E.J. Lattice Semiconductor Corporation - <u>LFE5U-85F-8BG381I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	205
Number of Gates	
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-85f-8bg381i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Tables

Table 1.1. ECP5 and ECP5-5G Family Selection Guide	11
Table 2.1. Resources and Modes Available per Slice	14
Table 2.2. Slice Signal Descriptions	
Table 2.3. Number of Slices Required to Implement Distributed RAM	
Table 2.4. PLL Blocks Signal Descriptions	
Table 2.5. DDRDLL Ports List	
Table 2.6. sysMEM Block Configurations	
Table 2.7. Maximum Number of Elements in a Slice	
Table 2.8. Input Block Port Description	
Table 2.9. Output Block Port Description	
Table 2.10. Tristate Block Port Description	
Table 2.11. DQSBUF Port List Description	
Table 2.12. On-Chip Termination Options for Input Modes	
Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support	
Table 2.14. Available SERDES Duals per LFE5UM/LFE5UM5G Devices	
Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support	
Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)	
Table 3.1. Absolute Maximum Ratings	
Table 3.2. Recommended Operating Conditions	
Table 3.3. Power Supply Ramp Rates	
Table 3.4. Power-On-Reset Voltage Levels	
Table 3.5. Hot Socketing Specifications	
Table 3.6. Hot Socketing Requirements	
Table 3.7. DC Electrical Characteristics	
Table 3.8. ECP5/ECP5-5G Supply Current (Standby)	
Table 3.9. ECP5UM	
Table 3.10. ECP5-5G	
Table 3.11. sysI/O Recommended Operating Conditions	
Table 3.12. Single-Ended DC Characteristics	
Table 3.13. LVDS	
Table 3.14. LVDS25E DC Conditions	
Table 3.15. BLVDS25 DC Conditions	
Table 3.16. LVPECL33 DC Conditions	
Table 3.17. MLVDS25 DC Conditions	
Table 3.18. Input to SLVS	
Table 3.19. Pin-to-Pin Performance	
Table 3.20. Register-to-Register Performance	
Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed	
Table 3.22. ECP5/ECP5-5G External Switching Characteristics	
Table 3.23. sysCLOCK PLL Timing	
Table 3.24. Serial Output Timing and Levels	
Table 3.25. Channel Output Jitter	
Table 3.26. SERDES/PCS Latency Breakdown	
Table 3.27. Serial Input Data Specifications Table 3.28. Passiver Table littler Talerance Specification	
Table 3.28. Receiver Total Jitter Tolerance Specification Table 3.20. External Reference Clock Specification (refeller)	
Table 3.29. External Reference Clock Specification (refclkp/refclkn) Table 3.20. PCIe (2.5. Ch/c)	
Table 3.30. PCIe (2.5 Gb/s)	
Table 3.31. PCIe (5 Gb/s) Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics	
Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics	
Table 3.33. Transmit	
Table 3.35. Transmit	
	80

1. General Description

The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.

The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/Os. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards.

The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS.

The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.

The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for users to port designs from ECP5UM to ECP5-5G devices to get higher performance. The Lattice Diamond[™] design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

1.1. Features

- Higher Logic Density for Increased System Integration
 - 12K to 84K LUTs
 - 197 to 365 user programmable I/Os
- Embedded SERDES
 - 270 Mb/s, up to 3.2 Gb/s, SERDES interface (ECP5)
 - 270 Mb/s, up to 5.0 Gb/s, SERDES interface (ECP5-5G)
 - Supports eDP in RDR (1.62 Gb/s) and HDR (2.7 Gb/s)
 - Up to four channels per device: PCI Express, Ethernet (1GbE, SGMII, XAUI), and CPRI
- sysDSP™
 - Fully cascadable slice architecture
 - 12 to 160 slices for high performance multiply and accumulate
 - Powerful 54-bit ALU operations
 - Time Division Multiplexing MAC Sharing
 - Rounding and truncation
 - Each slice supports
 - Half 36 x 36, two 18 x 18 or four 9 x 9 multipliers
 - Advanced 18 x 36 MAC and 18 x 18 Multiply-Multiply-Accumulate (MMAC) operations
- Flexible Memory Resources
 - Up to 3.744 Mb sysMEM[™] Embedded Block RAM (EBR)
 - 194K to 669K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

