E.J. Lattice Semiconductor Corporation - <u>LFE5U-85F-7BG756C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	365
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	756-FBGA
Supplier Device Package	756-CABGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-85f-7bg756c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.	Absolute Maximum Ratings	
3.2.	Recommended Operating Conditions	
3.3.	Power Supply Ramp Rates	
3.4.	Power-On-Reset Voltage Levels	
3.5.	Power up Sequence	
3.6.	Hot Socketing Specifications	
3.7.	Hot Socketing Requirements	
3.8.	ESD Performance	
3.9.	DC Electrical Characteristics	49
3.10.	Supply Current (Standby)	
3.11.	SERDES Power Supply Requirements ^{1,2,3}	51
3.12.	sysI/O Recommended Operating Conditions	53
3.13.	sysI/O Single-Ended DC Electrical Characteristics	54
3.14.	sysI/O Differential Electrical Characteristics	55
3.14	4.1. LVDS	
3.14		
3.14		
3.14		
3.14		
3.14		
3.14		
3.14		
	Typical Building Block Function Performance	
3.15.	Derating Timing Tables	
3.16.		
3.17.	Maximum I/O Buffer Speed	
3.18.	External Switching Characteristics	
3.19.	sysCLOCK PLL Timing	
3.20.	SERDES High-Speed Data Transmitter	
3.21.	SERDES/PCS Block Latency	
3.22.	SERDES High-Speed Data Receiver	
3.23.	Input Data Jitter Tolerance	
3.24.	SERDES External Reference Clock	
3.25.	PCI Express Electrical and Timing Characteristics	
3.25	5.1. PCIe (2.5 Gb/s) AC and DC Characteristics	76
3.25	5.2. PCIe (5 Gb/s) – Preliminary AC and DC Characteristics	77
3.26.	CPRI LV2 E.48 Electrical and Timing Characteristics – Preliminary	79
3.27.	XAUI/CPRI LV E.30 Electrical and Timing Characteristics	80
3.27	7.1. AC and DC Characteristics	80
3.28.	CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics	80
3.28	8.1. AC and DC Characteristics	80
3.29.	Gigabit Ethernet/SGMII(1.25Gbps)/CPRI LV E.12 Electrical and Timing Characteristics	81
3.29		
3.30.	SMPTE SD/HD-SDI/3G-SDI (Serial Digital Interface) Electrical and Timing Characteristics	
3.30		
3.31.	sysCONFIG Port Timing Specifications	
3.32.	JTAG Port Timing Specifications	
3.33.	Switching Test Conditions	
	out Information	
4. Pint 4.1.	Signal Descriptions	
4.1. 4.2.	PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin	
4.3.	Pin Information Summary	
4.3.		
4.3.		
5. Ord	lering Information	

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

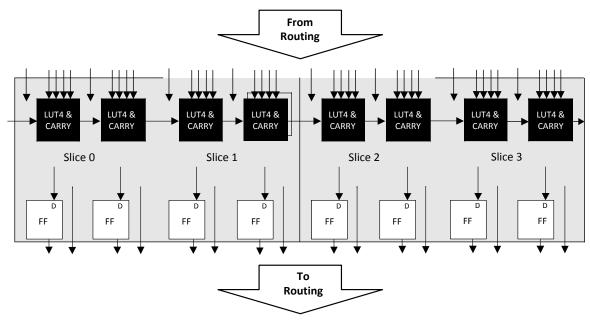


Figure 2.2. PFU Diagram

2.2.1. Slice

Each slice contains two LUT4s feeding two registers. In Distributed SRAM mode, Slice 0 through Slice 2 are configured as distributed memory, and Slice 3 is used as Logic or ROM. Table 2.1 shows the capability of the slices along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

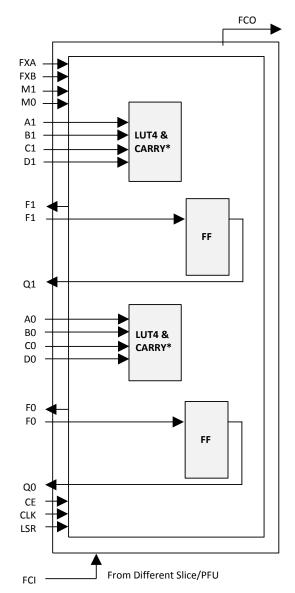

Slice	PFU (Used in Dis	tributed SRAM)	PFU (Not used as Distributed SRAM)			
Silce	Resources	Modes	Resources	Modes		
Slice 0	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 1	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 2	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM		

