
E.J. Lattice Semiconductor Corporation - <u>LFE5U-25F-7BG381C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

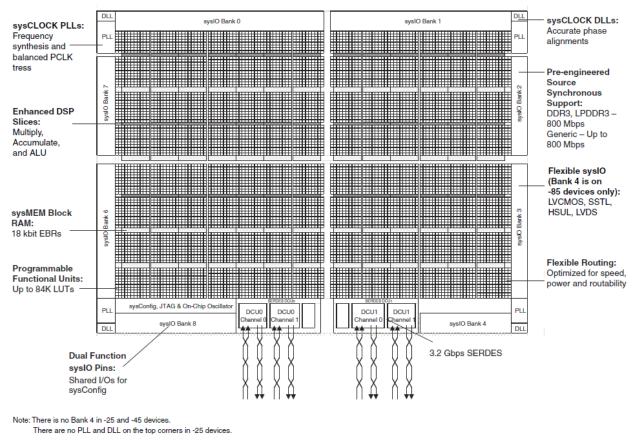
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	6000
Number of Logic Elements/Cells	24000
Total RAM Bits	1032192
Number of I/O	197
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-25f-7bg381c


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1. ECP5/ECP5-5G Part Number Description	97
5.2. Ordering Part Numbers	
5.2.1. Commercial	
5.2.2. Industrial	
Supplemental Information	
For Further Information	
Revision History	

2.2. **PFU Blocks**

The core of the ECP5/ECP5-5G device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0-3, as shown in Figure 2.2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

The PFU block can be used in Distributed RAM or ROM function, or used to perform Logic, Arithmetic, or ROM functions. Table 2.1 shows the functions each slice can perform in either mode.

2.3. Routing

There are many resources provided in the ECP5/ECP5-5G devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The ECP5/ECP5-5G family has an enhanced routing architecture that produces a compact design. The Diamond design software tool suites take the output of the synthesis tool and places and routes the design.

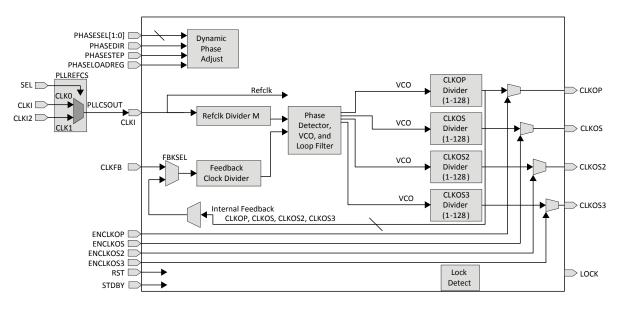
2.4. Clocking Structure

ECP5/ECP5-5G clocking structure consists of clock synthesis blocks (sysCLOCK PLL); balanced clock tree networks (PCLK and ECLK trees); and efficient clock logic modules (CLOCK DIVIDER and Dynamic Clock Select (DCS), Dynamic Clock Control (DCC) and DLL). All of these functions are described below.

2.4.1. sysCLOCK PLL

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the ECP5/ECP5-5G family support two to four full-featured General Purpose PLLs. The sysCLOCK PLLs provide the ability to synthesize clock frequencies.

The architecture of the PLL is shown in Figure 2.5. A description of the PLL functionality follows.


CLKI is the reference frequency input to the PLL and its source can come from two different external CLK inputs or from internal routing. A non-glitchless 2-to-1 input multiplexor is provided to dynamically select between two different external reference clock sources. The CLKI input feeds into the input Clock Divider block.

CLKFB is the feedback signal to the PLL which can come from internal feedback path, routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLL has four clock outputs CLKOP, CLKOS, CLKOS2 and CLKOS3. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the primary clock network. Only CLKOP and CLKOS outputs can go to the edge clock network.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically using the PHASESEL, PHASEDIR, PHASESTEP, and PHASELOADREG ports.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected.