Table 2.6. sysMEM Block Configurations

Memory Mode	Configurations
	16,384 x 1
	8,192 x 2
Single Port	4,096 x 4
Single Port	2,048 x 9
	1,024 x 18
	512 x 36
	16,384 x 1
	8,192 x 2
True Dual Port	4,096 x 4
	2,048 x 9
	1,024 x 18
	16,384 x 1
	8,192 x 2
Decude Duel Dert	4,096 x 4
Pseudo Dual Port	2,048 x 9
	1,024 x 18
	512 x 36

2.8.2. Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.8.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

2.8.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.8.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- **Read-Before-Write** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.8.6. Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2.12.

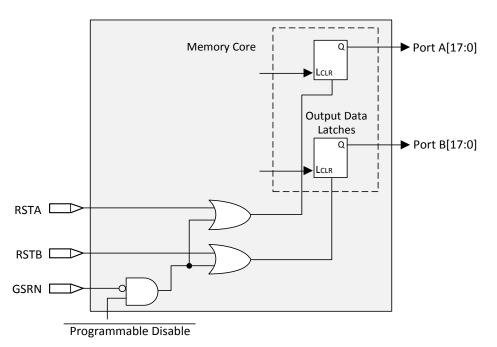


Figure 2.12. Memory Core Reset

For further information on the sysMEM EBR block, see the list of technical documentation in Supplemental Information section on page 102.

2.9. sysDSP[™] Slice

The ECP5/ECP5-5G family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

2.9.1. sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. In the ECP5/ECP5-5G device family, there are many DSP slices that can be used to support different data widths. This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2.13 compares the fully serial implementation to the mixed parallel and serial implementation.

- 5*5 and larger size 2D blocks Semi internal DSP Slice support
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such as, overflow, underflow and convergent rounding.
 - Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2.14, the ECP5/ECP5-5G sysDSP slice is backwards-compatible with the LatticeECP2[™] and LatticeECP3[™] sysDSP block, such that, legacy applications can be targeted to the ECP5/ECP5-5G sysDSP slice. Figure 2.14 shows the diagram of sysDSP, and Figure 2.15 shows the detailed diagram.

