
E. Lattice Semiconductor Corporation - <u>LFE5U-85F-8MG285C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

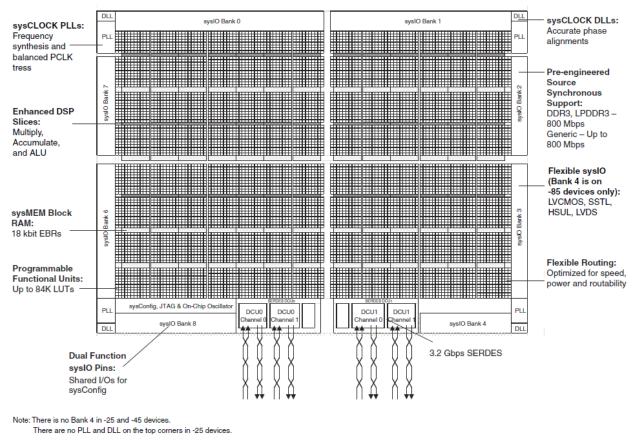
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	118
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	285-LFBGA, CSPBGA
Supplier Device Package	285-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5u-85f-8mg285c


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.36. Receive and Jitter Tolerance	
Table 3.37. Transmit	
Table 3.38. Receive and Jitter Tolerance	
Table 3.39. Transmit	82
Table 3.40. Receive	82
Table 3.41. Reference Clock	82
Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications	83
Table 3.43. JTAG Port Timing Specifications	
Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces	

2.2. **PFU Blocks**

The core of the ECP5/ECP5-5G device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0-3, as shown in Figure 2.2. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

The PFU block can be used in Distributed RAM or ROM function, or used to perform Logic, Arithmetic, or ROM functions. Table 2.1 shows the functions each slice can perform in either mode.

Table 2.4 provides a description	of the signals in the PLL blocks.
----------------------------------	-----------------------------------

Signal	Туре	Description
CLKI	Input	Clock Input to PLL from external pin or routing
CLKI2	Input	Muxed clock input to PLL
SEL	Input	Input Clock select, selecting from CLKI and CLKI2 inputs
CLKFB	Input	PLL Feedback Clock
PHASESEL[1:0]	Input	Select which output to be adjusted on Phase by PHASEDIR, PHASESTEP, PHASELODREG
PHASEDIR	Input	Dynamic Phase adjustment direction.
PHASESTEP	Input	Dynamic Phase adjustment step.
PHASELOADREG	Input	Load dynamic phase adjustment values into PLL.
CLKOP	Output	Primary PLL output clock (with phase shift adjustment)
CLKOS	Output	Secondary PLL output clock (with phase shift adjust)
CLKOS2	Output	Secondary PLL output clock2 (with phase shift adjust)
CLKOS3	Output	Secondary PLL output clock3 (with phase shift adjust)
LOCK	Output	PLL LOCK to CLKI, Asynchronous signal. Active high indicates PLL lock
STDBY	Input	Standby signal to power down the PLL
RST	Input	Resets the PLL
ENCLKOP	Input	Enable PLL output CLKOP
ENCLKOS	Input	Enable PLL output CLKOS
ENCLKOS2	Input	Enable PLL output CLKOS2
ENCLKOS3	Input	Enable PLL output CLKOS3

Table 2.4. PLL Blocks Signal Descriptions

For more details on the PLL you can refer to the ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

2.5. Clock Distribution Network

There are two main clock distribution networks for any member of the ECP5/ECP5-5G product family, namely Primary Clock (PCLK) and Edge Clock (ECLK). These clock networks have the clock sources come from many different sources, such as Clock Pins, PLL outputs, DLLDEL outputs, Clock divider outputs, SERDES/PCS clocks and some on chip generated clock signal. There are clock dividers (CLKDIV) blocks to provide the slower clock from these clock sources. ECP5/ECP5-5G also supports glitchless dynamic enable function (DCC) for the PCLK Clock to save dynamic power. There are also some logics to allow dynamic glitchless selection between two clocks for the PCLK network (DCS).

Overview of Clocking Network is shown in Figure 2.6 on page 20 for LFE5UM/LFE5UM5G-85 device.

