E.J. Lattice Semiconductor Corporation - <u>LFE5U-45F-8BG381C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11000
Number of Logic Elements/Cells	44000
Total RAM Bits	1990656
Number of I/O	203
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-45f-8bg381c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Acronyms in This Document	9
1. General Description	10
1.1. Features	10
2. Architecture	12
2.1. Overview	12
2.2. PFU Blocks	13
2.2.1. Slice	14
2.2.2. Modes of Operation	17
2.3. Routing	
2.4. Clocking Structure	
2.4.1. sysCLOCK PLL	
2.5. Clock Distribution Network	19
2.5.1. Primary Clocks	20
2.5.2. Edge Clock	21
2.6. Clock Dividers	22
2.7. DDRDLL	23
2.8. svsMEM Memory	24
2.8.1. sysMEM Memory Block	
2.8.2 Bus Size Matching	25
2.8.3 RAM Initialization and ROM Operation	
2.8.4 Memory Cascading	
2.8.5 Single Dual and Pseudo-Dual Port Modes	25
2.8.6 Memory Core Reset	26
2.9 svsDSP™ Slice	26
2.9.1. sysDSP Slice Approach Compared to General DSP	26
2.9.2 sysDSP Slice Architecture Features	20
2.10 Programmable I/O Cells	30
2 11 PIO	32
2 11 1 Innut Register Block	32
2 11 2 Output Register Block	32
2 12 Tristate Register Block	34
2.12. DDR Memory Support	
2 13 1 DOS Grouping for DDR Memory	
2 13 2 DLL Calibrated DOS Delay and Control Block (DOSBLE)	
2.13.2, DEL cambrated DQ3 Delay and control block (DQ3D01)	
2.14. Syst/O Buffer Banks	20 20
2.14.2 Typical cycl/O L/O Pobayiar during Dowar up	
2.14.2. Typical syst/O f/O Benaviol during Power-up	
2.14.4 On Chin Programmable Termination	
2.14.5. Hot Sockoting	40
2.14.5. Hot Socketting	40
	41
2.13.1. SERDES DIOLK	
2,12,2, PW	
2.10.5. SERVES CHEHL HILEHALE BUS	
2.10. FIEXINE DUAI SERDES AFCHILECTURE	
2.17. IEEE 1149.1-Compliant Boundary Scan Testability	
2.18. Device Configuration	
2.18.1. Ennanced Configuration Options	
2.18.2. Single Event Upset (SEU) Support	45
2.18.3. Un-Chip Uscillator	
2.19. Density Shifting	
3. DC and Switching Characteristics	47

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	23
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	24
Figure 2.12. Memory Core Reset	26
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	29
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	31
Figure 2.17. Input Register Block for PIO on Top Side of the Device	32
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	32
Figure 2.19. Output Register Block on Top Side	33
Figure 2.20. Output Register Block on Left and Right Sides	34
Figure 2.21. Tristate Register Block on Top Side	34
Figure 2.22. Tristate Register Block on Left and Right Sides	35
Figure 2.23. DQS Grouping on the Left and Right Edges	36
Figure 2.24. DQS Control and Delay Block (DQSBUF)	37
Figure 2.25. ECP5/ECP5-5G Device Family Banks	38
Figure 2.26. On-Chip Termination	40
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	42
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	43
Figure 3.1. LVDS25E Output Termination Example	56
Figure 3.2. BLVDS25 Multi-point Output Example	57
Figure 3.3. Differential LVPECL33	58
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	60
Figure 3.6. Receiver RX.CLK.Centered Waveforms	68
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	68
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	68
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	69
Figure 3.10. DDRX71 Video Timing Waveforms	69
Figure 3.11. Receiver DDRX71 RX Waveforms	70
Figure 3.12. Transmitter DDRX71 TX Waveforms	70
Figure 3.13. Transmitter and Receiver Latency Block Diagram	73
Figure 3.14. SERDES External Reference Clock Waveforms	75
Figure 3.15. sysCONFIG Parallel Port Read Cycle	84
Figure 3.16. sysCONFIG Parallel Port Write Cycle	85
Figure 3.17. svsCONFIG Slave Serial Port Timing	85
Figure 3.18. Power-On-Reset (POR) Timing	86
Figure 3.19. svsCONFIG Port Timing	86
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	87
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	89
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	89
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.36. Receive and Jitter Tolerance	
Table 3.37. Transmit	
Table 3.38. Receive and Jitter Tolerance	
Table 3.39. Transmit	82
Table 3.40. Receive	82
Table 3.41. Reference Clock	82
Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications	83
Table 3.43. JTAG Port Timing Specifications	
Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
ALU	Arithmetic Logic Unit
BGA	Ball Grid Array
CDR	Clock and Data Recovery
CRC	Cycle Redundancy Code
DCC	Dynamic Clock Control
DCS	Dynamic Clock Select
DDR	Double Data Rate
DLL	Delay-Locked Loops
DSP	Digital Signal Processing
EBR	Embedded Block RAM
ECLK	Edge Clock
FFT	Fast Fourier Transforms
FIFO	First In First Out
FIR	Finite Impulse Response
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVPECL	Low Voltage Positive Emitter Coupled Logic
LVTTL	Low Voltage Transistor-Transistor Logic
LUT	Look Up Table
MLVDS	Multipoint Low-Voltage Differential Signaling
PCI	Peripheral Component Interconnect
PCS	Physical Coding Sublayer
PCLK	Primary Clock
PDPR	Pseudo Dual Port RAM
PFU	Programmable Functional Unit
PIC	Programmable I/O Cells
PLL	Phase-Locked Loops
POR	Power On Reset
SCI	SERDES Client Interface
SERDES	Serializer/Deserializer
SEU	Single Event Upset
SLVS	Scalable Low-Voltage Signaling
SPI	Serial Peripheral Interface
SPR	Single Port RAM
SRAM	Static Random-Access Memory
ТАР	Test Access Port
TDM	Time Division Multiplexing