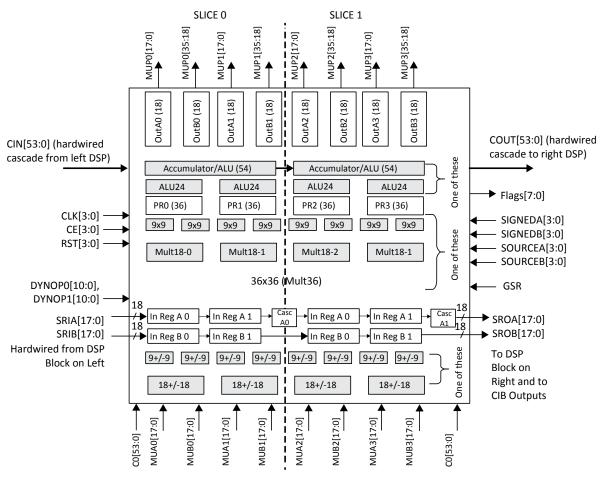


Figure 2.14. Simplified sysDSP Slice Block Diagram

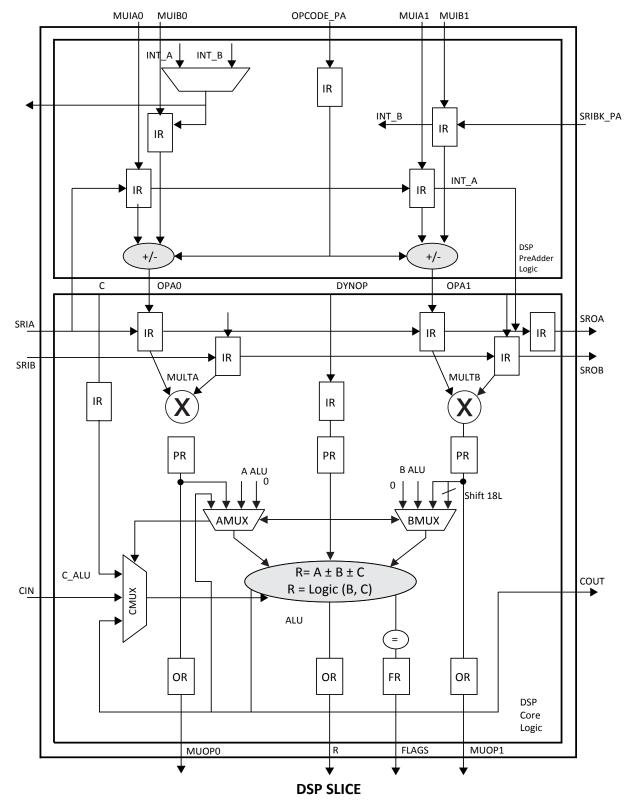


Figure 2.15. Detailed sysDSP Slice Diagram

In Figure 2.15, note that A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

The ECP5/ECP5-5G sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2.7 shows the capabilities of each of the ECP5/ECP5-5G slices versus the above functions.

Table 2.7. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	-
MULTADDSUB	2	1	-
MULTADDSUBSUM	1*	1/2	_

*Note: One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

2.10. Programmable I/O Cells

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the ECP5/ECP5-5G devices, the Programmable I/O cells (PIC) are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the ECP5/ECP5-5G devices, two adjacent PIOs can be combined to provide a complementary output driver pair. All PIO pairs can implement differential receivers. Half of the PIO pairs on the left and right edges of these devices can be configured as true LVDS transmit pairs.

	PIO A	sysIO Buffer	Pad A (T)
•	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	sysIO Buffer	Pad C
↓	PIO D	sysIO Buffer	Pad D
↓	PIO A	sysIO Buffer	Pad A (T)
↓	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	sysIO Buffer	Pad C
↓	PIO D	sysIO Buffer	Pad D
	DQSBUF	 Delay	
↓	PIO A	sysIO Buffer	Pad A (T)
↓	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	sysIO Buffer	Pad C
↓	PIO D	sysIO Buffer	Pad D
↓	PIO A	syslO Buffer	Pad A (T)
↓	PIO B	sysIO Buffer	Pad B (C)
♦ →	PIO C	sysIO Buffer	Pad C
•	PIO C PIO D	sysIO Buffer	Pad C Pad D

Figure 2.23. DQS Grouping on the Left and Right Edges

2.13.2. DLL Calibrated DQS Delay and Control Block (DQSBUF)

To support DDR memory interfaces (DDR2/3, LPDDR2/3), the DQS strobe signal from the memory must be used to capture the data (DQ) in the PIC registers during memory reads. This signal is output from the DDR memory device aligned to data transitions and must be time shifted before it can be used to capture data in the PIC. This time shifted is achieved by using DQSDEL programmable delay line in the DQS Delay Block (DQS read circuit). The DQSDEL is implemented as a slave delay line and works in conjunction with a master DDRDLL.

This block also includes slave delay line to generate delayed clocks used in the write side to generate DQ and DQS with correct phases within one DQS group. There is a third delay line inside this block used to provide write leveling feature for DDR write if needed.

Each of the read and write side delays can be dynamically shifted using margin control signals that can be controlled by the core logic.

FIFO Control Block shown in Figure 2.24 generates the Read and Write Pointers for the FIFO block inside the Input Register Block. These pointers are generated to control the DQS to ECLK domain crossing using the FIFO module.

ECP5/ECP5-5G devices contain two types of sysI/O buffer pairs:

• Top (Bank 0 and Bank 1) and Bottom (Bank 8 and Bank 4) sysIO Buffer Pairs (Single-Ended Only)

The sysI/O buffers in the Banks at top and bottom of the device consist of ratioed single-ended output drivers and single-ended input buffers. The I/Os in these banks are not usually used as a pair, except when used as emulated differential output pair. They are used as individual I/Os and be configured as different I/O modes, as long as they are compatible with the V_{CCIO} voltage in the bank. When used as emulated differential outputs, the pair can be used together.