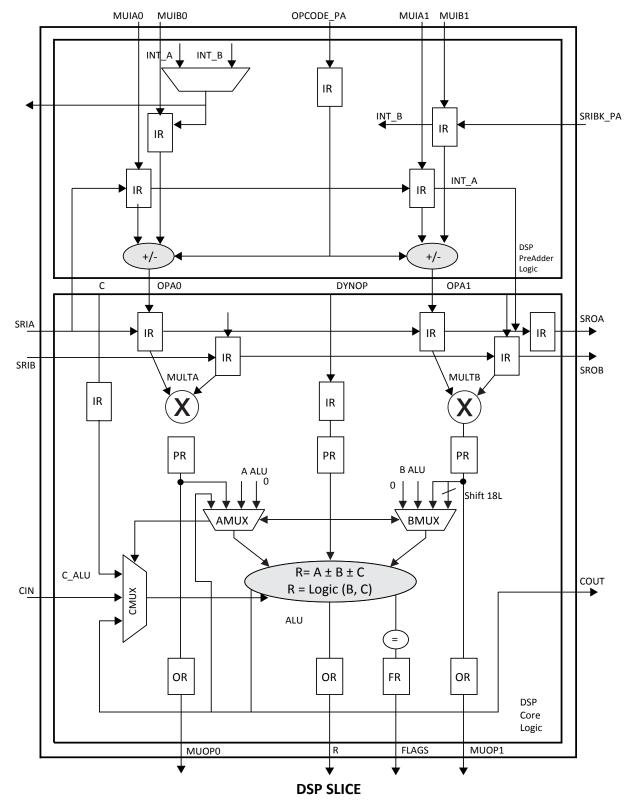
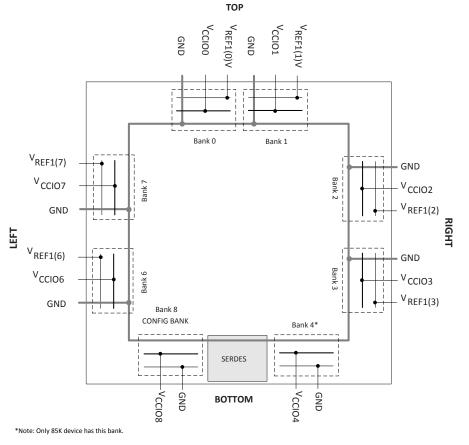
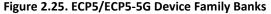


Figure 2.15. Detailed sysDSP Slice Diagram

2.14. sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVDS, HSUL, BLVDS, SSTL Class I and II, LVCMOS, LVTTL, LVPECL, and MIPI.


2.14.1. sysl/O Buffer Banks


ECP5/ECP5-5G devices have seven sysI/O buffer banks, two banks per side at Top, Left and Right, plus one at the bottom left side. The bottom left side bank (Bank 8) is a shared I/O bank. The I/Os in that bank contains both dedicated and shared I/O for sysConfig function. When a shared pin is not used for configuration, it is available as a user I/O. For LFE5-85 devices, there is an additional I/O bank (Bank 4) that is not available in other device in the family.

In ECP5/ECP5-5G devices, the Left and Right sides are tailored to support high performance interfaces, such as DDR2, DDR3, LPDDR2, LPDDR3 and other high speed source synchronous standards. The banks on the Left and Right sides of the devices feature LVDS input and output buffers, data-width gearing, and DQSBUF block to support DDR2/3 and LPDDR2/3 interfaces. The I/Os on the top and bottom banks do not have LVDS input and output buffer, and gearing logic, but can use LVCMOS to emulate most of differential output signaling.

Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, the banks on the Left and Right sides of the device, have voltage reference input (shared I/O pin), VREF1 per bank, which allow it to be completely independent of each other. The V_{REF} voltage is used to set the threshold for the referenced input buffers, such as SSTL. Figure 2.25 shows the seven banks and their associated supplies.

In ECP5/ECP5-5G devices, single-ended output buffers and ratioed input buffers (LVTTL, and LVCMOS) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

ECP5/ECP5-5G devices contain two types of sysI/O buffer pairs:

• Top (Bank 0 and Bank 1) and Bottom (Bank 8 and Bank 4) sysIO Buffer Pairs (Single-Ended Only)

The sysI/O buffers in the Banks at top and bottom of the device consist of ratioed single-ended output drivers and single-ended input buffers. The I/Os in these banks are not usually used as a pair, except when used as emulated differential output pair. They are used as individual I/Os and be configured as different I/O modes, as long as they are compatible with the V_{CCIO} voltage in the bank. When used as emulated differential outputs, the pair can be used together.

The top and bottom side IOs also support hot socketing. They support IO standards from 3.3 V to 1.2 V. They are ideal for general purpose I/Os, or as ADDR/CMD bus for DDR2/DDR3 applications, or for used as emulated differential signaling.

Bank 4 I/O only exists in the LFE5-85 device.