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

Figure 2.2. PFU Diagram

2.2.1. Slice

Each slice contains two LUT4s feeding two registers. In Distributed SRAM mode, Slice 0 through Slice 2 are configured as distributed memory, and Slice 3 is used as Logic or ROM. Table 2.1 shows the capability of the slices along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Clico	PFU (Used in Distributed SRAM)		PFU (Not used as Distributed SRAM)		
Silce	Resources	Modes	Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 1	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 2	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Table 2.1. Resources and Modes Available per Slice

Figure 2.3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Each slice has 14 input signals, 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are five outputs, four to routing and one to carry-chain (to the adjacent PFU). There are two inter slice/ PFU output signals that are used to support wider LUT functions, such as LUT6, LUT7 and LUT8. Table 2.2 and Figure 2.3 list the signals associated with all the slices. Figure 2.4 on page 16 shows the connectivity of the inter-slice/PFU signals that support LUT5, LUT6, LUT7 and LUT8.

Figure 2.8. Edge Clock Sources per Bank

The edge clocks have low injection delay and low skew. They are used for DDR Memory or Generic DDR interfaces. For detailed information on Edge Clock connections, refer to ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

2.6. Clock Dividers

ECP5/ECP5-5G devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a $\div 2$, $\div 3.5$ mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal.

The clock dividers can be fed from selected PLL outputs, external primary clock pins multiplexed with the DDRDEL Slave Delay or from routing. The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all outputs to low. The SLIP signal slips the outputs one cycle relative to the input clock. For further information on clock dividers, refer to ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263). Figure 2.9 shows the clock divider connections.

Figure 2.9. ECP5/ECP5-5G Clock Divider Sources

Table 2.6. sysMEM Block Configurations

Memory Mode	Configurations
	16,384 x 1
	8,192 x 2
Single Dort	4,096 x 4
Single Port	2,048 x 9
	1,024 x 18
	512 x 36
	16,384 x 1
	8,192 x 2
True Dual Port	4,096 x 4
	2,048 x 9
	1,024 x 18
	16,384 x 1
	8,192 x 2
Decudo Dual Dort	4,096 x 4
PSeudo Dual Port	2,048 x 9
	1,024 x 18
	512 x 36

2.8.2. Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.8.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

2.8.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.8.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- **Read-Before-Write** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

Table 2.12. On-Chip	Termination O	ptions for In	put Modes
---------------------	----------------------	---------------	-----------