The top and bottom side IOs also support hot socketing. They support IO standards from 3.3 V to 1.2 V. They are ideal for general purpose I/Os, or as ADDR/CMD bus for DDR2/DDR3 applications, or for used as emulated differential signaling.

Bank 4 I/O only exists in the LFE5-85 device.

Bank 8 is a bottom bank that shares with sysConfig I/Os. During configuration, these I/Os are used for programming the device. Once the configuration is completed, these I/Os can be released and user can use these I/Os for functional signals in his design.

The top and bottom side pads can be identified by the Lattice Diamond tool.

Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two single-ended input buffers (both ratioed and referenced) and half of the sysI/O buffer pairs (PIOA/B pairs) also has a high-speed differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

2.14.2. Typical sysI/O I/O Behavior during Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in ECP5/ECP5-5G devices, see the list of technical documentation in Supplemental Information section on page 102.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

2.14.3. Supported sysI/O Standards

The ECP5/ECP5-5G sysI/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSUL. Differential standards supported include LVDS, differential SSTL and differential HSUL. For further information on utilizing the sysI/O buffer to support a variety of standards, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2.15.3. SERDES Client Interface Bus

The SERDES Client Interface (SCI) is an IP interface that allows the user to change the configuration thru this interface. This is useful when the user needs to fine-tune some settings, such as input and output buffer that need to be optimized based on the channel characteristics. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each dual in a design.

Popular standards such as 10 Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), with two duals (Four SERDES channels and PCS) and some additional logic from the core.

The LFE5UM/LFE5UM5G devices support a wide range of protocols. Within the same dual, the LFE5UM/ LFE5UM5G devices support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2.15 lists the allowable combination of primary and secondary protocol combinations.

2.16. Flexible Dual SERDES Architecture

The LFE5UM/LFE5UM5G SERDES architecture is a dual channel-based architecture. For most SERDES settings and standards, the whole dual (consisting of two SERDES channels) is treated as a unit. This helps in silicon area savings, better utilization, higher granularity on clock/SERDES channel and overall lower cost.

However, for some specific standards, the LFE5UM/LFE5UM5G dual-channel architecture provides flexibility; more than one standard can be supported within the same dual.

Table 2.15 lists the standards that can be mixed and matched within the same dual. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same dual. The two Protocol columns of the table define the different combinations of protocols that can be implemented together within a Dual.

Protocol		Protocol
PCI Express 1.1	with SGMII	
PCI Express 1.1	with	Gigabit Ethernet
CPRI-3	with	CPRI-2 and CPRI-1
3G-SDI	with	HD-SDI and SD-SDI

Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support

There are some restrictions to be aware of when using spread spectrum clocking. When a dual shares a PCI Express x1 channel with a non-PCI Express channel, ensure that the reference clock for the dual is compatible with all protocols within the dual. For example, a PCI Express spread spectrum reference clock is not compatible with most Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LFE5UM/LFE5UM5G architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, or SGMII channel within the same dual, using a PCI Express spread spectrum clocking as the transmit reference clock will cause a violation of the Gigabit Ethernet, and SGMII transmit jitter specifications.

For further information on SERDES, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

2.17. IEEE 1149.1-Compliant Boundary Scan Testability

All ECP5/ECP5-5G devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port uses VCCIO8 for power supply.

For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

3.3. Power Supply Ramp Rates

Table 3.3. Power Supply Ramp Rates

Symbol	Parameter	Min	Тур	Max	Unit
t _{RAMP}	Power Supply ramp rates for all supplies	0.01	-	10	V/ms

Note: Assumes monotonic ramp rates.

