edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the right and left sides includes gearing logic and registers to implement IDDRX1 and IDDRX2 functions. With two PICs sharing the DDR register path, it can also implement IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers to shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers samples the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. The top side of the device supports IDDRX1 gearing function. For more information on gearing function, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.17 shows the input register block for the PIOs on the top edge.

Figure 2.17. Input Register Block for PIO on Top Side of the Device

Figure 2.18 shows the input register block for the PIOs located on the left and right edges.

*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).

Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

Table 2.12. On-Chip	Termination O	ptions for In	put Modes
---------------------	----------------------	---------------	-----------

IO_TYPE	Terminate to V _{CCIO} /2* Differential Termination		
LVDS25	-	100	
BLVDS25	I	100	
MLVDS	Ι	100	
LVPECL33	-	100	
subLVDS	-	100	
SLVS	-	100	
HSUL12	50, 75, 150	-	
HSUL12D	—	100	
SSTL135_1 / 11	50, 75, 150	_	
SSTL135D_1 / 11	-	100	
SSTL15_I / II	50, 75, 150	-	
SSTL15D_I / II	-	100	
SSTL18_I / II	50, 75, 150	-	
SSTL18D_I / II	-	100	

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

Package	LFE5UM/LFE5UM5G-25	LFE5UM/LFE5UM5G-45	LFE5UM/LFE5UM5G-85
285 csfBGA	1	1	1
381 caBGA	1	2	2
554 caBGA	-	2	2
756 caBGA	-	-	2

Table 2.14. Available SERDES Duals per LFE5UM/LFE5UM5G Devices

2.15.1. SERDES Block

A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit stream through the differential drivers. Figure 2.28 shows a single-channel SERDES/PCS block. Each SERDES channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output and input buffers of each channel have their own independent power supplies (VCCHTX and VCCHRX).

Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block

2.15.2. PCS

As shown in Figure 2.28, the PCS receives the parallel digital data from the deserializer and selects the polarity, performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, selects the polarity and passes the 8/10 bit data to the transmit SERDES channel.

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Some of the enhancements in LFE5UM/LFE5UM5G SERDES/PCS include:

- Higher clock/channel granularity: Dual channel architecture provides more clock resource per channel.
- Enhanced Tx de-emphasis: Programmable pre- and post-cursors improves Tx output signaling
- Bit-slip function in PCS: Improves logic needed to perform Word Alignment function

Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for more information.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

When an error is detected, and the user's error handling software determines the error did not create any risk to the system operation, the SEC tool allows the device to be re-configured in the background to correct the affected bit. This operation allows the user functions to continue to operate without stopping the system function.

Additional SEI tool is also available in the Diamond Software, by creating a frame of data to be programmed into the device in the background with one bit changed, without stopping the user functions on the device. This emulates an SEU situation, allowing the user to test and monitor its error handling software.

For further information on SED support, refer to LatticeECP3, ECP5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184).

2.18.3. On-Chip Oscillator

Every ECP5/ECP5-5G device has an internal CMOS oscillator which is used to derive a Master Clock (MCLK) for configuration. The oscillator and the MCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCLK is nominally 2.4 MHz. Table 2.16 lists all the available MCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 2.4 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.4 MHz.

This internal oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) and ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)

MCLK Frequency (MHz)		
2.4		
4.8		
9.7		
19.4		
38.8		
62		

2.19. Density Shifting

The ECP5/ECP5-5G family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may become No Connects in smaller devices in the same package. Refer to the ECP5/ECP5-5G Pin Migration Tables and Diamond software for specific restrictions and limitations.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

3.3. **Power Supply Ramp Rates**

Table 3.3. Power Supply Ramp Rates

Symbol	Parameter	Min	Тур	Max	Unit
t _{RAMP}	Power Supply ramp rates for all supplies	0.01		10	V/ms

Note: Assumes monotonic ramp rates.

Power-On-Reset Voltage Levels 3.4.

Table 3.4. Power-On-Reset Voltage Levels

Symbol	Parameter			Min	Тур	Max	Unit
	V _{PORUP} All Devices Power-On-Reset ramp-up trip point (Monitoring V _{CC} , V _{CCAUX} , and V _{CCIO8})	V _{cc}	0.90	—	1.00	V	
V _{PORUP}		trip point (Monitoring V _{CC} ,	V _{CCAUX}	2.00	—	2.20	V
		V_{CCAUX} , and V_{CCIO8})	V _{CCIO8}	0.95	—	1.06	V
N	Power-On-Reset ramp-		V _{cc}	0.77	—	0.87	V
VPORDN	V _{cc} , and V _{ccAUX}	V_{cc} , and V_{ccAUX}	V _{CCAUX}	1.80	_	2.00	V

Notes:

These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

- Only V_{CCIO8} has a Power-On-Reset ramp up trip point. All other V_{CCIOs} do not have Power-On-Reset ramp up detection.
- V_{CCIO8} does not have a Power-On-Reset ramp down detection. V_{CCIO8} must remain within the Recommended Operating Conditions to ensure proper operation.