IO_TYPE	Terminate to V _{CCIO} /2*	Differential Termination Resistor*
LVDS25	-	100
BLVDS25	I	100
MLVDS	Ι	100
LVPECL33	-	100
subLVDS	-	100
SLVS	-	100
HSUL12	50, 75, 150	-
HSUL12D	—	100
SSTL135_1 / 11	50, 75, 150	-
SSTL135D_1 / 11	-	100
SSTL15_I / II	50, 75, 150	-
SSTL15D_I / II	-	100
SSTL18_I / II	50, 75, 150	-
SSTL18D_I / II	-	100

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

2.15. SERDES and Physical Coding Sublayer

LFE5UM/LFE5UM5G devices feature up to 4 channels of embedded SERDES/PCS arranged in dual-channel blocks at the bottom of the devices. Each channel supports up to 3.2 Gb/s (ECP5), or up to 5 Gb/s (ECP5-5G) data rate. Figure 2.27 shows the position of the dual blocks for the LFE5-85. Table 2.13 shows the location of available SERDES Duals for all devices. The LFE5UM/LFE5UM5G SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express Gen1 and Gen2 (2.5 Gb/s) on ECP5UM; Gen 1, Gen2 (2.5 Gb/s and 5 Gb/s) on ECP5-5G
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- SMPTE SDI (3G-SDI, HD-SDI, SD-SDI)
- CPRI (E.6.LV: 614.4 Mb/s, E.12.LV: 1228.8 Mb/s, E.24.LV: 2457.6 Mb/s, E.30.LV: 3072 Mb/s), also E.48.LV2:4915 Mb/s in ECP5-5G
- JESD204A/B ADC and DAC converter interface: 312.5 Mb/s to 3.125 Gb/s (ECP5) / 5 Gb/s (ECP5-5G)

Each dual contains two dedicated SERDES for high speed, full duplex serial data transfer. Each dual also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in duals, multiple baud rates can be supported within a dual with the use of dedicated, per channel /1, /2 and /11 rate dividers. Additionally, two duals can be arranged together to form x4 channel link.

ECP5UM devices and ECP5-5G devices are pin-to-pin compatible. But, the ECP5UM devices require 1.1 V on VCCA, VCCHRX and VCCHTX supplies. ECP5-5G devices require 1.2 V on these supplies. When designing either family device with migration in mind, these supplies need to be connected such that it is possible to adjust the voltage level on these supplies.

When a SERDES Dual in a 2-Dual device is not used, the power VCCA power supply for that Dual should be connected. It is advised to connect the VCCA of unused channel to core if the user knows he will not use the Dual at all, or it should be connected to a different regulated supply, if that Dual may be used in the future.

For an unused channel in a Dual, it is advised to connect the VCCHTX to VCCA, and user can leave VCCHRX unconnected.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

Table 3.10. ECP5-5G

Symbol	Description	Тур	Max	Unit
Standby (Power Down)				
I _{CCA-SB}	V _{CCA} Power Supply Current (Per Channel)	4	9.5	mA
I _{CCHRX-SB} ⁴	V _{CCHRX} , Input Buffer Current (Per Channel)	_	0.1	mA
I _{CCHTX-SB}	V _{CCHTX} , Output Buffer Current (Per Channel)	_	0.9	mA
Operating (Data	Rate = 5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	58	67	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Data	Rate = 3.2 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	48	57	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Data	Operating (Data Rate = 2.5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	44	53	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Data	Rate = 1.25 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	36	46	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Data	Operating (Data Rate = 270 Mb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	30	40	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	8	10	mA

Notes:

1. Rx Equalization enabled, Tx De-emphasis (pre-cursor and post-cursor) disabled

2. Per Channel current is calculated with both channels on in a Dual, and divide current by two. If only one channel is on, current will be higher.

3. To calculate with Tx De-emphasis enabled, use the Diamond Power Calculator tool.

4. For ICCHRX-SB, during Standby, input termination on Rx are disabled.

5. For ICCHRX-OP, during operational, the max specified when external AC coupling is used. If externally DC coupled, the power is based on current pulled down by external driver when the input is driven to LOW.

3.19. sysCLOCK PLL Timing

Over recommended operating conditions.