Bank 8 is a bottom bank that shares with sysConfig I/Os. During configuration, these I/Os are used for programming the device. Once the configuration is completed, these I/Os can be released and user can use these I/Os for functional signals in his design.

The top and bottom side pads can be identified by the Lattice Diamond tool.

Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two single-ended input buffers (both ratioed and referenced) and half of the sysI/O buffer pairs (PIOA/B pairs) also has a high-speed differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

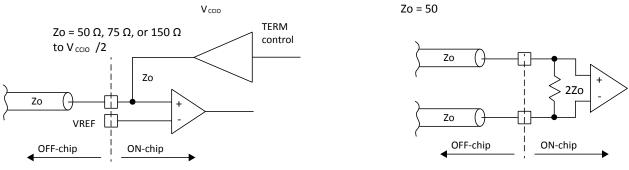
LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

2.14.2. Typical sysI/O I/O Behavior during Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in ECP5/ECP5-5G devices, see the list of technical documentation in Supplemental Information section on page 102.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

2.14.3. Supported sysI/O Standards


The ECP5/ECP5-5G sysI/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSUL. Differential standards supported include LVDS, differential SSTL and differential HSUL. For further information on utilizing the sysI/O buffer to support a variety of standards, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

IO_TYPE	Terminate to V _{CCIO} /2*	Differential Termination Resistor*
LVDS25	_	100
BLVDS25	—	100
MLVDS	—	100
LVPECL33	—	100
subLVDS	—	100
SLVS	_	100
HSUL12	50, 75, 150	—
HSUL12D	—	100
SSTL135_I / II	50, 75, 150	—
SSTL135D_I / II	—	100
SSTL15_I / II	50, 75, 150	-
SSTL15D_I / II	—	100
SSTL18_I / II	50, 75, 150	-
SSTL18D_I / II	_	100

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

Package	LFE5UM/LFE5UM5G-25	LFE5UM/LFE5UM5G-45	LFE5UM/LFE5UM5G-85
285 csfBGA	1	1	1
381 caBGA	1	2	2
554 caBGA	-	2	2
756 caBGA	-	-	2

Table 2.14. Available SERDES Duals per LFE5UM/LFE5UM5G Devices

2.15.1. SERDES Block

A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit stream through the differential drivers. Figure 2.28 shows a single-channel SERDES/PCS block. Each SERDES channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output and input buffers of each channel have their own independent power supplies (VCCHTX and VCCHRX).

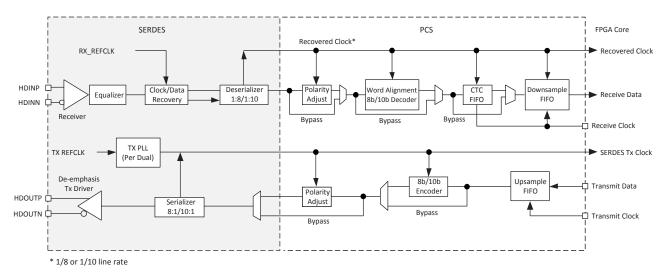


Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block

2.15.2. PCS

As shown in Figure 2.28, the PCS receives the parallel digital data from the deserializer and selects the polarity, performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, selects the polarity and passes the 8/10 bit data to the transmit SERDES channel.

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Some of the enhancements in LFE5UM/LFE5UM5G SERDES/PCS include:

- Higher clock/channel granularity: Dual channel architecture provides more clock resource per channel.
- Enhanced Tx de-emphasis: Programmable pre- and post-cursors improves Tx output signaling
- Bit-slip function in PCS: Improves logic needed to perform Word Alignment function

Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for more information.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

When an error is detected, and the user's error handling software determines the error did not create any risk to the system operation, the SEC tool allows the device to be re-configured in the background to correct the affected bit. This operation allows the user functions to continue to operate without stopping the system function.

Additional SEI tool is also available in the Diamond Software, by creating a frame of data to be programmed into the device in the background with one bit changed, without stopping the user functions on the device. This emulates an SEU situation, allowing the user to test and monitor its error handling software.

For further information on SED support, refer to LatticeECP3, ECP5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184).

2.18.3. On-Chip Oscillator

Every ECP5/ECP5-5G device has an internal CMOS oscillator which is used to derive a Master Clock (MCLK) for configuration. The oscillator and the MCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCLK is nominally 2.4 MHz. Table 2.16 lists all the available MCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 2.4 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.4 MHz.