Power up Sequence 3.5.

Power-On-Reset (POR) puts the ECP5/ECP5-5G device in a reset state. POR is released when Vcc, VccAUX, and VccI08 are ramped above the VPORUP voltage, as specified above.

V_{CCIO8} controls the voltage on the configuration I/O pins. If the ECP5/ECP5-5G device is using Master SPI mode to download configuration data from external SPI Flash, it is required to ramp V_{CCIO8} above V_{IH} of the external SPI Flash, before at least one of the other two supplies (V_{CC} and/or V_{CCAUX}) is ramped to V_{PORUP} voltage level. If the system cannot meet this power up sequence requirement, and requires the V_{CCIO8} to be ramped last, then the system must keep either PROGRAMN or INITN pin LOW during power up, until V_{CCI08} reaches V_{IH} of the external SPI Flash. This ensures the signals driven out on the configuration pins to the external SPI Flash meet the V_{IH} voltage requirement of the SPI Flash. For LFE5UM/LFE5UM5G devices, it is required to power up V_{CCA}, before V_{CCAUXA} is powered up.

Hot Socketing Specifications 3.6.

Table 3.5. Hot Socketing Specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IDK_HS	Input or I/O Leakage Current for Top and Bottom Banks Only	$0 \le V_{IN} \le V_{IH}$ (Max)	_	_	±1	mA
	Input or I/O Leakage Current	$0 \leq V_{\text{IN}} < V_{\text{CCIO}}$	—	—	±1	mA
IDK	for Left and Right Banks Only	$V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO} \! + 0.5 \ V$	—	18	—	mA

Notes:

V_{CC}, V_{CCAUX} and V_{CCIO} should rise/fall monotonically. 1.

I_{DK} is additive to I_{PU}, I_{PW} or I_{BH}. 2.

LVCMOS and LVTTL only. 3.

4. Hot socket specification defines when the hot socketed device's junction temperature is at 85 °C or below. When the hot socketed device's junction temperature is above 85 °C, the I_{DK} current can exceed ±1 mA.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14. sysl/O Differential Electrical Characteristics

3.14.1. LVDS

Over recommended operating conditions.

Table 3.13. LVDS

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{INP} , V _{INM}	Input Voltage	-	0	—	2.4	V
V _{CM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.05	—	2.35	V
V _{THD}	Differential Input Threshold	Difference between the two Inputs	±100	—	—	mV
I _{IN}	Input Current	Power On or Power Off	_	_	±10	μA
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	$R_T = 100 \Omega$	—	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	$R_T = 100 \Omega$	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V_{OP} - V_{OM}), R_T = 100 Ω	250	350	450	mV
ΔV_{OD}	Change in V _{OD} Between High and Low	_	—	—	50	mV
V _{os}	Output Voltage Offset	$(V_{OP} + V_{OM})/2$, $R_T = 100 \Omega$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V_{OS} Between H and L	—	—	—	50	mV
I _{SAB}	Output Short Circuit Current	$V_{OD} = 0$ V Driver outputs shorted to each other	_	_	12	mA

Note: On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

3.14.2. **SSTLD**

All differential SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

3.14.3. LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V V_{CCIO} . The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 4 mA, 8 mA, 12 mA or 16 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14.7. MLVDS25

The ECP5/ECP5-5G devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3.4 is one possible solution for MLVDS standard implementation. Resistor values in the figure are industry standard values for 1% resistors.

Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Deverenter	Description	Тур	11	
Parameter	Description	Zo=50 Ω	Zo=70 Ω	Onit
V _{CCIO}	Output Driver Supply (±5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
Rs	Driver Series Resistor (±1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (±1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (±1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage	1.52	1.60	V
V _{OL}	Output Low Voltage	0.98	0.90	V
V _{OD}	Output Differential Voltage	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

Table 3.17. MLVDS25 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 3.6. Receiver RX.CLK.Centered Waveforms

Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms

Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.19. sysCLOCK PLL Timing

Over recommended operating conditions.