Table 2.1. Resources and Modes Available per Slice

Figure 2.3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Each slice has 14 input signals, 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are five outputs, four to routing and one to carry-chain (to the adjacent PFU). There are two inter slice/ PFU output signals that are used to support wider LUT functions, such as LUT6, LUT7 and LUT8. Table 2.2 and Figure 2.3 list the signals associated with all the slices. Figure 2.4 on page 16 shows the connectivity of the inter-slice/PFU signals that support LUT5, LUT6, LUT7 and LUT8.

Notes: For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK

WRE is from LSR

DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2 WAD [A:D] is a 4-bit address from slice 2 LUT input

Figure 2.3. Slice Diagram

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.3. Routing

There are many resources provided in the ECP5/ECP5-5G devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The ECP5/ECP5-5G family has an enhanced routing architecture that produces a compact design. The Diamond design software tool suites take the output of the synthesis tool and places and routes the design.

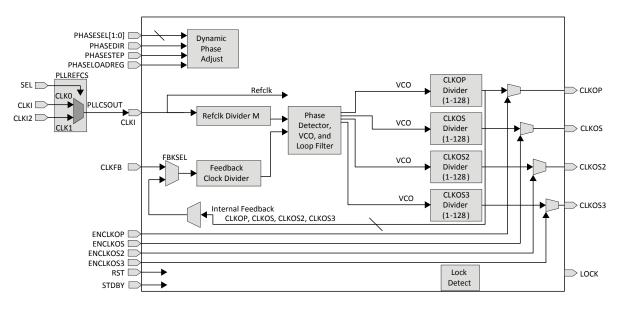
2.4. Clocking Structure

ECP5/ECP5-5G clocking structure consists of clock synthesis blocks (sysCLOCK PLL); balanced clock tree networks (PCLK and ECLK trees); and efficient clock logic modules (CLOCK DIVIDER and Dynamic Clock Select (DCS), Dynamic Clock Control (DCC) and DLL). All of these functions are described below.

2.4.1. sysCLOCK PLL

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the ECP5/ECP5-5G family support two to four full-featured General Purpose PLLs. The sysCLOCK PLLs provide the ability to synthesize clock frequencies.

The architecture of the PLL is shown in Figure 2.5. A description of the PLL functionality follows.


CLKI is the reference frequency input to the PLL and its source can come from two different external CLK inputs or from internal routing. A non-glitchless 2-to-1 input multiplexor is provided to dynamically select between two different external reference clock sources. The CLKI input feeds into the input Clock Divider block.

CLKFB is the feedback signal to the PLL which can come from internal feedback path, routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLL has four clock outputs CLKOP, CLKOS, CLKOS2 and CLKOS3. Each output has its own output divider, thus allowing the PLL to generate different frequencies for each output. The output dividers can have a value from 1 to 128. The CLKOP, CLKOS, CLKOS2, and CLKOS3 outputs can all be used to drive the primary clock network. Only CLKOP and CLKOS outputs can go to the edge clock network.

The setup and hold times of the device can be improved by programming a phase shift into the CLKOS, CLKOS2, and CLKOS3 output clocks which will advance or delay the output clock with reference to the CLKOP output clock. This phase shift can be either programmed during configuration or can be adjusted dynamically using the PHASESEL, PHASEDIR, PHASESTEP, and PHASELOADREG ports.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected.

2.8.6. Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2.12.

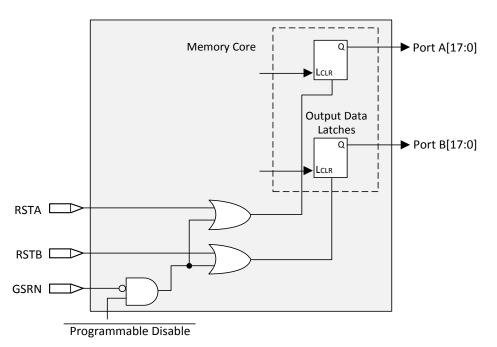
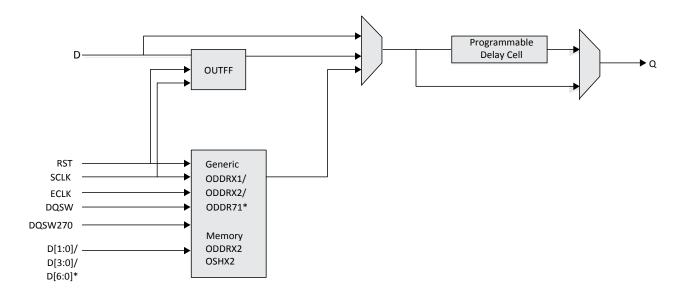


Figure 2.12. Memory Core Reset

For further information on the sysMEM EBR block, see the list of technical documentation in Supplemental Information section on page 102.