This internal oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) and ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)

MCLK Frequency (MHz)
2.4
4.8
9.7
19.4
38.8
62

2.19. Density Shifting

The ECP5/ECP5-5G family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may become No Connects in smaller devices in the same package. Refer to the ECP5/ECP5-5G Pin Migration Tables and Diamond software for specific restrictions and limitations.

3.7. Hot Socketing Requirements

Table 3.6. Hot Socketing Requirements

Description	Min	Тур	Max	Unit
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	_	8	mA
Input current per HDIN pin when device power supply is off, inputs driven ^{1, 2}	_	_	15	mA
Current per HDIN pin when device power ramps up, input driven ³	_	_	50	mA
Current per HDOUT pin when device power supply is off, outputs pulled up ⁴	—	—	30	mA

Notes:

1. Device is powered down with all supplies grounded, both HDINP and HDINN inputs driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, no external AC coupling.

2. Each P and N input must have less than the specified maximum input current during hot plug. For a device with 2 DCU, the total input current would be 15 mA * 4 channels * 2 input pins per channel = 120 mA.

- Device power supplies are ramping up (V_{CCA} and V_{CCAUX}), both HDINP and HDINN inputs are driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, internal AC coupling.
- 4. Device is powered down with all supplies grounded. Both HDOUTP and HDOUN outputs are pulled up to V_{CCHTX} by the far end receiver termination of 50 Ω single ended.

3.8. ESD Performance

Refer to the ECP5 and ECP5-5G Product Family Qualification Summary for complete qualification data, including ESD performance.

3.9. DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Low Leakage	$0 \leq V_{\text{IN}} \leq V_{\text{CCIO}}$	_	—	10	μA
I _{IH} ^{1, 3}	Input or I/O High Leakage	$V_{CCIO} < V_{IN} \leq V_{IH(MAX)}$	—	—	100	μA
I	I/O Active Pull-up Current, sustaining logic HIGH state	$0.7 \: V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO}$	-30	_	_	μA
I _{PU}	I/O Active Pull-up Current, pulling down from logic HIGH state	$0 \leq V_{\text{IN}} \leq 0.7 \; V_{\text{CCIO}}$		_	-150	μA
IPD	I/O Active Pull-down Current, sustaining logic LOW state	$0 \le V_{IN} \le V_{IL}$ (MAX)	30	—	—	μA
IDD	I/O Active Pull-down Current, pulling up from logic LOW state	$0 \leq V_{IN} \leq V_{CCIO}$	—	—	150	μA
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	7	pf
V	Hysteresis for Single-Ended	V _{CCIO} = 3.3 V	-	300	_	mV
V _{HYST}	Inputs	V _{CCIO} = 2.5 V	_	250	_	mV

Table 3.7. DC Electrical Characteristics

Notes:

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

- 3. Applicable to general purpose I/Os in top and bottom banks.
- 4. When used as V_{REF} , maximum leakage= 25 μ A.

Table 3.10. ECP5-5G

Symbol	Description	Тур	Max	Unit
Standby (Pov	ver Down)	I	•	
I _{CCA-SB}	V _{CCA} Power Supply Current (Per Channel)	4	9.5	mA
I _{CCHRX-SB} ⁴	V _{CCHRX} , Input Buffer Current (Per Channel)	_	0.1	mA
I _{CCHTX-SB}	V _{CCHTX} , Output Buffer Current (Per Channel)	_	0.9	mA
Operating (Da	ata Rate = 5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	58	67	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (D	ata Rate = 3.2 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	48	57	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 2.5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	44	53	mA
I _{CCHRX-OP} ⁵	V _{CCHRx} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 1.25 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	36	46	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (D	ata Rate = 270 Mb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	30	40	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	8	10	mA

Notes:

1. Rx Equalization enabled, Tx De-emphasis (pre-cursor and post-cursor) disabled

2. Per Channel current is calculated with both channels on in a Dual, and divide current by two. If only one channel is on, current will be higher.

3. To calculate with Tx De-emphasis enabled, use the Diamond Power Calculator tool.

4. For ICCHRX-SB, during Standby, input termination on Rx are disabled.

5. For ICCHRX-OP, during operational, the max specified when external AC coupling is used. If externally DC coupled, the power is based on current pulled down by external driver when the input is driven to LOW.

