E.J. Lattice Semiconductor Corporation - <u>LFE5U-45F-7BG381C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11000
Number of Logic Elements/Cells	44000
Total RAM Bits	1990656
Number of I/O	203
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-45f-7bg381c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1. ECP5/ECP5-5G Part Number Description	97
5.2. Ordering Part Numbers	
5.2.1. Commercial	
5.2.2. Industrial	
Supplemental Information	
For Further Information	
Revision History	

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)

2.2. **PFU Blocks**

The core of the ECP5/ECP5-5G device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0-3, as shown in Figure 2.2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

The PFU block can be used in Distributed RAM or ROM function, or used to perform Logic, Arithmetic, or ROM functions. Table 2.1 shows the functions each slice can perform in either mode.

2.3. Routing

There are many resources provided in the ECP5/ECP5-5G devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The ECP5/ECP5-5G family has an enhanced routing architecture that produces a compact design. The Diamond design software tool suites take the output of the synthesis tool and places and routes the design.

2.4. Clocking Structure

ECP5/ECP5-5G clocking structure consists of clock synthesis blocks (sysCLOCK PLL); balanced clock tree networks (PCLK and ECLK trees); and efficient clock logic modules (CLOCK DIVIDER and Dynamic Clock Select (DCS), Dynamic Clock Control (DCC) and DLL). All of these functions are described below.

2.4.1. sysCLOCK PLL

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the ECP5/ECP5-5G family support two to four full-featured General Purpose PLLs. The sysCLOCK PLLs provide the ability to synthesize clock frequencies.

The architecture of the PLL is shown in Figure 2.5. A description of the PLL functionality follows.

CLKI is the reference frequency input to the PLL and its source can come from two different external CLK inputs or from internal routing. A non-glitchless 2-to-1 input multiplexor is provided to dynamically select between two different external reference clock sources. The CLKI input feeds into the input Clock Divider block.

CLKFB is the feedback signal to the PLL which can come from internal feedback path, routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLL has four clock outputs CLKOP, CLKOS, CLKOS2 and CLKOS3. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the primary clock network. Only CLKOP and CLKOS outputs can go to the edge clock network.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically using the PHASESEL, PHASEDIR, PHASESTEP, and PHASELOADREG ports.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected.

2.8.6. Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2.12.

Figure 2.12. Memory Core Reset

For further information on the sysMEM EBR block, see the list of technical documentation in Supplemental Information section on page 102.

2.9. sysDSP[™] Slice

The ECP5/ECP5-5G family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

2.9.1. sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. In the ECP5/ECP5-5G device family, there are many DSP slices that can be used to support different data widths. This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2.13 compares the fully serial implementation to the mixed parallel and serial implementation.

In Figure 2.15, note that A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

The ECP5/ECP5-5G sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2.7 shows the capabilities of each of the ECP5/ECP5-5G slices versus the above functions.

Table 2.7. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1*	1/2	Ι

*Note: One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

2.10. Programmable I/O Cells

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the ECP5/ECP5-5G devices, the Programmable I/O cells (PIC) are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the ECP5/ECP5-5G devices, two adjacent PIOs can be combined to provide a complementary output driver pair. All PIO pairs can implement differential receivers. Half of the PIO pairs on the left and right edges of these devices can be configured as true LVDS transmit pairs.

Figure 2.24. DQS Control and Delay Block (DQSBUF)

Name	Туре	Description
DQS	Input	DDR memory DQS strobe
READ[1:0]	Input	Read Input from DDR Controller
READCLKSEL[1:0]	Input	Read pulse selection
SCLK	Input	Slow System Clock
ECLK	Input	High Speed Edge Clock (same frequency as DDR memory)
DQSDEL	Input	90° Delay Code from DDRDLL
RDLOADN, RDMOVE, RDDIRECTION	Input	Dynamic Margin Control ports for Read delay
WRLOADN, WRMOVE, WRDIRECTION	Input	Dynamic Margin Control ports for Write delay
PAUSE	Input	Used by DDR Controller to Pause write side signals during DDRDLL Code update or Write Leveling
DYNDELAY[7:0]	Input	Dynamic Write Leveling Delay Control
DQSR90	Output	90° delay DQS used for Read
DQSW270	Output	90° delay clock used for DQ Write
DQSW	Output	Clock used for DQS Write
RDPNTR[2:0]	Output	Read Pointer for IFIFO module
WRPNTR[2:0]	Output	Write Pointer for IFIFO module
DATAVALID	Output	Signal indicating start of valid data
BURSTDET	Output	Burst Detect indicator
RDFLAG	Output	Read Dynamic Margin Control output to indicate max value
WRFLAG	Output	Write Dynamic Margin Control output to indicate max value