Table 2.6. sysMEM Block Configurations

Memory Mode	Configurations		
	16,384 x 1		
	8,192 x 2		
Single Port	4,096 x 4		
Single Port	2,048 x 9		
	1,024 x 18		
	512 x 36		
	16,384 x 1		
	8,192 x 2		
True Dual Port	4,096 x 4		
	2,048 x 9		
	1,024 x 18		
	16,384 x 1		
	8,192 x 2		
Decude Duel Dert	4,096 x 4		
Pseudo Dual Port	2,048 x 9		
	1,024 x 18		
	512 x 36		

2.8.2. Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.8.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

2.8.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.8.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- **Read-Before-Write** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.8.6. Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and associated resets for both ports are as shown in Figure 2.12.

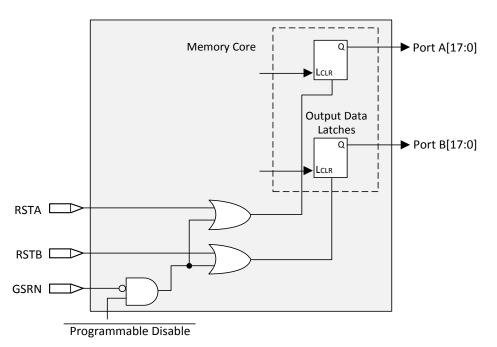


Figure 2.12. Memory Core Reset

For further information on the sysMEM EBR block, see the list of technical documentation in Supplemental Information section on page 102.

2.9. sysDSP[™] Slice

The ECP5/ECP5-5G family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

2.9.1. sysDSP Slice Approach Compared to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. In the ECP5/ECP5-5G device family, there are many DSP slices that can be used to support different data widths. This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2.13 compares the fully serial implementation to the mixed parallel and serial implementation.

2.11. **PIO**

The PIO contains three blocks: an input register block, output register block, and tristate register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

2.11.1. Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIOs on the left and right edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the right and left sides includes gearing logic and registers to implement IDDRX1 and IDDRX2 functions. With two PICs sharing the DDR register path, it can also implement IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers to shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers samples the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. The top side of the device supports IDDRX1 gearing function. For more information on gearing function, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.17 shows the input register block for the PIOs on the top edge.

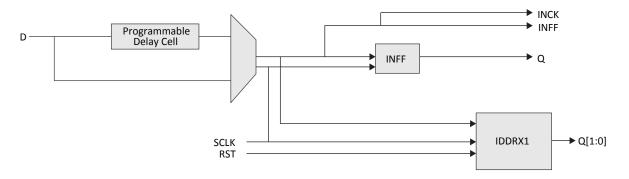
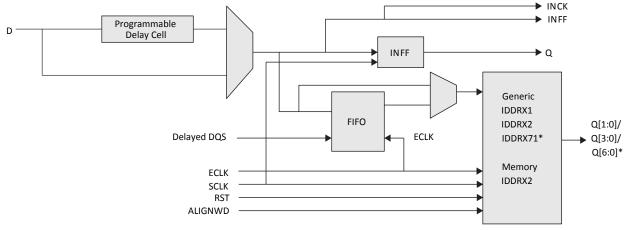



Figure 2.17. Input Register Block for PIO on Top Side of the Device

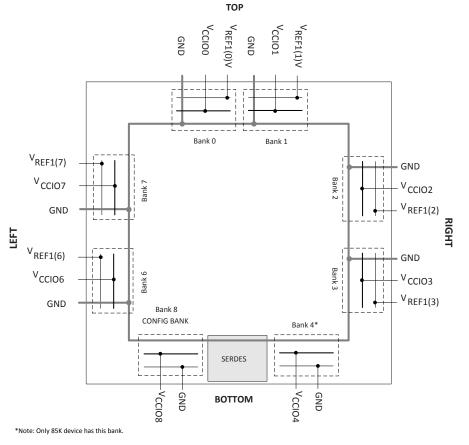
Figure 2.18 shows the input register block for the PIOs located on the left and right edges.

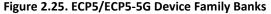
*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).

Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device

2.14. sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVDS, HSUL, BLVDS, SSTL Class I and II, LVCMOS, LVTTL, LVPECL, and MIPI.


2.14.1. sysl/O Buffer Banks


ECP5/ECP5-5G devices have seven sysI/O buffer banks, two banks per side at Top, Left and Right, plus one at the bottom left side. The bottom left side bank (Bank 8) is a shared I/O bank. The I/Os in that bank contains both dedicated and shared I/O for sysConfig function. When a shared pin is not used for configuration, it is available as a user I/O. For LFE5-85 devices, there is an additional I/O bank (Bank 4) that is not available in other device in the family.