Damamatar	Description	Device		-8	-	-7	-	-6	11
Parameter	Description		Min	Max	Min	Max	Min	Max	Unit
t _{h_delpll}	Clock to Data Hold - PIO Input Register with Data Input Delay	All Devices	0	-	0	-	0	-	ns
Generic DDR Input									
Generic DDRX1 Inp	uts With Clock and Data Centere	d at Pin (GDDI	RX1_RX.S	CLK.Cen	tered) Us	ing PCLk	Clock In	put - Fig	ure 3.6
t _{SU_GDDRX1_centered}	Data Setup Before CLK Input	All Devices	0.52	-	0.52	-	0.52	-	ns
$t_{HD_GDDRX1_centered}$	Data Hold After CLK Input	All Devices	0.52	_	0.52	_	0.52	_	ns
$f_{DATA_GDDRX1_centered}$	GDDRX1 Data Rate	All Devices	_	500	—	500	—	500	Mb/s
$f_{MAX_GDDRX1_centered}$	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	—	250	_	250	MHz
Generic DDRX1 Inp	uts With Clock and Data Aligned	at Pin (GDDR)	(1_RX.SC	LK.Aligne	ed) Using	PCLK Cl	ock Input	t - Figure	3.7
$t_{SU_GDDRX1_aligned}$	Data Setup from CLK Input	All Devices	-	-0.55	-	-0.55	-	-0.55	ns + 1/2 UI
$t_{HD_GDDRX1_aligned}$	Data Hold from CLK Input	All Devices	0.55	-	0.55	-	0.55	_	ns + 1/2 U
$f_{DATA_GDDRX1_aligned}$	GDDRX1 Data Rate	All Devices	—	500	—	500	—	500	Mb/s
$f_{MAX_GDDRX1_aligned}$	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	—	250	—	250	MHz
Generic DDRX2 Inp	uts With Clock and Data Centere	d at Pin (GDDI	RX2_RX.E	CLK.Cen	tered) Us	ing PCLK	Clock In	put, Left	and
Right sides Only - F		T				1	1		
$t_{SU_GDDRX2_centered}$	Data Setup before CLK Input	All Devices	0.321	—	0.403	_	0.471	_	ns
$t_{HD_GDDRX2_centered}$	Data Hold after CLK Input	All Devices	0.321	_	0.403	_	0.471	_	ns
$f_{DATA_GDDRX2_centered}$	GDDRX2 Data Rate	All Devices	—	800	—	700	—	624	Mb/s
$f_{MAX_GDDRX2_centered}$	GDDRX2 CLK Frequency (ECLK)	All Devices	-	400	-	350	-	312	MHz
Generic DDRX2 Inp sides Only - Figure	uts With Clock and Data Aligned 3.7	at Pin (GDDR)	(2_RX.EC	LK.Aligne	ed) Using	PCLK Cl	ock Input	t, Left an	d Right
$t_{su_GDDRX2_aligned}$	Data Setup from CLK Input	All Devices	-	-0.344	—	-0.42	-	-0.495	ns + 1/2 UI
$t_{HD}_{GDDRX2}_{aligned}$	Data Hold from CLK Input	All Devices	0.344	—	0.42	_	0.495	—	ns + 1/2 UI
$f_{DATA_GDDRX2_aligned}$	GDDRX2 Data Rate	All Devices	—	800	—	700	_	624	Mb/s
$f_{MAX_GDDRX2_aligned}$	GDDRX2 CLK Frequency	All Devices		400	—	350	_	312	MHz
Video DDRX71 Inpu Figure 3.11	its With Clock and Data Aligned a	at Pin (GDDRX	71_RX.E0	CLK) Usin	g PLL Clo	ck Input	, Left and	l Right si	des Only
t _{su_lvds71_i}	Data Setup from CLK Input (bit i)	All Devices	_	-0.271	_	-0.39	_	-0.41	ns+(1/2+ * UI
thd_lvds71_i	Data Hold from CLK Input (bit i)	All Devices	0.271	_	0.39	-	0.41	_	ns+(1/2+ * UI
f _{DATA_LVDS71}	DDR71 Data Rate	All Devices	1	756	—	620	-	525	Mb/s
f _{MAX_LVDS71}	DDR71 CLK Frequency (ECLK)	All Devices		378	_	310	_	262.5	MHz

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

3.27. XAUI/CPRI LV E.30 Electrical and Timing Characteristics

3.27.1. AC and DC Characteristics

Over recommended operating conditions.