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

ECP5/ECP5-5G devices contain two types of sysI/O buffer pairs:

• Top (Bank 0 and Bank 1) and Bottom (Bank 8 and Bank 4) sysIO Buffer Pairs (Single-Ended Only)

The sysI/O buffers in the Banks at top and bottom of the device consist of ratioed single-ended output drivers and single-ended input buffers. The I/Os in these banks are not usually used as a pair, except when used as emulated differential output pair. They are used as individual I/Os and be configured as different I/O modes, as long as they are compatible with the V_{CCIO} voltage in the bank. When used as emulated differential outputs, the pair can be used together.

The top and bottom side IOs also support hot socketing. They support IO standards from 3.3 V to 1.2 V. They are ideal for general purpose I/Os, or as ADDR/CMD bus for DDR2/DDR3 applications, or for used as emulated differential signaling.

Bank 4 I/O only exists in the LFE5-85 device.

Bank 8 is a bottom bank that shares with sysConfig I/Os. During configuration, these I/Os are used for programming the device. Once the configuration is completed, these I/Os can be released and user can use these I/Os for functional signals in his design.

The top and bottom side pads can be identified by the Lattice Diamond tool.

Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two single-ended input buffers (both ratioed and referenced) and half of the sysI/O buffer pairs (PIOA/B pairs) also has a high-speed differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

2.14.2. Typical sysI/O I/O Behavior during Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in ECP5/ECP5-5G devices, see the list of technical documentation in Supplemental Information section on page 102.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

2.14.3. Supported sysI/O Standards

The ECP5/ECP5-5G sysI/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSUL. Differential standards supported include LVDS, differential SSTL and differential HSUL. For further information on utilizing the sysI/O buffer to support a variety of standards, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

3.13. sysl/O Single-Ended DC Electrical Characteristics

Input/Output	VIL		V _{IH}		V _{oL} Max	V _{он} Min	L 1/m A)	L 1/mA)
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	1 _{0L} - (mA)	_{ЮН} - (тпА)
LVCMOS33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
LVCMOS25	-0.3	0.7	1.7	3.465	0.4	$V_{CCIO} - 0.4$	12, 8, 4	-12, -8, -4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	12, 8, 4	-12, -8, -4
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	$V_{CCIO} - 0.4$	8, 4	-8, -4
LVCMOS12	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	8, 4	-8, -4
LVTTL33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
SSTL18_I (DDR2 Memory)	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.465	0.4	V _{CCIO} – 0.4	6.7	-6.7
SSTL18_II	-0.3	V _{REF} -	V _{REF} + 0.125	3.465	0.28	V _{CCIO} -0.28	13.4	-13.4
SSTL15 _I (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	7.5	-7.5
SSTL15_II (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	8.8	-8.8
SSTL135_I (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	7	-7
SSTL135_II (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	8	-8
MIPI D-PHY (LP) ³	-0.3	0.55	0.88	3.465	—	_	—	—
HSUL12 (LPDDR2/3 Memory)	-0.3	V _{REF} -0.1	V _{REF} + 0.1	3.465	0.3	V _{CCIO} – 0.3	4	-4

Table 3.12. Single-Ended DC Characteristics

Notes:

1. For electromigration, the average DC current drawn by the I/O pads within a bank of I/Os shall not exceed 10 mA per I/O (All I/Os used in the same V_{CCIO}).

2. Not all IO types are supported in all banks. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

3. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL}. It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

3.14.5. BLVDS25

The ECP5/ECP5-5G devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3.2 is one possible solution for bi-directional multi-point differential signals.

Figure 3.2. BLVDS25 Multi-point Output Example

Over recommended operating conditions.