2.9. sysDSP[™] Slice

The ECP5/ECP5-5G family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

2.9.1. sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. In the ECP5/ECP5-5G device family, there are many DSP slices that can be used to support different data widths. This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2.13 compares the fully serial implementation to the mixed parallel and serial implementation.

*For 7:1 LVDS interface only. It is required to use PIO pair pins PIOA/B.

Figure 2.20. Output Register Block on Left and Right Sides

Name	Туре	Description
Q	Output	High Speed Data Output
D	Input	Data from core to output SDR register
D[1:0]/D[3:0]/ D[6:0]	Input	Low Speed Data from device core to output DDR register
RST	Input	Reset to the Output Block
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output

Table 2.9. Output Block Port Description

2.12. Tristate Register Block

The tristate register block registers tristate control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation. In SDR, TD input feeds one of the flip-flops that then feeds the output. In DDR operation used mainly for DDR memory interface can be implemented on the left and right sides of the device. Here two inputs feed the tristate registers clocked by both ECLK and SCLK.

Figure 2.21 and Figure 2.22 show the Tristate Register Block functions on the device. For detailed description of the tristate register block modes and usage, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

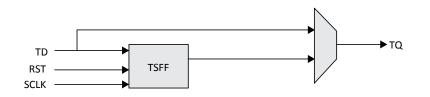
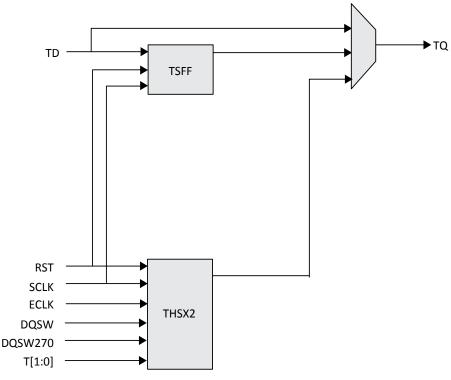



Figure 2.21. Tristate Register Block on Top Side

Name	Туре	Description
TD	Input	Tristate Input to Tristate SDR Register
RST	Input	Reset to the Tristate Block
TD[1:0]	Input	Tristate input to TSHX2 function
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output
TQ	Output	Output of the Tristate block

2.13. DDR Memory Support

2.13.1. DQS Grouping for DDR Memory

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. The support varies by the edge of the device as detailed below.

The left and right sides of the PIC have fully functional elements supporting DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. Every 16 PIOs on the left and right sides are grouped into one DQS group, as shown in Figure 2.23 on page 36. Within each DQS group, there are two pre-placed pins for DQS and DQS# signals. The rest of the pins in the DQS group can be used as DQ signals and DM signal. The number of pins in each DQS group bonded out is package dependent. DQS groups with less than 11 pins bonded out can only be used for LPDDR2/3 Command/ Address busses. In DQS groups with more than 11 pins bonded out, up to two pre-defined pins are assigned to be used as "virtual" VCCIO, by driving these pins to HIGH, with the user connecting these pins to VCCIO power supply. These connections create "soft" connections to V_{CCIO} thru these output pins, and make better connections on VCCIO to help to reduce SSO noise. For details, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

ECP5/ECP5-5G devices contain two types of sysI/O buffer pairs:

• Top (Bank 0 and Bank 1) and Bottom (Bank 8 and Bank 4) sysIO Buffer Pairs (Single-Ended Only)

The sysI/O buffers in the Banks at top and bottom of the device consist of ratioed single-ended output drivers and single-ended input buffers. The I/Os in these banks are not usually used as a pair, except when used as emulated differential output pair. They are used as individual I/Os and be configured as different I/O modes, as long as they are compatible with the V_{CCIO} voltage in the bank. When used as emulated differential outputs, the pair can be used together.