Table 3.33. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF}	Differential rise/fall time	20% to 80%	—	80	-	ps
Z _{TX_DIFF_DC}	Differential impedance	—	80	100	120	Ω
J _{TX_DDJ} ^{2, 3}	Output data deterministic jitter	—	—	—	0.17	UI
J _{TX_TJ} ^{1, 2, 3}	Total output data jitter	—	_	—	0.35	UI

Notes:

- 1. Total jitter includes both deterministic jitter and random jitter.
- 2. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Over recommended operating conditions.

Table 3.34. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Ы	Differential return loss	From 100 MHz	10			dB
RL _{RX_DIFF}	Differential return loss	to 3.125 GHz	10	_	Max 120 0.37 0.18 0.10 0.65	ив
Ы	Common mode return loss	From 100 MHz	<i>.</i>		_	dB
RL _{RX_CM}	Common mode return loss	to 3.125 GHz	6	_	_	ив
Z _{RX_DIFF}	Differential termination resistance	—	80	100	120	Ω
J _{RX_DJ} ^{1, 2, 3}	Deterministic jitter tolerance (peak-to-peak)	—	_	—	0.37	UI
J _{RX_RJ} ^{1, 2, 3}	Random jitter tolerance (peak-to-peak)	—	_	_	0.18	UI
J _{RX_SJ} ^{1, 2, 3}	Sinusoidal jitter tolerance (peak-to-peak)	_	_	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3}	Total jitter tolerance (peak-to-peak)	-	—	—	0.65	UI
T _{RX_EYE}	Receiver eye opening	_	0.35	—	_	UI

Notes:

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.

2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

3.28. CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics

3.28.1. AC and DC Characteristics

Table 3.35. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF} ¹	Differential rise/fall time	20% to 80%	_	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance	_	80	100	120	Ω
J _{TX_DDJ} ^{3, 4}	Output data deterministic jitter	—	-	_	0.17	UI
J _{TX_TJ} ^{2, 3, 4}	Total output data jitter	_	_	—	0.35	UI

Notes:

1. Rise and Fall times measured with board trace, connector and approximately 2.5 pf load.

- 2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
- 3. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).
- 4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications (Continued)

Symbol	Parameter	Min	Max	Unit			
Slave Para	Slave Parallel						
f _{cclк}	CCLK input clock frequency	—	—	50	MHz		
t _{BSCH}	CCLK input clock pulsewidth HIGH	LK input clock pulsewidth HIGH – 6					
t _{BSCL}	CCLK input clock pulsewidth LOW	—	6	_	ns		
t _{CORD}	CCLK to DOUT for Read Data	—	—	12	ns		
t _{sucbdi}	Data Setup Time to CCLK	—	1.5	_	ns		
t _{HCBDI}	Data Hold Time to CCLK	—	1.5	_	ns		
t _{sucs}	CSN, CSN1 Setup Time to CCLK	—	2.5	_	ns		
t _{HCS}	CSN, CSN1 Hold Time to CCLK	—	1.5	_	ns		
t _{suwd}	WRITEN Setup Time to CCLK	—	45	_	ns		
t _{HCWD}	WRITEN Hold Time to CCLK	—	2	_	ns		
t _{DCB}	CCLK to BUSY Delay Time	—	_	12	ns		

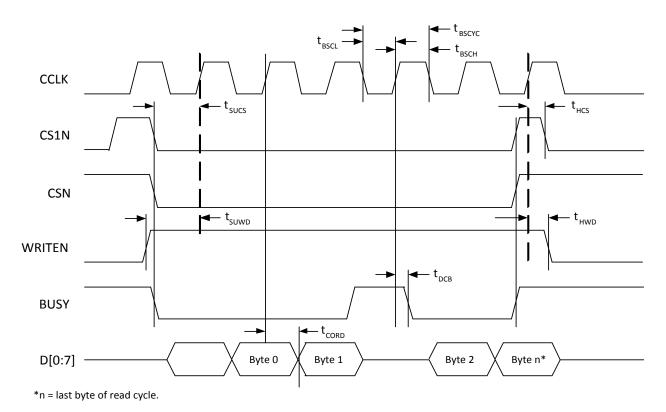
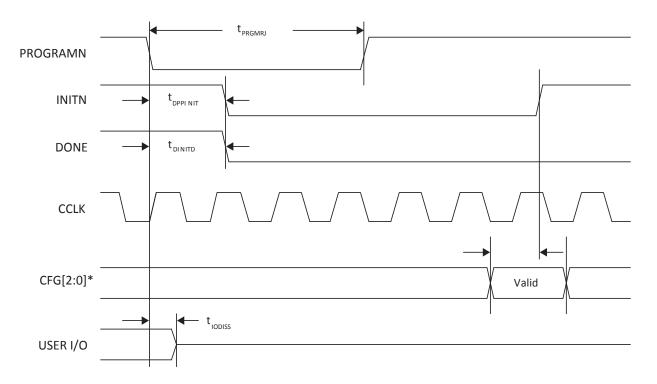



Figure 3.15. sysCONFIG Parallel Port Read Cycle

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

*The CFG pins are normally static (hardwired).