Parameter	Description	Тур	11	
		Zo = 45 Ω	Zo = 90 Ω	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (±1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (±1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (±1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage	1.38	1.48	V
V _{OL}	Output Low Voltage	1.12	1.02	V
V _{OD}	Output Differential Voltage	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Table 3.15. BLVDS25 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14.6. LVPECL33

The ECP5/ECP5-5G devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3.3 is one possible solution for point-to-point signals.

Over recommended operating conditions.

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
Rs	Driver Series Resistor (±1%)	93	Ω
R _P	Driver Parallel Resistor (±1%)	196	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Table 3.16. LVPECL33 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.25.2. PCIe (5 Gb/s) – Preliminary AC and DC Characteristics

Over recommended operating conditions.

Table 3.31. PCIe (5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit Interval	—	199.94	200	200.06	ps
B _{WTX-PKG-PLL2}	Tx PLL bandwidth corresponding to PKGTX-PLL2	-	5	_	16	MHz
P _{KGTX-PLL2}	Tx PLL Peaking	-	_	—	1	dB
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	-	0.8	—	1.2	V, p-р
V _{TX-DIFF-PP-LOW}	Low power differential p-p Tx voltage swing	-	0.4	_	1.2	V, p-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5dB	-	3	—	4	dB
V _{TX-DE-RATIO-6dB}	Tx de-emphasis level ratio at 6dB	-	5.5	_	6.5	dB
T _{MIN-PULSE}	Instantaneous lone pulse width	_		_	_	UI
T _{TX-RISE-FALL}	Transmitter rise and fall time	_		_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-DJ}	Tx deterministic jitter > 1.5 MHz	_	_	_	0.15	UI
T _{TX-RJ}	Tx RMS jitter < 1.5 MHz	-	-	_	3	ps, RMS
T _{RF-MISMATCH}	Tx rise/fall time mismatch	-	_	—		UI
	Tx Differential Return Loss, including package and silicon	50 MHz < freq < 1.25 GHz	10	_	_	dB
INLTX-DIFF		1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	50 MHz < freq < 2.5 GHz	6	_	-	dB
Z _{TX-DIFF-DC}	DC differential Impedance	-	_	—	120	Ω
V _{TX-CM-AC-PP}	Tx AC peak common mode voltage, peak-peak	-	-	—		mV, p-p
I _{TX-SHORT}	Transmitter short-circuit current	-	_	_	90	mA
V _{TX-DC-CM}	Transmitter DC common-mode voltage	_	0	_	1.2	v
V _{TX-IDLE-DIFF-DC}	Electrical Idle Output DC voltage	-	0	_	5	mV
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Differential Output peak voltage	_	_	_		mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	-	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	-	20	—	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from El Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-lane output skew	-	_	—		ps

3.31. sysCONFIG Port Timing Specifications

Over recommended operating conditions.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications

Symbol	Parameter		Min	Max	Unit
POR, Config	uration Initialization, and Wakeup				
t _{ICFG}	Time from the Application of V_{CC} , V_{CCAUX} or V_{CCI08} (whichever is the last) to the rising edge of INITN	-	_	33	ms
t _{VMC}	Time from t _{ICFG} to the valid Master CCLK	_	_	5	us
t _{cz}	CCLK from Active to High-Z	_	_	300	ns
Master CCL	K		1	1	
f _{MCLK}	Frequency	All selected frequencies	-20	20	%
t _{MCLK-DC}	Duty Cycle	All selected frequencies	40	60	%
All Configur	ation Modes				
t _{PRGM}	PROGRAMN LOW pulse accepted	-	110	_	ns
t _{PRGMRJ}	PROGRAMN LOW pulse rejected	_	_	50	ns
t _{INITL}	INITN LOW time	_	—	55	ns
t _{dppint}	PROGRAMN LOW to INITN LOW	—	—	70	ns
t _{dppdone}	PROGRAMN LOW to DONE LOW	_	_	80	ns
t _{IODISS}	PROGRAMN LOW to I/O Disabled	_	—	150	ns
Slave SPI			'	'	
f _{CCLK}	CCLK input clock frequency	-	_	60	MHz
t _{CCLKH}	CCLK input clock pulsewidth HIGH	-	6	_	ns
t _{CCLKL}	CCLK input clock pulsewidth LOW	_	6	_	ns
t _{stsu}	CCLK setup time	-	1	_	ns
t _{sth}	CCLK hold time	-	1	_	ns
t _{sтсо}	CCLK falling edge to valid output	-	_	10	ns
t _{stoz}	CCLK falling edge to valid disable	-	_	10	ns
t _{stov}	CCLK falling edge to valid enable	-	_	10	ns
t _{scs}	Chip Select HIGH time	-	25	_	ns
t _{scss}	Chip Select setup time	-	3	_	ns
t _{scsн}	Chip Select hold time	-	3	_	ns
Master SPI			,		
f _{CCLK}	Max selected CCLK output frequency	—	—	62	MHz
t _{CCLKH}	CCLK output clock pulse width HIGH	_	3.5	—	ns
t _{CCLKL}	CCLK output clock pulse width LOW	—	3.5	—	ns
t _{stsu}	CCLK setup time	_	5	—	ns
t _{sтн}	CCLK hold time	_	1	—	ns
t _{CSSPI}	INITN HIGH to Chip Select LOW	—	100	200	ns
t _{CFGX}	INITN HIGH to first CCLK edge	_	—	150	ns
Slave Serial					
f _{CCLK}	CCLK input clock frequency	-	_	66	MHz
t _{ssch}	CCLK input clock pulse width HIGH	_	5	_	ns
t _{SSCL}	CCLK input clock pulse width LOW	_	5	-	ns
t _{suscdi}	CCLK setup time	_	0.5	_	ns
t _{HSCDI}	CCLK hold time	_	1.5	—	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications (Continued)