The top and bottom side IOs also support hot socketing. They support IO standards from 3.3 V to 1.2 V. They are ideal for general purpose I/Os, or as ADDR/CMD bus for DDR2/DDR3 applications, or for used as emulated differential signaling.

Bank 4 I/O only exists in the LFE5-85 device.

Bank 8 is a bottom bank that shares with sysConfig I/Os. During configuration, these I/Os are used for programming the device. Once the configuration is completed, these I/Os can be released and user can use these I/Os for functional signals in his design.

The top and bottom side pads can be identified by the Lattice Diamond tool.

Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two single-ended input buffers (both ratioed and referenced) and half of the sysI/O buffer pairs (PIOA/B pairs) also has a high-speed differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

2.14.2. Typical sysI/O I/O Behavior during Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in ECP5/ECP5-5G devices, see the list of technical documentation in Supplemental Information section on page 102.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

2.14.3. Supported sysI/O Standards

The ECP5/ECP5-5G sysI/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSUL. Differential standards supported include LVDS, differential SSTL and differential HSUL. For further information on utilizing the sysI/O buffer to support a variety of standards, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2.15.3. SERDES Client Interface Bus

The SERDES Client Interface (SCI) is an IP interface that allows the user to change the configuration thru this interface. This is useful when the user needs to fine-tune some settings, such as input and output buffer that need to be optimized based on the channel characteristics. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each dual in a design.

Popular standards such as 10 Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), with two duals (Four SERDES channels and PCS) and some additional logic from the core.

The LFE5UM/LFE5UM5G devices support a wide range of protocols. Within the same dual, the LFE5UM/ LFE5UM5G devices support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2.15 lists the allowable combination of primary and secondary protocol combinations.

2.16. Flexible Dual SERDES Architecture

The LFE5UM/LFE5UM5G SERDES architecture is a dual channel-based architecture. For most SERDES settings and standards, the whole dual (consisting of two SERDES channels) is treated as a unit. This helps in silicon area savings, better utilization, higher granularity on clock/SERDES channel and overall lower cost.

However, for some specific standards, the LFE5UM/LFE5UM5G dual-channel architecture provides flexibility; more than one standard can be supported within the same dual.

Table 2.15 lists the standards that can be mixed and matched within the same dual. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same dual. The two Protocol columns of the table define the different combinations of protocols that can be implemented together within a Dual.

Protocol		Protocol
PCI Express 1.1	with	SGMII
PCI Express 1.1	with	Gigabit Ethernet
CPRI-3	with	CPRI-2 and CPRI-1
3G-SDI	with	HD-SDI and SD-SDI

Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support

There are some restrictions to be aware of when using spread spectrum clocking. When a dual shares a PCI Express x1 channel with a non-PCI Express channel, ensure that the reference clock for the dual is compatible with all protocols within the dual. For example, a PCI Express spread spectrum reference clock is not compatible with most Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LFE5UM/LFE5UM5G architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, or SGMII channel within the same dual, using a PCI Express spread spectrum clocking as the transmit reference clock will cause a violation of the Gigabit Ethernet, and SGMII transmit jitter specifications.

For further information on SERDES, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

2.17. IEEE 1149.1-Compliant Boundary Scan Testability

All ECP5/ECP5-5G devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port uses VCCIO8 for power supply.

For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

2.18. Device Configuration

All ECP5/ECP5-5G devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are 11 dedicated pins for TAP and sysConfig supports (TDI, TDO, TCK, TMS, CFG[2:0], PROGRAMN, DONE, INITN and CCLK). The remaining sysCONFIG pins are used as dual function pins. Refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) for more information about using the dual-use pins as general purpose I/Os.

There are various ways to configure an ECP5/ECP5-5G device:

- JTAG
- Standard Serial Peripheral Interface (SPI) Interface to boot PROM Support x1, x2, x4 wide SPI memory interfaces.
- System microprocessor to drive a x8 CPU port SPCM mode
- System microprocessor to drive a serial slave SPI port (SSPI mode)
- Slave Serial model (SCM)

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port.

ECP5/ECP5-5G devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device (slave mode) with the SPI port of the FPGA to perform read-write operations.

2.18.1. Enhanced Configuration Options

ECP5/ECP5-5G devices have enhanced configuration features such as: decryption support, decompression support, TransFR™ I/O and dual-boot and multi-boot image support.

TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. Refer to Minimizing System Interruption During Configuration Using TransFR Technology (TN1087) for details.

Dual-Boot and Multi-Boot Image Support

Dual-boot and multi-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the ECP5/ECP5-5G devices can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the ECP5/ECP5-5G device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

2.18.2. Single Event Upset (SEU) Support

ECP5/ECP5-5G devices support SEU mitigation with three supporting functions:

- SED Soft Error Detect
- SEC Soft Error Correction
- SEI Soft Error Injection

ECP5/ECP5-5G devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the ECP5/ECP5-5G device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14. sysl/O Differential Electrical Characteristics

3.14.1. LVDS

Over recommended operating conditions.

Table 3.13. LVDS

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
$V_{\text{INP}}, V_{\text{INM}}$	Input Voltage	-	0	_	2.4	V
V _{CM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.05	—	2.35	V
V _{THD}	Differential Input Threshold	Difference between the two Inputs	±100	_	_	mV
I _{IN}	Input Current	Power On or Power Off	-	—	±10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ω	-	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ω	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ω	250	350	450	mV
ΔV_{OD}	Change in V_{OD} Between High and Low	_	_	_	50	mV
V _{OS}	Output Voltage Offset	$(V_{OP} + V_{OM})/2, R_T = 100 \Omega$	1.125	1.25	1.375	V
ΔV_{OS}	Change in Vos Between H and L	—	-	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0 V Driver outputs shorted to each other	_	_	12	mA

Note: On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

3.14.2. **SSTLD**

All differential SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

3.14.3. LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V V_{CCIO} . The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 4 mA, 8 mA, 12 mA or 16 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

3.18. External Switching Characteristics

Over recommended commercial operating conditions.

Table 3.22. ECP5/ECP5-5G External Switching Characteristics

Devenueter	Description	Devies	-	8	-7		-6		11
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit
Clocks									
Primary Clock									
f _{MAX_PRI}	Frequency for Primary Clock Tree	_	—	370	—	303	_	257	MHz
t _{w_pri}	Clock Pulse Width for Primary Clock	_	0.8	—	0.9	—	1.0	—	ns
t _{skew_pri}	Primary Clock Skew within a Device	-	-	420	_	462	-	505	ps
Edge Clock			-						
f _{MAX_EDGE}	Frequency for Edge Clock Tree	—	_	400	—	350	_	312	MHz
tw_edge	Clock Pulse Width for Edge Clock	_	1.175	_	1.344	_	1.50	—	ns
t _{skew_edge}	Edge Clock Skew within a Bank	-	-	160	-	180	-	200	ps
Generic SDR In	put				•				•
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ithout PL	L					
t _{co}	Clock to Output - PIO Output Register	All Devices	-	5.4	-	6.1	-	6.8	ns
t _{su}	Clock to Data Setup - PIO Input Register	All Devices	0	_	0	_	0	_	ns
t _H	Clock to Data Hold - PIO Input Register	All Devices	2.7	-	3	-	3.3	_	ns
t _{su_del}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.2	-	1.33	-	1.46	_	ns
t _{h_del}	Clock to Data Hold - PIO Input Register with Data Input Delay	All Devices	0	_	0	_	0	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All Devices	-	400	_	350	-	312	MHz
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ith PLL						
t _{copll}	Clock to Output - PIO Output Register	All Devices	_	3.5	_	3.8	_	4.1	ns
t _{supll}	Clock to Data Setup - PIO Input Register	All Devices	0.7	_	0.78		0.85	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	All Devices	0.8	_	0.89	-	0.98	_	ns
t _{su_delpll}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.6	_	1.78	_	1.95	_	ns