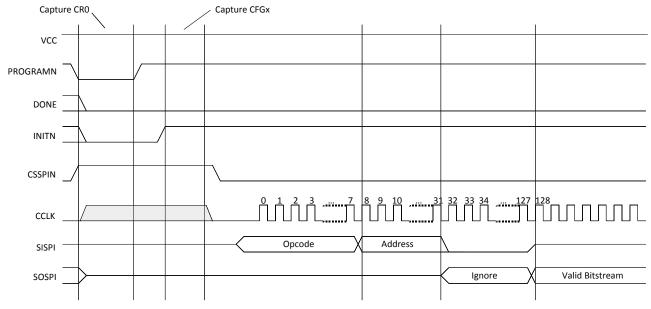


Figure 3.22. Master SPI Configuration Waveforms

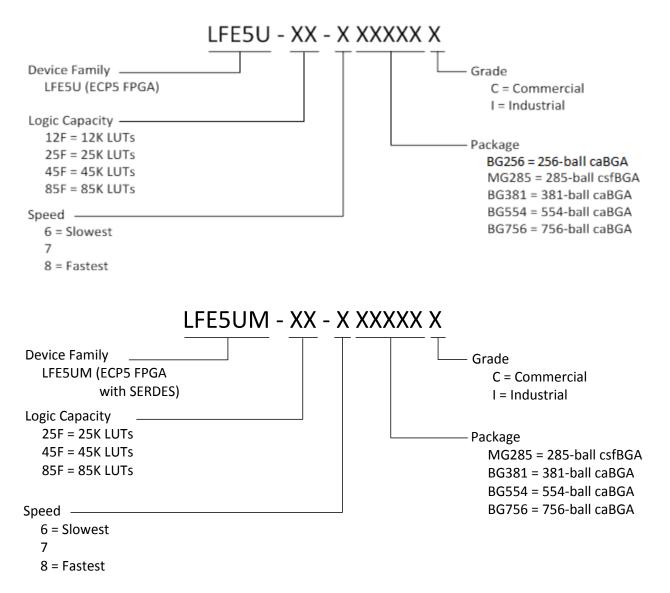
3.32. JTAG Port Timing Specifications

Over recommended operating conditions.

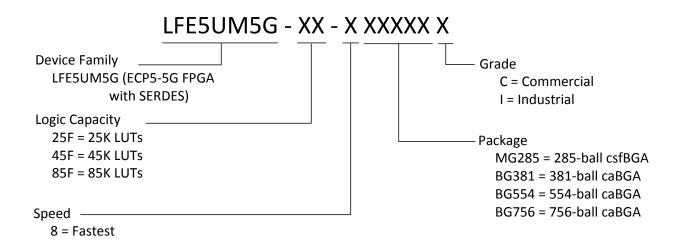
Table 3.43. JTAG Port Timing Specifications

Symbol	Parameter	Min	Max	Units	
f _{MAX}	TCK clock frequency	-	25	MHz	
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	-	ns	
t _{btcpl}	TCK [BSCAN] clock pulse width low	20	-	ns	
t _{BTS}	TCK [BSCAN] setup time	10	-	ns	
t _{BTH}	TCK [BSCAN] hold time	8	8 — ns		
t _{BTRF}	TCK [BSCAN] rise/fall time	50	50 — mV/ns		
t _{BTCO}	TAP controller falling edge of clock to valid output	— 10 ns		ns	
t _{BTCODIS}	TAP controller falling edge of clock to valid disable - 10				
t _{btcoen}	TAP controller falling edge of clock to valid enable	-	10	ns	
t _{BTCRS}	BSCAN test capture register setup time	8	-	ns	
t _{btcrh}	BSCAN test capture register hold time	25	-	ns	
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	to valid output – 25 ns			
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	-	— 25 ns		
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	-	25	ns	

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.