Symbol	Parameter		Min	Max	Unit
Slave Parall	el				
f _{CCLK}	CCLK input clock frequency	—	—	50	MHz
t _{BSCH}	CCLK input clock pulsewidth HIGH	—	6	—	ns
t _{BSCL}	CCLK input clock pulsewidth LOW	—	6	—	ns
t _{CORD}	CCLK to DOUT for Read Data	—	—	12	ns
t _{sucbdi}	Data Setup Time to CCLK	—	1.5	—	ns
t _{HCBDI}	Data Hold Time to CCLK	—	1.5	—	ns
t _{sucs}	CSN, CSN1 Setup Time to CCLK	—	2.5	—	ns
t _{HCS}	CSN, CSN1 Hold Time to CCLK	—	1.5	—	ns
t _{suwd}	WRITEN Setup Time to CCLK	—	45	—	ns
t _{HCWD}	WRITEN Hold Time to CCLK	—	2	—	ns
t _{DCB}	CCLK to BUSY Delay Time	—	—	12	ns

Figure 3.15. sysCONFIG Parallel Port Read Cycle

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	VT
				LVCMOS 3.3 = 1.5 V	—
LVTTL and other LVCMOS settings (L \ge H, H \ge L)		œ		LVCMOS 2.5 = $V_{CCIO}/2$	—
	x		0 pF	LVCMOS 1.8 = V _{CCIO} /2	_
				LVCMOS 1.5 = $V_{CCIO}/2$	—
				LVCMOS 1.2 = $V_{CCIO}/2$	—
LVCMOS 2.5 I/O (Z ≥ H)	8	1 MΩ	0 pF	V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ L)	1 MΩ	x	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)	8	100	0 pF	V _{он} – 0.10	—
LVCMOS 2.5 I/O (L ≥ Z)	100	×	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Signal Name	I/O	Description					
PLL, DLL and Clock Functions (Continued)							
[L/R]DQS[group_num]	I/O	DQS input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.					
[T/R]]DQ[group_num]	I/O	DQ input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.					
Test and Programming (Dedicated Pins)							
TMC		Test Mode Select input, used to control the 1149.1 state machine. Pull-up is					
1015	•	enabled during configuration. This is a dedicated input pin.					
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled. This is a dedicated input pin.					
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration. This is a dedicated input pin.					
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1. This is a dedicated output pin.					
Configuration Pads (Used during sysC	ONFIG)						
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.					
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. This is a dedicated pin.					
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.					
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin.					
CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. Output Configuration Clock for configuring an FPGA in Master configuration modes (Master SPI, Master Serial). This is a dedicated pin.					
HOLDN/DI/BUSY/CSSPIN/CEN	I/O	Parallel configuration mode busy indicator. SPI/SPIm mode data output. This is a shared I/O pin. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.					
CSN/SN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.					
CS1N	I	Parallel configuration mode active-low chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.					
WRITEN	I	Write enable for parallel configuration modes. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.					
DOUT/CSON	0	Serial data output. Chip select output. SPI/SPIm mode chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O					
D0/MOSI/IO0	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.					