In ECP5/ECP5-5G devices, the Left and Right sides are tailored to support high performance interfaces, such as DDR2, DDR3, LPDDR2, LPDDR3 and other high speed source synchronous standards. The banks on the Left and Right sides of the devices feature LVDS input and output buffers, data-width gearing, and DQSBUF block to support DDR2/3 and LPDDR2/3 interfaces. The I/Os on the top and bottom banks do not have LVDS input and output buffer, and gearing logic, but can use LVCMOS to emulate most of differential output signaling.

Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, the banks on the Left and Right sides of the device, have voltage reference input (shared I/O pin), VREF1 per bank, which allow it to be completely independent of each other. The V_{REF} voltage is used to set the threshold for the referenced input buffers, such as SSTL. Figure 2.25 shows the seven banks and their associated supplies.

In ECP5/ECP5-5G devices, single-ended output buffers and ratioed input buffers (LVTTL, and LVCMOS) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

2.15. SERDES and Physical Coding Sublayer

LFE5UM/LFE5UM5G devices feature up to 4 channels of embedded SERDES/PCS arranged in dual-channel blocks at the bottom of the devices. Each channel supports up to 3.2 Gb/s (ECP5), or up to 5 Gb/s (ECP5-5G) data rate. Figure 2.27 shows the position of the dual blocks for the LFE5-85. Table 2.13 shows the location of available SERDES Duals for all devices. The LFE5UM/LFE5UM5G SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express Gen1 and Gen2 (2.5 Gb/s) on ECP5UM; Gen 1, Gen2 (2.5 Gb/s and 5 Gb/s) on ECP5-5G
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- SMPTE SDI (3G-SDI, HD-SDI, SD-SDI)
- CPRI (E.6.LV: 614.4 Mb/s, E.12.LV: 1228.8 Mb/s, E.24.LV: 2457.6 Mb/s, E.30.LV: 3072 Mb/s), also E.48.LV2:4915 Mb/s in ECP5-5G
- JESD204A/B ADC and DAC converter interface: 312.5 Mb/s to 3.125 Gb/s (ECP5) / 5 Gb/s (ECP5-5G)

Each dual contains two dedicated SERDES for high speed, full duplex serial data transfer. Each dual also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in duals, multiple baud rates can be supported within a dual with the use of dedicated, per channel /1, /2 and /11 rate dividers. Additionally, two duals can be arranged together to form x4 channel link.

ECP5UM devices and ECP5-5G devices are pin-to-pin compatible. But, the ECP5UM devices require 1.1 V on VCCA, VCCHRX and VCCHTX supplies. ECP5-5G devices require 1.2 V on these supplies. When designing either family device with migration in mind, these supplies need to be connected such that it is possible to adjust the voltage level on these supplies.

When a SERDES Dual in a 2-Dual device is not used, the power VCCA power supply for that Dual should be connected. It is advised to connect the VCCA of unused channel to core if the user knows he will not use the Dual at all, or it should be connected to a different regulated supply, if that Dual may be used in the future.

For an unused channel in a Dual, it is advised to connect the VCCHTX to VCCA, and user can leave VCCHRX unconnected.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

2.18. Device Configuration

All ECP5/ECP5-5G devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are 11 dedicated pins for TAP and sysConfig supports (TDI, TDO, TCK, TMS, CFG[2:0], PROGRAMN, DONE, INITN and CCLK). The remaining sysCONFIG pins are used as dual function pins. Refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) for more information about using the dual-use pins as general purpose I/Os.

There are various ways to configure an ECP5/ECP5-5G device:

- JTAG
- Standard Serial Peripheral Interface (SPI) Interface to boot PROM Support x1, x2, x4 wide SPI memory interfaces.
- System microprocessor to drive a x8 CPU port SPCM mode
- System microprocessor to drive a serial slave SPI port (SSPI mode)
- Slave Serial model (SCM)

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port.

ECP5/ECP5-5G devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device (slave mode) with the SPI port of the FPGA to perform read-write operations.