Table 3.23.	sysCLOCK PLL Timing	
-------------	---------------------	--

Parameter	Descriptions	Conditions	Min	Max	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	—	8	400	MHz
f _{out}	Output Clock Frequency (CLKOP, CLKOS)	—	3.125	400	MHz
f _{vco}	PLL VCO Frequency	—	400	800	MHz
f _{PFD} ³	Phase Detector Input Frequency	—	10	400	MHz
AC Characteristi	cs				
t _{DT}	Output Clock Duty Cycle	—	45	55	%
t _{PH4}	Output Phase Accuracy	_	-5	5	%
	Outrast Classical Paris	f _{out} ≥ 100 MHz	_	100	ps p-p
	Output Clock Period Jitter	f _{out} < 100 MHz	-	0.025	UIPP
. 1		f _{out} ≥ 100 MHz	_	200	ps p-p
LOD IL	Output Clock Cycle-to-Cycle Jitter	f _{out} < 100 MHz	-	0.050	UIPP
	Output Clock Phase litter	f _{PFD} ≥ 100 MHz	_	200	ps p-p
	Output Clock Phase sitter	f _{PFD} < 100 MHz	-	0.011	UIPP
t _{spo}	Static Phase Offset	Divider ratio = integer	-	400	ps p-p
tw	Output Clock Pulse Width	At 90% or 10%	0.9	—	ns
t _{LOCK} ²	PLL Lock-in Time	—	-	15	ms
tunlock	PLL Unlock Time	—	-	50	ns
+	Input Clack Pariod litter	f _{PFD} ≥ 20 MHz	_	1,000	ps p-p
LIPJIT		f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{RST}	RST/ Pulse Width	—	1	—	ms
t _{RSTREC}	RST Recovery Time	—	1	—	ns
t _{load_reg}	Min Pulse for CIB_LOAD_REG	—	10	—	ns
t _{rotate-setup}	Min time for CIB dynamic phase controls to be stable fore CIB_ROTATE	-	5	_	ns
t _{ROTATE-WD}	Min pulse width for CIB_ROTATE to maintain "0" or	_	4	—	VCO cycles

Notes:

1. Jitter sample is taken over 10,000 samples for Periodic jitter, and 2,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 10$ MHz. For $f_{PFD} < 10$ MHz, the jitter numbers may not be met in certain conditions.

3.21. SERDES/PCS Block Latency

Table 3.26 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3.13 shows the location of each block.

Table 3.2	26. SERDES/PCS Latency Breakdown

Item	Description	Min	Avg	Max	Fixed	Bypass	Unit ³
Transmi	t Data Latency ¹						
T 1	FPGA Bridge - Gearing disabled with same clocks	3	—	4	-	1	byte clk
11	FPGA Bridge - Gearing enabled	5	—	7	—	—	word clk
Т2	8b10b Encoder	_	—	—	2	1	byte clk
Т3	SERDES Bridge transmit	_	—	—	2	1	byte clk
тл	Serializer: 8-bit mode	_	—	—	15 + ∆1	—	UI + ps
14	Serializer: 10-bit mode	_	—	—	18 + Δ 1	—	UI + ps
тс	Pre-emphasis ON	_	—	—	1 + ∆2	—	UI + ps
15	Pre-emphasis OFF	_	—	—	0 + ∆3	—	UI + ps
Receive	Data Latency ²						
D1	Equalization ON	_	—	—	Δ1	—	UI + ps
KI .	Equalization OFF	_	—	—	Δ2	—	UI + ps
22	Deserializer: 8-bit mode	_	—	—	10 + ∆3	—	UI + ps
R2	Deserializer: 10-bit mode	_	—	—	12 + ∆3	—	UI + ps
R3	SERDES Bridge receive	_	—	—	2	—	byte clk
R4	Word alignment	3.1	—	4	—	1	byte clk
R5	8b10b decoder	_	—	—	1	0	byte clk
R6	Clock Tolerance Compensation	7	15	23	_	1	byte clk
57	FPGA Bridge - Gearing disabled with same clocks	4	_	5	_	1	byte clk
ñ/	FPGA Bridge - Gearing enabled	7	_	9	_	_	word clk

Notes:

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118 \text{ ps}, \Delta 2 = +132 \text{ ps}, \Delta 3 = +700 \text{ ps}.$

3. byte clk = 8UIs (8-bit mode), or 10 UIs (10-bit mode); word clk = 16UIs (8-bit mode), or 20 UIs (10-bit mode).