Table 3.23.	sysCLOCK PLL Timing	
-------------	---------------------	--

Parameter	Descriptions	Conditions	Min	Max	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	—	8	400	MHz
f _{out}	Output Clock Frequency (CLKOP, CLKOS)	—	3.125	400	MHz
f _{vco}	PLL VCO Frequency	—	400	800	MHz
f _{PFD} ³	Phase Detector Input Frequency	—	10	400	MHz
AC Characteristi	cs				
t _{DT}	Output Clock Duty Cycle	—	45	55	%
t _{PH4}	Output Phase Accuracy	_	-5	5	%
	Outrast Classical Paris	f _{out} ≥ 100 MHz	_	100	ps p-p
	Output Clock Period Jitter	f _{out} < 100 MHz	-	0.025	UIPP
. 1		f _{out} ≥ 100 MHz	_	200	ps p-p
LOD IL	Output Clock Cycle-to-Cycle Jitter	f _{out} < 100 MHz	-	0.050	UIPP
	Output Clock Phase Jitter	f _{PFD} ≥ 100 MHz	_	200	ps p-p
		f _{PFD} < 100 MHz	-	0.011	UIPP
t _{spo}	Static Phase Offset	Divider ratio = integer	-	400	ps p-p
tw	Output Clock Pulse Width	At 90% or 10%	0.9	—	ns
t _{LOCK} ²	PLL Lock-in Time	—	-	15	ms
tunlock	PLL Unlock Time	—	-	50	ns
+	Input Clack Pariod litter	f _{PFD} ≥ 20 MHz	_	1,000	ps p-p
LIPJIT		f _{PFD} < 20 MHz	—	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	ns
t _{RST}	RST/ Pulse Width	—	1	—	ms
t _{RSTREC}	RST Recovery Time	—	1	—	ns
t _{load_reg}	Min Pulse for CIB_LOAD_REG	—	10	—	ns
t _{rotate-setup}	Min time for CIB dynamic phase controls to be stable fore CIB_ROTATE	-	5	_	ns
t _{ROTATE-WD}	Min pulse width for CIB_ROTATE to maintain "0" or	_	4	—	VCO cycles

Notes:

1. Jitter sample is taken over 10,000 samples for Periodic jitter, and 2,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 10$ MHz. For $f_{PFD} < 10$ MHz, the jitter numbers may not be met in certain conditions.

3.20. SERDES High-Speed Data Transmitter

Table 3.24. Serial Output Timing and Levels

Symbol	Description	Min	Тур	Max	Unit
V _{TX-DIFF-PP}	Peak-Peak Differential voltage on selected amplitude ^{1, 2}		—	25%	mV, p-p
V _{TX-CM-DC}	Output common mode voltage	—	V _{CCHTX} / 2	—	mV, p-p
T _{TX-R}	Rise time (20% to 80%)		—	—	ps
T _{TX-F}	Fall time (80% to 20%)	50	—	—	ps
T _{TX-CM-AC-P}	RMS AC peak common-mode output voltage	—	—	20	mV
7	Single ended output impedance for 50/75 $\boldsymbol{\Omega}$	-20%	50/75	20%	Ω
Z _{TX_SE}	Single ended output impedance for 6K $\boldsymbol{\Omega}$	-25%	6K	25%	Ω
RL _{TX_DIFF}	Differential return loss (with package included) ³	—	—	-10	dB
RL _{TX_COM}	Common mode return loss (with package included) 3	—	—	-6	dB

Notes:

1. Measured with 50 Ω Tx Driver impedance at V_{CCHTx} \pm 5\%.

2. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for settings of Tx amplitude.

3. Return los = -10 dB (differential), -6 dB (common mode) for 100 MHz \leq f <= 1.6 GHz with 50 Ω output impedance configuration. This includes degradation due to package effects.

Table 3.25. Channel Output Jitter

Description	Frequency	Min	Тур	Max	Unit
Deterministic	5 Gb/s	—	—	TBD	UI, p-p
Random	5 Gb/s	—	—	TBD	UI, p-p
Total	5 Gb/s	—	—	TBD	UI, p-p
Deterministic	3.125 Gb/s	_	_	0.17	UI, p-p
Random	3.125 Gb/s	—	—	0.25	UI, p-p
Total	3.125 Gb/s	—	—	0.35	UI, p-p
Deterministic	2.5 Gb/s	—	—	0.17	UI, p-p
Random	2.5 Gb/s	—	—	0.20	UI, p-p
Total	2.5 Gb/s	—	—	0.35	UI, p-p
Deterministic	1.25 Gb/s	—	—	0.10	UI, p-p
Random	1.25 Gb/s	—	—	0.22	UI, p-p
Total	1.25 Gb/s	_	_	0.24	UI, p-p