2.18.1. Enhanced Configuration Options

ECP5/ECP5-5G devices have enhanced configuration features such as: decryption support, decompression support, TransFR™ I/O and dual-boot and multi-boot image support.

TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. Refer to Minimizing System Interruption During Configuration Using TransFR Technology (TN1087) for details.

Dual-Boot and Multi-Boot Image Support

Dual-boot and multi-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the ECP5/ECP5-5G devices can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the ECP5/ECP5-5G device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

2.18.2. Single Event Upset (SEU) Support

ECP5/ECP5-5G devices support SEU mitigation with three supporting functions:

- SED Soft Error Detect
- SEC Soft Error Correction
- SEI Soft Error Injection

ECP5/ECP5-5G devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the ECP5/ECP5-5G device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

When an error is detected, and the user's error handling software determines the error did not create any risk to the system operation, the SEC tool allows the device to be re-configured in the background to correct the affected bit. This operation allows the user functions to continue to operate without stopping the system function.

Additional SEI tool is also available in the Diamond Software, by creating a frame of data to be programmed into the device in the background with one bit changed, without stopping the user functions on the device. This emulates an SEU situation, allowing the user to test and monitor its error handling software.

For further information on SED support, refer to LatticeECP3, ECP5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184).

2.18.3. On-Chip Oscillator

Every ECP5/ECP5-5G device has an internal CMOS oscillator which is used to derive a Master Clock (MCLK) for configuration. The oscillator and the MCLK run continuously and are available to user logic after configuration is completed. The software default value of the MCLK is nominally 2.4 MHz. Table 2.16 lists all the available MCLK frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:

- 1. Device powers up with a nominal Master Clock frequency of 2.4 MHz.
- 2. During configuration, users select a different master clock frequency.
- 3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
- 4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK frequency of 2.4 MHz.

This internal oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) and ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)

MCLK Frequency (MHz)				
2.4				
4.8				
9.7				
19.4				
38.8				
62				

2.19. Density Shifting

The ECP5/ECP5-5G family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may become No Connects in smaller devices in the same package. Refer to the ECP5/ECP5-5G Pin Migration Tables and Diamond software for specific restrictions and limitations.

3.10. Supply Current (Standby)

Over recommended operating conditions.

Table 3.8. ECP5/ECP5-5G Supply Current (Standby)

Symbol	Parameter	Device	Typical	Unit
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F	77	mA
		LFE5UM5G-25F	77	mA
	Core Dower Supply Current	LFE5U-45F/ LFE5UM-45F	116	mA
I _{CC}	Core Power Supply Current	LFE5UM5G-45F	116	mA
		LFE5U-85F/ LFE5UM-85F	212	mA
		LFE5UM5G-85F	212	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	16	mA
I _{CCAUX}	Auxiliary Power Supply Current	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	17	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	26	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	0.5	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	0.5	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	0.5	mA
		LFE5UM-25F	11	mA
		LFE5UM5G-25F	12	mA
I _{CCA}	SERDES Power Supply Current (Per Dual)	LFE5UM-45F	9.5	mA
		LFE5UM5G-45F	11	mA
		LFE5UM-85F	9.5	mA
		LFE5UM5G-85F	11	mA

Notes:

- For further information on supply current, see the list of technical documentation in Supplemental Information section on page 102.
- Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

• Frequency 0 Hz.

- Pattern represents a "blank" configuration data file.
- T_J = 85 °C, power supplies at nominal voltage.
- To determine the ECP5/ECP5-5G peak start-up current, use the Power Calculator tool in the Lattice Diamond Design Software.

3.11. SERDES Power Supply Requirements^{1,2,3}

Over recommended operating conditions.

Table 3.9. ECP5UM

Symbol	Description	Тур	Max	Unit
Standby (Pow	ver Down)			'
I _{CCA-SB}	V _{CCA} Power Supply Current (Per Channel)	4	9.5	mA
I _{CCHRX-SB} ⁴	V _{CCHRX} , Input Buffer Current (Per Channel)	—	0.1	mA
I _{CCHTX-SB}	V _{CCHTX} , Output Buffer Current (Per Channel)	_	0.9	mA
Operating (Da	ata Rate = 3.125 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	43	54	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 2.5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	40	50	mA
I _{CCHRX-OP} 5	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 1.25 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	34	43	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 270 Mb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	28	38	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	8	10	mA

Notes:

1. Rx Equalization enabled, Tx De-emphasis (pre-cursor and post-cursor) disabled

2. Per Channel current is calculated with both channels on in a Dual, and divide current by two. If only one channel is on, current will be higher.