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.22. SERDES High-Speed Data Receiver

Table 3.27. Serial Input Data Specifications

Symbol	Description	Min	Тур	Max	Unit
V _{RX-DIFF-S}	Differential input sensitivity	150	—	1760	mV, p-p
V _{RX-IN}	Input levels	0	—	V _{CCA} +0.5 ²	V
V _{RX-CM-DCCM}	Input common mode range (internal DC coupled mode)	0.6	_	V _{CCA}	V
V _{RX-CM-ACCM}	Input common mode range (internal AC coupled mode) ²	0.1	_	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ¹	—	1000	—	Bits
Z _{RX-TERM}	Input termination 50/75 Ω /High Z	-20%	50/75/5 K	+20%	Ω
RL _{RX-RL}	Return loss (without package)	—	—	-10	dB

Notes:

1. This is the typical number of bit times to re-lock to a new phase or frequency within ±300 ppm, assuming 8b10b encoded data.

2. Up to 1.655 for ECP5, and 1.76 for ECP5-5G.

3.23. Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min	Тур	Max	Unit
Deterministic		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Random	5 Gb/s	400 mV differential eye	—	—	TBD	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	_	0.37	UI <i>,</i> p-p
Random	3.125 Gb/s	400 mV differential eye	—	—	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	—	0.37	UI <i>,</i> p-p
Random	2.5 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	—	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	—	0.37	UI, p-p
Random	1.25 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p

Table 3.28. Receiver Total Jitter Tolerance Specification

Notes:

1. Jitter tolerance measurements are done with protocol compliance tests: 3.125 Gb/s - XAUI Standard, 2.5 Gb/s - PCIe Standard, 1.25 Gb/s - SGMII Standard.

2. For ECP5-5G family devices only.

*In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3.16. sysCONFIG Parallel Port Write Cycle

Figure 3.17. sysCONFIG Slave Serial Port Timing

Revision History

Date	Version	Section	Change Summary
March 2018	1.9	All	Updated formatting and page referencing.
		General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-45.
		Architecture	Added a row for SGMII in Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support. Updated footnote #1.
		DC and Switching	Updated Table 3.2. Recommended Operating Conditions.
		Characteristics	Added 2 rows and updated values in Table 3.7. DC Electrical Characteristics.
			Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby).
			Updated Table 3.11. sysl/O Recommended Operating Conditions.
			Updated Table 3.12. Single-Ended DC Characteristics.
			Updated Table 3.13. LVDS.
			Updated Table 3.14. LVDS25E DC Conditions.
			Updated Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed.
			Updated Table 3.28. Receiver Total Jitter Tolerance Specification.
			Updated header name of section 3.28 CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics.
			Updated header name of section 3.29 Gigabit Ethernet/CGMII(1, 25Gbps)/CBRI LVE 12 Electrical and Timing
			Characteristics
		Pinout Information	Updated table in section 4.3.2 LFE5U.
		Ordering Information	Added table rows in 5.2.1 Commercial.
			Added table rows in 5.2.2 Industrial.
		Supplemental Information	Updated For Further Information section.
November 2017	1.8	General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-12 and LFE5U-25.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

(Continued)

Date	Version	Section	Change Summary
November 2015	1.5	All	Added ECP5-5G device family.
			Changed document title to ECP5 and ECP5-5G Family Data Sheet.
	1.4	General Description	Updated Features section. Added support for eDP in RDR and HDR.
		Architecture	Updated Overview section.
			Revised Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level). Modified Flexible sysIO description and Note.
			Updated SERDES and Physical Coding Sublayer section.
			Changed E.24.V in CPRI protocol to E.24.LV.
			Removed "1.1 V" from paragraph on unused Dual.
		DC and Switching	Updated Hot Socketing Requirements section. Revised V _{CCHTX} in table
		Characteristics	notes 1 and 3. Indicated V _{CCHTX} in table note 4.
			Updated SERDES High-Speed Data Transmitter section. Revised V_{CCHTX}
			in table note 1.
		Ordering Information	Updated ECP5/ECP5-5G Part Number Description section. Changed "LFE5 FPGA" under Device Family to "ECP5 FPGA".
August 2015	1.3	General Description	Updated Features section.
			Removed SMPTE3G under Embedded SERDES.
			Added Single Event Upset (SEU) Mitigation Support.
			Removed SMPTE protocol in fifth paragraph.
		Architecture	General update.
		DC and Switching Characteristics	General update.
		Pinout Information	Updated Signal Descriptions section. Revised the descriptions of the following signals:
			P[L/R] [Group Number]_[A/B/C/D]
			• P[T/B][Group Number]_[A/B]
			D4/IO4 (Previously named D4/MOSI2/IO4)
			D5/IO5 (Previously named D5/MISO/IO5)
			VCCHRX_D[dual_num]CH[chan_num]
			VCCHTX_D[dual_num]CH[chan_num]
		Supplemental Information	Added TN1184 reference.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.