Demonstern	Description	Device	-8		-7		-6		Unit
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit
f _{data_ddr2} f _{data_ddr3} f _{data_ddr3} f _{data_lpddr2} f _{data_lpddr3}	DDR Memory Data Rate	All Devices	Ι	800	_	700	_	624	Mb/s
fmax_ddr2 fmax_ddr3 fmax_ddr3l fmax_lpddr2 fmax_lpddr3	DDR Memory CLK Frequency (ECLK)	All Devices	Ι	400	_	350	_	312	MHz
DDR2/DDR3/DDR	3L/LPDDR2/LPDDR3 WRITE (DO	Q Output Data	are Cente	ered to DC	QS)				
t _{dqvbs_ddr2} t _{dqvbs_ddr3} t _{dqvbs_ddr3} t _{dqvbs_lpddr2} t _{dqvbs_lpddr3}	Data Output Valid before DQS Output	All Devices	_	-0.25	_	-0.25	_	-0.25	UI
tdqvas_ddr2 tdqvas_ddr3 tdqvas_ddr3l tdqvas_lpddr2 tdqvas_lpddr2 tdqvas_lpddr3	Data Output Valid after DQS Output	All Devices	0.25	_	0.25	_	0.25	_	UI
fdata_ddr2 fdata_ddr3 fdata_ddr3l fdata_lpddr2 fdata_lpddr3	DDR Memory Data Rate	All Devices	_	800	_	700	_	624	Mb/s
f _{MAX_DDR2} f _{MAX_DDR3} f _{MAX_DDR3L} f _{MAX_LPDDR2} f _{MAX_LPDDR3}	DDR Memory CLK Frequency (ECLK)	All Devices	_	400	_	350	_	312	MHz

Notes:

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond software.

 General I/O timing numbers are based on LVCMOS 2.5, 12 mA, Fast Slew Rate, 0pf load. Generic DDR timing are numbers based on LVDS I/O. DDR2 timing numbers are based on SSTL18. DDR3 timing numbers are based on SSTL15. LPDDR2 and LPDDR3 timing numbers are based on HSUL12.

- 3. Uses LVDS I/O standard for measurements.
- 4. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
- 5. All numbers are generated with the Diamond software.

FPGA-DS-02012-1.9

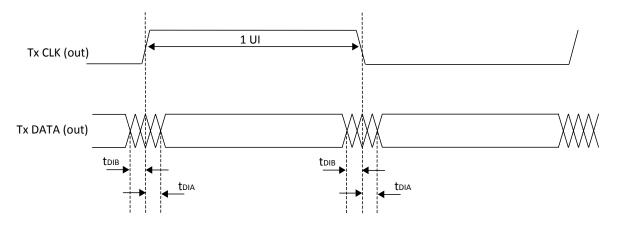
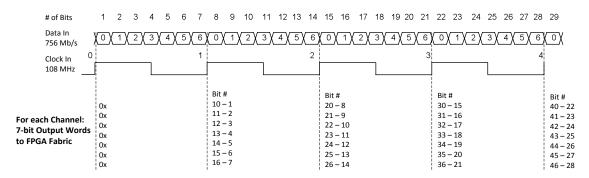



Figure 3.9. Transmit TX.CLK.Aligned Waveforms

Receiver – Shown for one LVDS Channel

Transmitter - Shown for one LVDS Channel

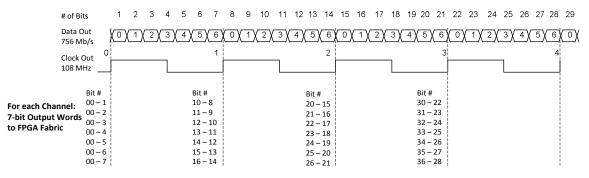


Figure 3.10. DDRX71 Video Timing Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

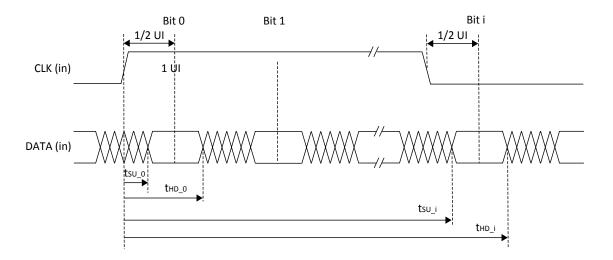


Figure 3.11. Receiver DDRX71_RX Waveforms

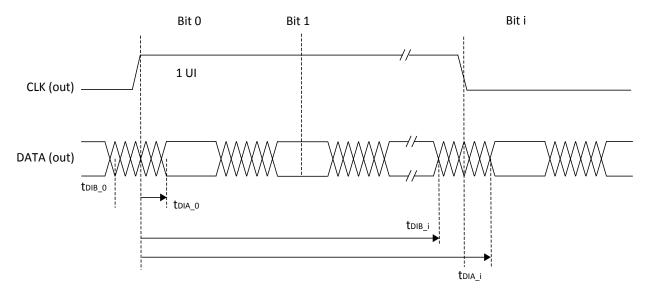


Figure 3.12. Transmitter DDRX71_TX Waveforms

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications (Continued)