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.3.2. LFE5U

Pin Information Summary		LFE5U-12		LFE5U-25			LFE5U-45				LFE5U-85				
Pin Type		256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	554 caBGA	285 csfBG	381 caBGA	554 caBGA	756 caBG
	Bank 0	24	6	24	24	6	24	24	6	27	32	6	27	32	56
	Bank 1	32	6	32	32	6	32	32	6	33	40	6	33	40	48
General	Bank 2	32	21	32	32	21	32	32	21	32	32	21	34	32	48
Purpose	Bank 3	32	28	32	32	28	32	32	28	33	48	28	33	48	64
Inputs/Outputs	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	14	24
per Bank	Bank 6	32	26	32	32	26	32	32	26	33	48	26	33	48	64
	Bank 7	32	18	32	32	18	32	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Total Single-Ended User		197	118	197	197	118	197	197	118	203	245	118	205	259	365
VCC		6	13	20	6	13	20	6	13	20	24	13	20	24	36
VCCAUX (Core)		2	3	4	2	3	4	2	3	4	9	3	4	9	8
	Bank 0	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 1	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 2	2	2	3	2	2	3	2	2	3	4	2	3	4	4
VCCIO	Bank 3	2	2	3	2	2	3	2	2	3	3	2	3	3	4
VCCIO	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	2	2
	Bank 6	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 7	2	2	3	2	2	3	2	2	3	3	2	3	3	4
	Bank 8	1	2	2	1	2	2	1	2	2	2	2	2	2	2
ТАР		4	4	4	4	4	4	4	4	4	4	4	4	4	4
Miscellaneous De	dicated	7	7	7	7	7	7	7	7	7	7	7	7	7	7
GND		27	123	99	27	123	99	27	123	99	198	123	99	198	267
NC		0	1	26	0	1	26	0	1	26	33	1	26	33	29
Reserved		0	4	6	0	4	6	0	4	6	12	4	6	12	12
Total Balls		256	285	381	256	285	381	256	285	381	554	285	381	554	756
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8
High Speed Differ	ential	Bank	16/8	14/7	16/8	16/8	14/7	16/8	16/8	14/7	16/8	24/12	14/7	16/8	24/1
Input / Output Pa	irs	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	13/6	16/8	16/8	13/6	16/8	16/8	13/6	16/8	24/12	13/6	16/8	24/1
		Bank	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total High Speed		64/32	45/27	64/32	64/32	45/27	64/32	64/32	45/27	64/32	80/40	45/27	65/33	80/40	112/
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
DQS Groups		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
(> 11 pins in group)		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total DQS Groups		8	6	8	8	6	8	8	6	8	10	6	8	10	14

Revision History

Date	Version	Section	Change Summary					
March 2018	1.9	All	Updated formatting and page referencing.					
		General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-45.					
		Architecture	Added a row for SGMII in Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support. Updated footnote #1.					
		DC and Switching	Updated Table 3.2. Recommended Operating Conditions.					
		Characteristics	Added 2 rows and updated values in Table 3.7. DC Electrical Characteristics.					
			Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby).					
			Updated Table 3.11. sysl/O Recommended Operating Conditions.					
			Updated Table 3.12. Single-Ended DC Characteristics.					
			Updated Table 3.13. LVDS.					
			Updated Table 3.14. LVDS25E DC Conditions.					
			Updated Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed.					
			Updated Table 3.28. Receiver Total Jitter Tolerance Specification.					
			Updated header name of section 3.28 CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics.					
			Updated header name of section 3.29 Gigabit Ethernet/CGMII(1, 25Gbps)/CBRI LVE 12 Electrical and Timing					
			Characteristics					
		Pinout Information	Updated table in section 4.3.2 LFE5U.					
		Ordering Information	Added table rows in 5.2.1 Commercial.					
			Added table rows in 5.2.2 Industrial.					
2		Supplemental Information	Updated For Further Information section.					
November 2017	1.8	General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-12 and LFE5U-25.					