Pin Information Summary		LFE5UM/ LFE5UM5G-25			LFE5UM/LFE5UM5G-85					
Pin Type		285 csfBG	381 caBGA	285 csfBGA	381 caBG	554 caBGA	285 csfBGA	381 caBG	554 caBGA	756 caBGA
ТАР		4	4	4	4	4	4	4	4	4
Miscellaneous Dedicated Pins		7	7	7	7	7	7	7	7	7
GND		83	59	83	59	113	83	59	113	166
NC		1	8	1	2	33	1	0	17	29
Reserved		0	2	0	2	4	0	2	4	4
SERDES		14	28	14	28	28	14	28	28	28
	VCCA0	2	2	2	2	6	2	2	6	8
VCCA (SERDES)	VCCA1	0	2	0	2	6	0	2	6	9
	VCCAUXA0	2	2	2	2	2	2	2	2	2
VCCAUX (SERDES)	VCCAUXA1	0	2	0	2	2	0	2	2	2
GNDA (SERDES)		26	26	26	26	49	26	26	49	60
Total Balls		285	381	285	381	554	285	381	554	756
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	10/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8	24/12
High Speed Differential Input	Bank 3	14/7	16/8	14/7	16/8	24/12	14/7	16/8	24/12	32/16
/ Output Pairs	Bank 4	0	0	0	0	0	0	0	0	0
	Bank 6	13/6	16/8	13/6	16/8	24/12	13/6	16/8	24/12	32/16
	Bank 7	8/6	16/8	8/6	16/8	16/8	8/6	16/8	16/8	24/12
	Bank 8	0	0	0	0	0	0	0	0	0
Total High Speed Differential I/	O Pairs	45/2	64/32	45/27	64/3	80/40	45/27	65/3	80/40	112/5
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
DQS Groups	Bank 2	1	2	1	2	2	1	2	2	3
(> 11 pins in group)	Bank 3	2	2	2	2	3	2	2	3	4
	Bank 4	0	0	0	0	0	0	0	0	0
	Bank 6	2	2	2	2	3	2	2	3	4
	Bank 7	1	2	1	2	2	1	2	2	3
	Bank 8	0	0	0	0	0	0	0	0	0
Total DQS Groups		6	8	6	8	10	6	8	10	14



5. Ordering Information

5.1. ECP5/ECP5-5G Part Number Description

5.2. Ordering Part Numbers

5.2.1. Commercial

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-12F-6BG256C	-6	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-7BG256C	-7	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-8BG256C	-8	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-6MG285C	-6	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-7MG285C	-7	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-8MG285C	-8	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-6BG381C	-6	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-7BG381C	-7	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-8BG381C	-8	Lead free caBGA	381	Commercial	12	No
LFE5U-25F-6BG256C	-6	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-7BG256C	-7	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-8BG256C	-8	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-6MG285C	-6	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-7MG285C	-7	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-8MG285C	-8	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-6BG381C	-6	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-7BG381C	-7	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-8BG381C	-8	Lead free caBGA	381	Commercial	24	No
LFE5U-45F-6BG256C	-6	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-7BG256C	-7	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-8BG256C	-8	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-6MG285C	-6	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-7MG285C	-7	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-8MG285C	-8	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-6BG381C	-6	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-7BG381C	-7	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-8BG381C	-8	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-6BG554C	-6	Lead free caBGA	554	Commercial	44	No
LFE5U-45F-7BG554C	-7	Lead free caBGA	554	Commercial	44	No

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	DC and Switching Characteristics	SERDES High-Speed Data Receiver section. Updated Table 3.26. Serial Input Data Specifications, Table 3.28. Receiver Total Jitter Tolerance Specification, and Table 3.29. External Reference Clock Specification (refclkp/refclkn).
			Modified section heading to XXAUI/CPRI LV E.30 Electrical and Timing Characteristics. Updated Table 3.33 Transmit and Table 3.34. Receive and Jitter Tolerance.
			Modified section heading to CPRI LV E.24 Electrical and Timing Characteristics. Updated Table 3.35. Transmit and Table 3.36. Receive and Jitter Tolerance.
			Modified section heading to Gigabit Ethernet/SGMII/CPRI LV E.12 Electrical and Timing Characteristics. Updated Table 3.37. Transmit and Table 3.38. Receive and Jitter Tolerance.
June 2014	1.1	Ordering Information	Updated ECP5/ECP5-5G Part Number Description and Ordering Part Numbers sections.
March 2014	1.0	All	Initial release.