3. To calculate with Tx De-emphasis enabled, use the Diamond Power Calculator tool.

4. For ICCHRX-SB, during Standby, input termination on Rx are disabled.

5. For ICCHRX-OP, during operational, the max specified when external AC coupling is used. If externally DC coupled, the power is based on current pulled down by external driver when the input is driven to LOW.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-DS-02012-1.9

3.19. sysCLOCK PLL Timing

Over recommended operating conditions.

Parameter	Descriptions	Conditions	Min	Max	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	_	8	400	MHz
f _{out}	Output Clock Frequency (CLKOP, CLKOS)	—	3.125	400	MHz
f _{vco}	PLL VCO Frequency	—	400	800	MHz
$f_{\text{PFD}}{}^3$	Phase Detector Input Frequency	_	10	400	MHz
AC Characteris	itics				
t _{DT}	Output Clock Duty Cycle	_	45	55	%
t _{PH4}	Output Phase Accuracy	_	-5	5	%
		f _{o∪T} ≥ 100 MHz	_	100	ps p-p
	Output Clock Period Jitter	f _{о∪т} < 100 MHz	_	0.025	UIPP
		f _{o∪T} ≥ 100 MHz	_	200	ps p-p
t _{opjit} 1	Output Clock Cycle-to-Cycle Jitter	f _{о∪т} < 100 MHz	_	0.050	UIPP
		f _{PFD} ≥ 100 MHz	_	200	ps p-p
	Output Clock Phase Jitter	f _{PFD} < 100 MHz	_	0.011	UIPP
t _{spo}	Static Phase Offset	Divider ratio =		400	ps p-p
t _w	Output Clock Pulse Width	At 90% or 10%	0.9	_	ns
t _{LOCK} ²	PLL Lock-in Time			15	ms
t _{UNLOCK}	PLL Unlock Time	_	- –		ns
_		f _{PFD} ≥ 20 MHz	_	1,000	ps p-p
t _{IPJIT}	Input Clock Period Jitter	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST/ Pulse Width	_	1	_	ms
t _{rstrec}	RST Recovery Time	_	1	-	ns
t _{load_reg}	Min Pulse for CIB_LOAD_REG	_	10	_	ns
t _{ROTATE-SETUP}	Min time for CIB dynamic phase controls to be stable fore CIB_ROTATE	- 5		_	ns
t _{rotate-wd}	Min pulse width for CIB_ROTATE to maintain "0" or	_	4	-	VCO cycles

Notes:

1. Jitter sample is taken over 10,000 samples for Periodic jitter, and 2,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.

2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PFD} > 10$ MHz. For $f_{PFD} < 10$ MHz, the jitter numbers may not be met in certain conditions.

3.22. SERDES High-Speed Data Receiver

Table 3.27. Serial Input Data Specifications

Symbol	Description	Min	Тур	Max	Unit
V _{RX-DIFF-S}	Differential input sensitivity	150	-	– 1760 m\	
V _{RX-IN}	Input levels	0	-	V _{CCA} +0.5 ²	V
V _{RX-CM-DCCM}	Input common mode range (internal DC coupled mode)	0.6	_	– V _{CCA}	
V _{RX-CM-ACCM}	Input common mode range (internal AC coupled mode) ²	0.1	_	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ¹	_	1000	_	Bits
Z _{RX-TERM}	Input termination 50/75 Ω /High Z	-20%	50/75/5 K	+20%	Ω
RL _{RX-RL}	Return loss (without package)	—	_	-10	dB

Notes:

1. This is the typical number of bit times to re-lock to a new phase or frequency within ±300 ppm, assuming 8b10b encoded data.