Notes:

1. Values are measured with PRBS 2⁷-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, reference clock @ 10X mode.

2. For ECP5-5G family devices only.

3.24. SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3.29 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min	Тур	Max	Unit
F _{REF}	Frequency range	50	—	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	—	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ^{2, 4}	200	—	V _{CCAUXA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	—	2*V _{CCAUXA}	mV, p-p differential
V _{REF-IN}	Input levels	0	—	V _{CCAUXA} + 0.4	V
D _{REF}	Duty cycle ³	40	—	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-30%	100/HiZ	+30%	Ω
C _{REF-IN-CAP}	Input capacitance	_	_	7	pF

Table 3.29. External Reference Clock Specification (refclkp/refclkn)

Notes:

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

- 2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. With single-ended clock, a reference voltage needs to be externally connected to CLKREFN pin, and the input voltage needs to be swung around this reference voltage.
- 3. Measured at 50% amplitude.
- 4. Single-ended clocking is achieved by applying a reference voltage V_{REF} on REFCLKN input, with the clock applied to REFCLKP input pin. V_{REF} should be set to mid-point of the REFCLKP voltage swing.

Figure 3.14. SERDES External Reference Clock Waveforms

Figure 3.23. JTAG Port Timing Waveforms

3.33. Switching Test Conditions

Figure 3.24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 3.44.

*CL Includes Test Fixture and Probe Capacitance

Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards

Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	VT
				LVCMOS 3.3 = 1.5 V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L \geq H, H \geq L)	×	x	0 pF	LVCMOS 1.8 = V _{CCIO} /2	_
				LVCMOS 1.5 = $V_{CCIO}/2$	—
				LVCMOS 1.2 = $V_{CCIO}/2$	—
LVCMOS 2.5 I/O (Z ≥ H)	8	1 MΩ	0 pF	V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ L)	1 MΩ	×	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)		100	0 pF	V _{он} – 0.10	—
LVCMOS 2.5 I/O (L ≥ Z)	100	×	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Signal Name	I/O	Description				
PLL, DLL and Clock Functions (Continued)						
[L/R]DQS[group_num]	I/O	DQS input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.				
[T/R]]DQ[group_num]	I/O	DQ input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.				
Test and Programming (Dedicated Pin	s)					
TMC		Test Mode Select input, used to control the 1149.1 state machine. Pull-up is				
1015	I	enabled during configuration. This is a dedicated input pin.				
ТСК	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled. This is a dedicated input pin.				
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration. This is a dedicated input pin.				
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1. This is a dedicated output pin.				
Configuration Pads (Used during sysC	ONFIG)					
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.				
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. This is a dedicated pin.				
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.				
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin.				
CCLK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. Output Configuration Clock for configuring an FPGA in Master configuration modes (Master SPI, Master Serial). This is a dedicated pin.				
HOLDN/DI/BUSY/CSSPIN/CEN	I/O	Parallel configuration mode busy indicator. SPI/SPIm mode data output. This is a shared I/O pin. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.				
CSN/SN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.				
CS1N	I	Parallel configuration mode active-low chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.				
WRITEN	I	Write enable for parallel configuration modes. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.				
DOUT/CSON	0	Serial data output. Chip select output. SPI/SPIm mode chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O				
D0/MOSI/IO0	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.				

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.2. PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	DDR Strobe (DQS) and Data (DQ) Pins
	For Left and Right Edges of the Device Only	
	А	DQ
	В	DQ
	С	DQ
	D	DQ
	А	DQ
	В	DQ
P[L/K] [II-3]	С	DQ
	D	DQ
	А	DQS (P)
	В	DQS (N)
	С	DQ
	D	DQ
	А	DQ
	В	DQ
רניהן [11+3]	С	DQ
	D	DQ

Note: "n" is a row PIC number.