3.4. **Power-On-Reset Voltage Levels**

Table 3.4. Power-On-Reset Voltage Levels

Symbol	Parameter		Min	Тур	Max	Unit	
	All Devices Power-On-Reset ramp-up trip point (Monitoring V _{CC} , V _{CCAUX} , and V _{CCIO8})	V _{cc}	0.90	-	1.00	V	
VPORUP		trip point (Monitoring V _{CC} ,	V _{CCAUX}	2.00	Ι	2.20	V
		V _{CCAUX} , and V _{CCIO8})	V _{CCIO8}	0.95	_	1.06	V
N	ORDN All Devices down trip point (Monitoring	V _{cc}	0.77	Ι	0.87	V	
♥ PORDN		V _{CCAUX}	1.80	_	2.00	V	

Notes:

• These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

- Only V_{CCIO8} has a Power-On-Reset ramp up trip point. All other V_{CCIOs} do not have Power-On-Reset ramp up detection.
- V_{CCIO8} does not have a Power-On-Reset ramp down detection. V_{CCIO8} must remain within the Recommended Operating Conditions to ensure proper operation.

3.5. Power up Sequence

Power-On-Reset (POR) puts the ECP5/ECP5-5G device in a reset state. POR is released when V_{CC}, V_{CCAUX}, and V_{CCI08} are ramped above the V_{PORUP} voltage, as specified above.

 V_{CCIO8} controls the voltage on the configuration I/O pins. If the ECP5/ECP5-5G device is using Master SPI mode to download configuration data from external SPI Flash, it is required to ramp V_{CCIO8} above V_{IH} of the external SPI Flash, before at least one of the other two supplies (V_{CC} and/or V_{CCAUX}) is ramped to V_{PORUP} voltage level. If the system cannot meet this power up sequence requirement, and requires the V_{CCIO8} to be ramped last, then the system must keep either PROGRAMN or INITN pin LOW during power up, until V_{CCIO8} reaches V_{IH} of the external SPI Flash. This ensures the signals driven out on the configuration pins to the external SPI Flash meet the V_{IH} voltage requirement of the SPI Flash. For LFE5UM/LFE5UM5G devices, it is required to power up V_{CCA} , before V_{CCAUXA} is powered up.

3.6. Hot Socketing Specifications

Table 3.5. Hot Socketing Specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IDK_HS	Input or I/O Leakage Current for Top and Bottom Banks Only	$0 \le V_{IN} \le V_{IH}$ (Max)	_	_	±1	mA
IDK	Input or I/O Leakage Current	$0 \leq V_{\text{IN}} < V_{\text{CCIO}}$	—	—	±1	mA
	for Left and Right Banks Only	$V_{CCIO} \leq V_{IN} \leq V_{CCIO} + 0.5 \ V$	_	18	_	mA

Notes:

1. V_{CC}, V_{CCAUX} and V_{CCIO} should rise/fall monotonically.

2. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

3. LVCMOS and LVTTL only.

4. Hot socket specification defines when the hot socketed device's junction temperature is at 85 °C or below. When the hot socketed device's junction temperature is above 85 °C, the I_{DK} current can exceed ±1 mA.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14.4. LVDS25E

The top and bottom sides of ECP5/ECP5-5G devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3.1 is one possible solution for point-to-point signals.

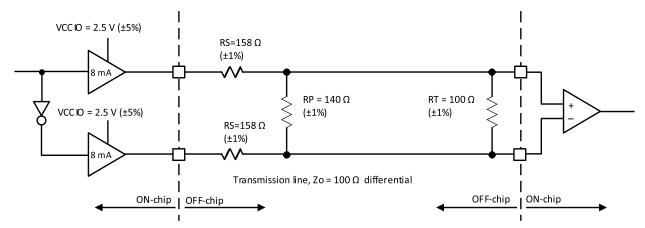


Figure 3.1. LVDS25E Output Termination Example

Table 3.14. LVDS25E DC Conditions

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
Rs	Driver Series Resistor (±1%)	158	Ω
R _P	Driver Parallel Resistor (±1%)	140	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.21. SERDES/PCS Block Latency

Table 3.26 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3.13 shows the location of each block.