Symbol	Parameter		Min	Max	Unit
Slave Para	llel				
f _{cclk}	CCLK input clock frequency	—	—	50	MHz
t _{BSCH}	CCLK input clock pulsewidth HIGH	—	6	_	ns
t _{BSCL}	CCLK input clock pulsewidth LOW	—	6	_	ns
t _{CORD}	CCLK to DOUT for Read Data	—	—	12	ns
t _{sucbdi}	Data Setup Time to CCLK	—	1.5	_	ns
t _{HCBDI}	Data Hold Time to CCLK	—	1.5	_	ns
t _{sucs}	CSN, CSN1 Setup Time to CCLK	—	2.5	_	ns
t _{HCS}	CSN, CSN1 Hold Time to CCLK	—	1.5	_	ns
t _{suwd}	WRITEN Setup Time to CCLK	—	45	_	ns
t _{HCWD}	WRITEN Hold Time to CCLK	—	2	_	ns
t _{DCB}	CCLK to BUSY Delay Time	—	_	12	ns

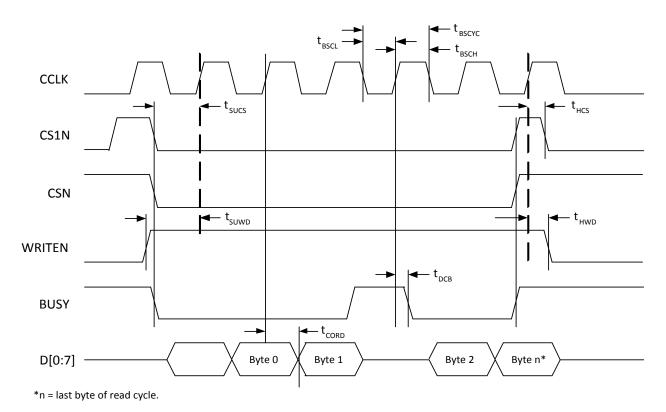
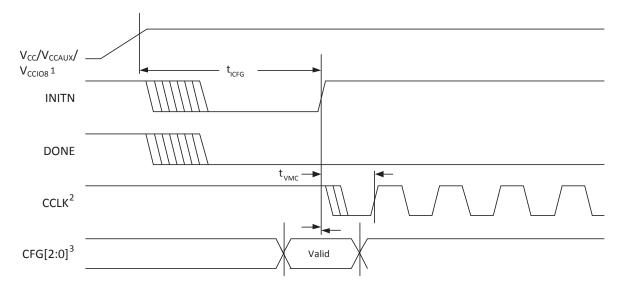



Figure 3.15. sysCONFIG Parallel Port Read Cycle

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- 1. Time taken from V_{CC} , V_{CCAUX} or V_{CCIO8} , whichever is the last to cross the POR trip point.
- 2. Device is in a Master Mode (SPI, SPIm).
- 3. The CFG pins are normally static (hardwired).

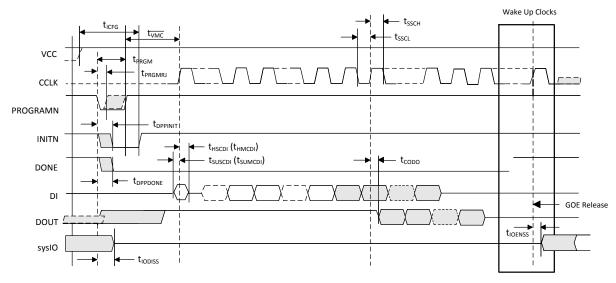
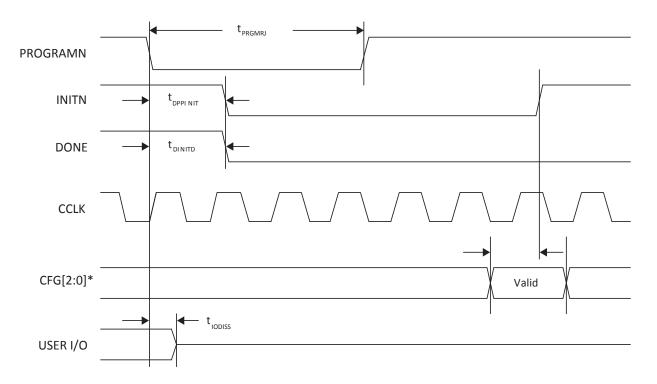



Figure 3.19. sysCONFIG Port Timing

*The CFG pins are normally static (hardwired).