4.3. **Pin Information Summary**

4.3.1. **LFE5UM/LFE5UM5G**

Pin Information Summary		LFE5UM/ LFE5UM5G-25		LFE5UM/LFE5UM5G-85						
Pin Type		285 csfBG	381 caBGA	285 csfBGA	381 caBG	554 caBGA	285 csfBGA	381 caBG	554 caBGA	756 caBGA
	Bank 0	6	24	6	27	32	6	27	32	56
	Bank 1	6	32	6	33	40	6	33	40	48
	Bank 2	21	32	21	32	32	21	34	32	48
General Purpose	Bank 3	28	32	28	33	48	28	33	48	64
Inputs/Outputs per Bank	Bank 4	0	0	0	0	0	0	0	14	24
	Bank 6	26	32	26	33	48	26	33	48	64
	Bank 7	18	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13
Total Single-Ended User I/O		118	197	118	203	245	118	205	259	365
VCC		13	20	13	20	24	13	20	24	36
VCCAUX (Core)		3	4	3	4	9	3	4	9	8
	Bank 0	1	2	1	2	3	1	2	3	4
	Bank 1	1	2	1	2	3	1	2	3	4
	Bank 2	2	3	2	3	4	2	3	4	4
VCCIO	Bank 3	2	3	2	3	3	2	3	3	4
	Bank 4	0	0	0	0	0	0	0	2	2
	Bank 6	2	3	2	3	4	2	3	4	4
	Bank 7	2	3	2	3	3	2	3	3	4
	Bank 8	2	2	2	2	2	2	2	2	2

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Revision History

Date	Version	Section	Change Summary	
March 2018	1.9	All	Updated formatting and page referencing.	
		General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-45.	
		Architecture	Added a row for SGMII in Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support. Updated footnote #1.	
		DC and Switching	Updated Table 3.2. Recommended Operating Conditions.	
		Characteristics	Added 2 rows and updated values in Table 3.7. DC Electrical Characteristics.	
			Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby).	
			Updated Table 3.11. sysl/O Recommended Operating Conditions.	
			Updated Table 3.12. Single-Ended DC Characteristics.	
			Updated Table 3.13. LVDS.	
			Updated Table 3.14. LVDS25E DC Conditions.	
			Updated Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed.	
				Updated Table 3.28. Receiver Total Jitter Tolerance Specification.
			Updated header name of section 3.28 CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics.	
			Updated header name of section 3.29 Gigabit Ethernet/SCMII(1, 25Gbps)/CPRI LVE 12 Electrical and Timing	
			Characteristics	
		Pinout Information	Updated table in section 4.3.2 LFE5U.	
		Ordering Information	Added table rows in 5.2.1 Commercial.	
			Added table rows in 5.2.2 Industrial.	
		Supplemental Information	Updated For Further Information section.	
November 2017	1.8	General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-12 and LFE5U-25.	

(Continued)

Date	Version	Section	Change Summary
November 2015	1.5	All	Added ECP5-5G device family.
			Changed document title to ECP5 and ECP5-5G Family Data Sheet.
	1.4	General Description	Updated Features section. Added support for eDP in RDR and HDR.
		Architecture	Updated Overview section.
			Revised Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level). Modified Flexible sysIO description and Note.
			Updated SERDES and Physical Coding Sublayer section.
			Changed E.24.V in CPRI protocol to E.24.LV.
			Removed "1.1 V" from paragraph on unused Dual.
		DC and Switching	Updated Hot Socketing Requirements section. Revised V _{CCHTX} in table
		Characteristics	notes 1 and 3. Indicated V _{CCHTX} in table note 4.
			Updated SERDES High-Speed Data Transmitter section. Revised V_{CCHTX}
			in table note 1.
		Ordering Information	Updated ECP5/ECP5-5G Part Number Description section. Changed "LFE5 FPGA" under Device Family to "ECP5 FPGA".
August 2015 1.3		General Description	Updated Features section.
			Removed SMPTE3G under Embedded SERDES.
			Added Single Event Upset (SEU) Mitigation Support.
			Removed SMPTE protocol in fifth paragraph.
		Architecture	General update.
		DC and Switching Characteristics	General update.
		Pinout Information	Updated Signal Descriptions section. Revised the descriptions of the following signals:
			• P[L/R] [Group Number]_[A/B/C/D]
			• P[T/B][Group Number]_[A/B]
			D4/IO4 (Previously named D4/MOSI2/IO4)
			D5/IO5 (Previously named D5/MISO/IO5)
			VCCHRX_D[dual_num]CH[chan_num]
			VCCHTX_D[dual_num]CH[chan_num]
		Supplemental Information	Added TN1184 reference.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.