•	Table 3.2	6. SERDES/PCS Latency Breakdown

Item	Description	Min	Avg	Max	Fixed	Bypass	Unit ³	
Transmit Data Latency ¹								
T1	FPGA Bridge - Gearing disabled with same clocks	3	—	4	_	1	byte clk	
11	FPGA Bridge - Gearing enabled	5	—	7	_	—	word clk	
Т2	8b10b Encoder	_	-	-	2	1	byte clk	
Т3	SERDES Bridge transmit	—	-	-	2	1	byte clk	
T4	Serializer: 8-bit mode	-	—	-	15 + ∆1	—	UI + ps	
14	Serializer: 10-bit mode	_	—	—	18 + Δ 1	—	UI + ps	
T5	Pre-emphasis ON	—	-	-	1 + Δ2	-	UI + ps	
15	Pre-emphasis OFF	_	_	_	0 + Δ3	_	UI + ps	
Receive	Data Latency ²							
R1	Equalization ON	-	—	-	Δ1	—	UI + ps	
KI	Equalization OFF	—	-	-	Δ2	-	UI + ps	
D 2	Deserializer: 8-bit mode	_	—	_	10 + ∆3	—	UI + ps	
R2	Deserializer: 10-bit mode	-	—	-	12 + ∆3	—	UI + ps	
R3	SERDES Bridge receive	_	—	-	2	—	byte clk	
R4	Word alignment	3.1	_	4	_	1	byte clk	
R5	8b10b decoder	_	_	_	1	0	byte clk	
R6	Clock Tolerance Compensation	7	15	23	_	1	byte clk	
07	FPGA Bridge - Gearing disabled with same clocks	4	_	5	_	1	byte clk	
R7	FPGA Bridge - Gearing enabled	7	-	9	—	-	word clk	

Notes:

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118 \text{ ps}, \Delta 2 = +132 \text{ ps}, \Delta 3 = +700 \text{ ps}.$

3. byte clk = 8UIs (8-bit mode), or 10 UIs (10-bit mode); word clk = 16UIs (8-bit mode), or 20 UIs (10-bit mode).

3.26. CPRI LV2 E.48 Electrical and Timing Characteristics – Preliminary

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit	-					
UI	Unit Interval	_	203.43	203.45	203.47	ps
T _{DCD}	Duty Cycle Distortion	-	-	—	0.05	UI
J _{UBHPJ}	Uncorrelated Bounded High Probability Jitter	_	_	_	0.15	UI
J _{TOTAL}	Total Jitter	-	_	_	0.3	UI
Z _{RX-DIFF-DC}	DC differential Impedance	-	80	-	120	Ω
T _{SKEW}	Skew between differential signals	_	_	—	9	ps
D	Tx Differential Return Loss (S22),	100 MHz < freq < 3.6864 GHz	_	-	-8	dB
R _{LTX-DIFF}	including package and silicon	3.6864 GHz < freq < 4.9152 GHz	Ι	_	-8 + 16.6 *log (freq/3.6864)	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	100 MHz < freq < 3.6864 GHz	6	_	Ι	dB
I _{TX-SHORT}	Transmitter short-circuit current	_	-	—	100	mA
T _{RISE_FALL-DIFF}	Differential Rise and Fall Time	-		—	_	ps
L _{TX-SKEW}	Lane-to-lane output skew	-	-	-		ps
Receive						
UI	Unit Interval	_	203.43	203.45	203.47	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	—	-	—	1.2	V, p-p
V _{RX-EYE_Y1_Y2}	Receiver eye opening mask, Y1 and Y2	_	62.5	-	375	mV, diff
V _{RX-EYE_X1}	Receiver eye opening mask, X1	_	_	_	0.3	UI
T _{RX-TJ}	Receiver total jitter tolerance (not		_	_	0.6	UI
R _{lrx-diff}	Receiver differential Return Loss, package plus silicon	100 MHz < freq < 3.6864 GHz	_	-	-8	dB
		3.6864 GHz < freq < 4.9152 GHz	_	-	-8 + 16.6 *log (freq/3.6864)	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	-	- 6		_	dB
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	100	120	Ω

Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics

Note: Data is measured with PRBS7 data pattern, not with PRBS-31 pattern.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.31. sysCONFIG Port Timing Specifications