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-85F-6BG756I	-6	Lead free caBGA	756	Industrial	84	No
LFE5U-85F-7BG756I	-7	Lead free caBGA	756	Industrial	84	No
LFE5U-85F-8BG756I	-8	Lead free caBGA	756	Industrial	84	No
LFE5UM-25F-6MG285I	-6	Lead free csfBGA	285	Industrial	24	Yes
LFE5UM-25F-7MG285I	-7	Lead free csfBGA	285	Industrial	24	Yes
LFE5UM-25F-8MG285I	-8	Lead free csfBGA	285	Industrial	24	Yes
LFE5UM-25F-6BG381I	-6	Lead free caBGA	381	Industrial	24	Yes
LFE5UM-25F-7BG381I	-7	Lead free caBGA	381	Industrial	24	Yes
LFE5UM-25F-8BG381I	-8	Lead free caBGA	381	Industrial	24	Yes
LFE5UM-45F-6MG285I	-6	Lead free csfBGA	285	Industrial	44	Yes
LFE5UM-45F-7MG285I	-7	Lead free csfBGA	285	Industrial	44	Yes
LFE5UM-45F-8MG285I	-8	Lead free csfBGA	285	Industrial	44	Yes
LFE5UM-45F-6BG381I	-6	Lead free caBGA	381	Industrial	44	Yes
LFE5UM-45F-7BG381I	-7	Lead free caBGA	381	Industrial	44	Yes
LFE5UM-45F-8BG381I	-8	Lead free caBGA	381	Industrial	44	Yes
LFE5UM-45F-6BG554I	-6	Lead free caBGA	554	Industrial	44	Yes
LFE5UM-45F-7BG554I	-7	Lead free caBGA	554	Industrial	44	Yes
LFE5UM-45F-8BG554I	-8	Lead free caBGA	554	Industrial	44	Yes
LFE5UM-85F-6MG285I	-6	Lead free csfBGA	285	Industrial	84	Yes
LFE5UM-85F-7MG285I	-7	Lead free csfBGA	285	Industrial	84	Yes
LFE5UM-85F-8MG285I	-8	Lead free csfBGA	285	Industrial	84	Yes
LFE5UM-85F-6BG381I	-6	Lead free caBGA	381	Industrial	84	Yes
LFE5UM-85F-7BG381I	-7	Lead free caBGA	381	Industrial	84	Yes
LFE5UM-85F-8BG381I	-8	Lead free caBGA	381	Industrial	84	Yes
LFE5UM-85F-6BG554I	-6	Lead free caBGA	554	Industrial	84	Yes
LFE5UM-85F-7BG554I	-7	Lead free caBGA	554	Industrial	84	Yes
LFE5UM-85F-8BG554I	-8	Lead free caBGA	554	Industrial	84	Yes
LFE5UM-85F-6BG756I	-6	Lead free caBGA	756	Industrial	84	Yes
LFE5UM-85F-7BG756I	-7	Lead free caBGA	756	Industrial	84	Yes
LFE5UM-85F-8BG756I	-8	Lead free caBGA	756	Industrial	84	Yes
LFE5UM5G-25F-8MG285I	-8	Lead free csfBGA	285	Industrial	24	Yes
LFE5UM5G-25F-8BG381I	-8	Lead free caBGA	381	Industrial	24	Yes
LFE5UM5G-45F-8MG285I	-8	Lead free csfBGA	285	Industrial	44	Yes
LFE5UM5G-45F-8BG381I	-8	Lead free caBGA	381	Industrial	44	Yes
LFE5UM5G-45F-8BG554I	-8	Lead free caBGA	554	Industrial	44	Yes
LFE5UM5G-85F-8MG285I	-8	Lead free csfBGA	285	Industrial	84	Yes
LFE5UM5G-85F-8BG381I	-8	Lead free caBGA	381	Industrial	84	Yes
LFE5UM5G-85F-8BG554I	-8	Lead free caBGA	554	Industrial	84	Yes
LFE5UM5G-85F-8BG756I	-8	Lead free caBGA	756	Industrial	84	Yes