(Continued)

Date	Version	Section	Change Summary					
April 2017	1.7	All	Changed document number from DS1044 to FPGA-DS-02012.					
		General Description	Updated Features section. Changed "1.1 V core power supply" to "1.1 V core power supply for ECP5, 1.2 V core power supply for ECP5UM5G".					
		Architecture	Updated Overview section. Change "The ECP5/ECP5-5G devices use 1.1 V as their core voltage" to "The ECP5 devices use 1.1V, ECP5UM5G devices use 1.2V as their core voltage" Updated Table 3.2. Recommended Operating Conditions Added ECP5-5G on VCC to be 1.2V +/- 5% Added ECP5-5G on VCCA to be 1.2V +/- 3% Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby) Changed "Core Power Supply Current" for ICC on LFE5UM5G devices Changed "SERDES Power Supply Current (Per Dual)" for ICCA on LFE5UM5G devices Updated Table 3.20. Register-to-Register Performance. Remove "(DDR/SDR)" from DSP Function Changed DSP functions to 225 MHz					
	Ch							
Pine		Pinout Information	Update Section 4.1 Signal Description. Revised Vcc Description to "Power supply pins for core logic. Dedicated pins. VCC = 1.1 V (ECP5 1.2 V (ECP5UM5G)"					
February 2016	1.6	All	Changed document status from Preliminary to Final.					
		General Description	Updated Features section. Changed "24K to 84K LUTs" to "12K to 84K LUTs". Added LFE5U-12 column to Table 1.1. ECP5 and ECP5-5G Family Selection Guide.					
		DC and Switching Characteristics	Updated Power up Sequence section. Identified typical ICC current for specific devices in Table 3.8. ECP5/ECP5-5G Supply Current (Standby). Updated values in Table 3.9. ECP5. Updated values in Table 3.10. ECP5-5G. Added values to -8 Timing column of Table 3.19. Pin-to-Pin Performance. Added values to -8 Timing column of Table 3.20. Register-to-Register Performance. Changed LFE5-45 to All Devices in Table 3.22. ECP5/ECP5-5G External Switching Characteristics. Added table notes to Table 3.31. PCIe (5 Gb/s). Added table note to Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics.					
		Pinout Information	Added LFE5U-12 column to the table in LFE5U section.					
		Ordering Information	Updated LFE5U in ECP5/ECP5-5G Part Number Description section: added 12 F = 12K LUTs to Logic Capacity. Added LFE5U-12F information to Ordering Part Numbers section.					

(Continued)

Date	Version	Section	Change Summary						
November 2015	1.5	All	Added ECP5-5G device family.						
			Changed document title to ECP5 and ECP5-5G Family Data Sheet.						
	1.4	General Description	Updated Features section. Added support for eDP in RDR and HDR.						
		Architecture	Updated Overview section.						
			Revised Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level). Modified Flexible sysIO description and Note.						
			Updated SERDES and Physical Coding Sublayer section.						
			Changed E.24.V in CPRI protocol to E.24.LV.						
			Removed "1.1 V" from paragraph on unused Dual.						
		DC and Switching	Updated Hot Socketing Requirements section. Revised V_{CCHTX} in table						
		Characteristics	notes 1 and 3. Indicated V _{CCHTX} in table note 4.						
			Updated SERDES High-Speed Data Transmitter section. Revised V _{CCHTX}						
			in table note 1.						
	Ordering Informatio		Updated ECP5/ECP5-5G Part Number Description section. Changed "LFE5 FPGA" under Device Family to "ECP5 FPGA".						
August 2015	1.3	General Description	Updated Features section.						
			Removed SMPTE3G under Embedded SERDES.						
			Added Single Event Upset (SEU) Mitigation Support.						
			Removed SMPTE protocol in fifth paragraph.						
		Architecture	General update.						
		DC and Switching Characteristics	General update.						
		Pinout Information	Updated Signal Descriptions section. Revised the descriptions of the following signals:						
			• P[L/R] [Group Number]_[A/B/C/D]						
			P[T/B][Group Number]_[A/B]						
			D4/IO4 (Previously named D4/MOSI2/IO4)						
			D5/IO5 (Previously named D5/MISO/IO5)						
			VCCHRX_D[dual_num]CH[chan_num]						
			VCCHTX_D[dual_num]CH[chan_num]						
		Supplemental Information	Added TN1184 reference.						

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.