Over recommended operating conditions.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications

Symbol	Parameter		Min	Max	Unit
POR, Confi	guration Initialization, and Wakeup	I	1	1	1
t _{ICFG}	Time from the Application of $V_{CC, V}$ V _{CCAUX} or V _{CCI08} (whichever is the last) to the rising edge of INITN	-	_	33	ms
t _{VMC}	Time from t_{ICFG} to the valid Master CCLK	_	_	5	us
t _{cz}	CCLK from Active to High-Z	_	_	300	ns
Master CCI	LK	T	1	1	1
f _{MCLK}	Frequency	All selected frequencies	-20	20	%
t _{MCLK-DC}	Duty Cycle	All selected frequencies	40	60	%
All Configu	ration Modes				
t _{PRGM}	PROGRAMN LOW pulse accepted	_	110	_	ns
t _{PRGMRJ}	PROGRAMN LOW pulse rejected	_	_	50	ns
t _{INITL}	INITN LOW time	_	_	55	ns
t _{dppint}	PROGRAMN LOW to INITN LOW	_	_	70	ns
t _{DPPDONE}	PROGRAMN LOW to DONE LOW	_	_	80	ns
t _{IODISS}	PROGRAMN LOW to I/O Disabled	_	_	150	ns
Slave SPI		T	1		1
f _{CCLK}	CCLK input clock frequency	_	_	60	MHz
t _{CCLKH}	CCLK input clock pulsewidth HIGH	_	6	_	ns
t _{cclkl}	CCLK input clock pulsewidth LOW	_	6	_	ns
t _{stsu}	CCLK setup time	_	1	_	ns
t _{sth}	CCLK hold time	_	1	_	ns
t _{sтсо}	CCLK falling edge to valid output	_	_	10	ns
t _{stoz}	CCLK falling edge to valid disable	-	_	10	ns
t _{stov}	CCLK falling edge to valid enable	_	_	10	ns
t _{scs}	Chip Select HIGH time	-	25	_	ns
t _{scss}	Chip Select setup time	_	3	_	ns
t _{scsн}	Chip Select hold time	_	3	_	ns
Master SPI		,	,		
f _{CCLK}	Max selected CCLK output frequency	_	_	62	MHz
t _{cclкн}	CCLK output clock pulse width HIGH	_	3.5	_	ns
t _{CCLKL}	CCLK output clock pulse width LOW	_	3.5	_	ns
t _{stsu}	CCLK setup time	_	5	_	ns
t _{sтн}	CCLK hold time	_	1	_	ns
t _{CSSPI}	INITN HIGH to Chip Select LOW	_	100	200	ns
t _{CFGX}	INITN HIGH to first CCLK edge	_	_	150	ns
Slave Seria	I				
f _{cclk}	CCLK input clock frequency	_	_	66	MHz
t _{ssch}	CCLK input clock pulse width HIGH	_	5	-	ns
t _{sscl}	CCLK input clock pulse width LOW	—	5	-	ns
t _{suscdi}	CCLK setup time	_	0.5	_	ns
t _{HSCDI}	CCLK hold time	_	1.5	_	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

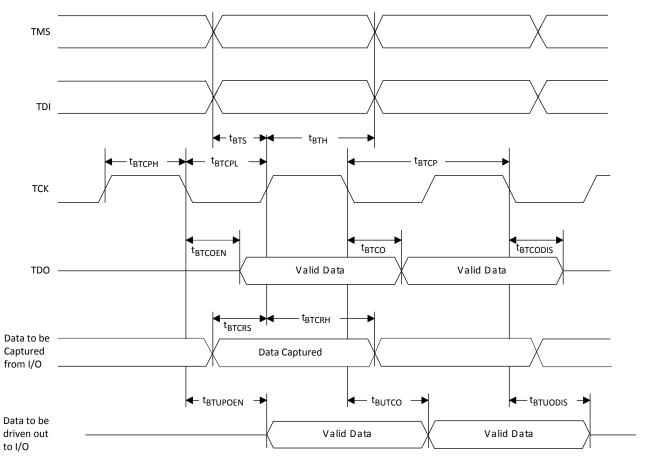
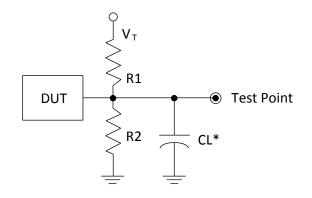



Figure 3.23. JTAG Port Timing Waveforms

3.33. Switching Test Conditions

Figure 3.24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 3.44.

*CL Includes Test Fixture and Probe Capacitance

Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards

(Continued)

Date	Version	Section	Change Summary
April 2017 1.7		All	Changed document number from DS1044 to FPGA-DS-02012.
		General Description	Updated Features section. Changed "1.1 V core power supply" to "1.1 V core power supply for ECP5, 1.2 V core power supply for ECP5UM5G".
		Architecture	Updated Overview section. Change "The ECP5/ECP5-5G devices use 1.1 V as their core voltage" to "The ECP5 devices use 1.1V, ECP5UM5G devices use 1.2V as their core voltage"
		DC and Switching Characteristics	Updated Table 3.2. Recommended Operating Conditions Added ECP5-5G on VCC to be 1.2V +/- 5% Added ECP5-5G on VCCA to be 1.2V +/- 3% Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby) Changed "Core Power Supply Current" for ICC on LFE5UM5G devices Changed "SERDES Power Supply Current (Per Dual)" for ICCA on LFE5UM5G devices Updated Table 3.20. Register-to-Register Performance. Remove "(DDR/SDR)" from DSP Function Changed DSP functions to 225 MHz
		Pinout Information	Update Section 4.1 Signal Description. Revised Vcc Description to "Power supply pins for core logic. Dedicated pins. VCC = 1.1 V (ECP5), 1.2 V (ECP5UM5G)"
February 2016	1.6	All	Changed document status from Preliminary to Final.
		General Description	Updated Features section. Changed "24K to 84K LUTs" to "12K to 84K LUTs". Added LFE5U-12 column to Table 1.1. ECP5 and ECP5-5G Family Selection Guide.
		DC and Switching Characteristics	Updated Power up Sequence section. Identified typical ICC current for specific devices in Table 3.8. ECP5/ECP5-5G Supply Current (Standby). Updated values in Table 3.9. ECP5. Updated values in Table 3.10. ECP5-5G. Added values to -8 Timing column of Table 3.19. Pin-to-Pin Performance. Added values to -8 Timing column of Table 3.20. Register-to-Register Performance. Changed LFE5-45 to All Devices in Table 3.22. ECP5/ECP5-5G External Switching Characteristics. Added table notes to Table 3.31. PCIe (5 Gb/s). Added table note to Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics.
		Pinout Information	Added LFE5U-12 column to the table in LFE5U section.
		Ordering Information	Updated LFE5U in ECP5/ECP5-5G Part Number Description section: added 12 F = 12K LUTs to Logic Capacity. Added LFE5U-12F information to Ordering Part Numbers section.

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	DC and Switching Characteristics	SERDES High-Speed Data Receiver section. Updated Table 3.26. Serial Input Data Specifications, Table 3.28. Receiver Total Jitter Tolerance Specification, and Table 3.29. External Reference Clock Specification (refclkp/refclkn).
			Modified section heading to XXAUI/CPRI LV E.30 Electrical and Timing Characteristics. Updated Table 3.33 Transmit and Table 3.34. Receive and Jitter Tolerance.
			Modified section heading to CPRI LV E.24 Electrical and Timing Characteristics. Updated Table 3.35. Transmit and Table 3.36. Receive and Jitter Tolerance.
			Modified section heading to Gigabit Ethernet/SGMII/CPRI LV E.12 Electrical and Timing Characteristics. Updated Table 3.37. Transmit and Table 3.38. Receive and Jitter Tolerance.
June 2014	1.1	Ordering Information	Updated ECP5/ECP5-5G Part Number Description and Ordering Part Numbers sections.
March 2014	1.0	All	Initial release.

7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com