2. Up to 1.655 for ECP5, and 1.76 for ECP5-5G.

3.23. Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min	Тур	Max	Unit
Deterministic		400 mV differential eye	—	—	TBD	UI, p-p
Random	5 Gb/s	400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Total		400 mV differential eye	—	—	TBD	UI, p-p
Deterministic		400 mV differential eye	—	—	0.37	UI, p-p
Random	3.125 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total	_	400 mV differential eye	—	—	0.65	UI, p-p
Deterministic	2.5 Gb/s	400 mV differential eye	—	—	0.37	UI <i>,</i> p-p
Random		400 mV differential eye	—	—	0.18	UI, p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p
Deterministic	1.25 Gb/s	400 mV differential eye	—	—	0.37	UI <i>,</i> p-p
Random		400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	_	_	0.65	UI, p-p

Table 3.28. Receiver Total Jitter Tolerance Specification

Notes:

1. Jitter tolerance measurements are done with protocol compliance tests: 3.125 Gb/s - XAUI Standard, 2.5 Gb/s - PCIe Standard, 1.25 Gb/s - SGMII Standard.

2. For ECP5-5G family devices only.

3.25. PCI Express Electrical and Timing Characteristics

3.25.1. PCIe (2.5 Gb/s) AC and DC Characteristics

Over recommended operating conditions.

Table 3.30. PCIe (2.5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit interval	-	399.88	400	400.12	ps
V _{TX-DIFF_P-P}	Differential peak-to-peak output	-	0.8	1.0	1.2	V
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio	_	-3	-3.5	-4	dB
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage	-	-	_	20	mV
V _{TX-RCV-DETECT}	Amount of voltage change allowed during receiver detection	_	_	_	600	mV
V _{TX-CM-DC}	Tx DC common mode voltage	_	0	_	V _{CCHTX}	V
I _{TX-SHORT}	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	_	_	90	mA
Z _{TX-DIFF-DC}	Differential output impedance	—	80	100	120	Ω
RL _{TX-DIFF}	Differential return loss	_	10	_	—	dB
RL _{TX-CM}	Common mode return loss	_	6.0	_	—	dB
T _{TX-RISE}	Tx output rise time	20% to 80%	0.125	_	—	UI
T _{TX-FALL}	Tx output fall time	20% to 80%	0.125	_	_	UI
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link	-	-	_	1.3	ns
T _{TX-EYE}	Transmitter eye width	_	0.75	_	_	UI
T _{TX-EYE-MEDIAN-TO-MAX-} JITTER	Maximum time between jitter median and maximum deviation from median	_	_	_	0.125	UI
Receive ^{1, 2}						
UI	Unit Interval	_	399.88	400	400.12	ps
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage	_	0.34 ³	_	1.2	v
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage	_	65	_	340 ³	mV
V _{RX-CM-AC_P}	RMS AC neak common-mode input		_	_	150	mV
Z _{RX-DIFF-DC}	DC differential input impedance	_	80	100	120	Ω
Z _{RX-DC}	DC input impedance	_	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance	_	200K	_	_	Ω
RL _{RX-DIFF}	Differential return loss	_	10	_	_	dB
RL _{RX-CM}	Common mode return loss	_	6.0	_	_	dB

Notes:

- 1. Values are measured at 2.5 Gb/s.
- 2. Measured with external AC-coupling on the receiver.
- 3. Not in compliance with PCI Express 1.1 standard.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.27. XAUI/CPRI LV E.30 Electrical and Timing Characteristics

3.27.1. AC and DC Characteristics

Over recommended operating conditions.

Table 3.33. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF}	Differential rise/fall time	20% to 80%	—	80	-	ps
Z _{TX_DIFF_DC}	Differential impedance	—	80	100	120	Ω
J _{TX_DDJ} ^{2, 3}	Output data deterministic jitter	—	—	—	0.17	UI
J _{TX_TJ} ^{1, 2, 3}	Total output data jitter	—	—	—	0.35	UI

Notes:

- 1. Total jitter includes both deterministic jitter and random jitter.
- 2. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Over recommended operating conditions.

Table 3.34. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Ы	Differential return loss	From 100 MHz	10			dB
RL _{RX_DIFF}	Differential return loss	to 3.125 GHz	10	_	-	ив
Ы	Common mode return loss	From 100 MHz	6		-	dB
RL _{RX_CM} Commo	Common mode return loss	to 3.125 GHz	to 3.125 GHz 0 —	_		ив
Z _{RX_DIFF}	Differential termination resistance	-	80	100	120	Ω
J _{RX_DJ} ^{1, 2, 3}	Deterministic jitter tolerance (peak-to-peak)	-	_	—	0.37	UI
J _{RX_RJ} ^{1, 2, 3}	Random jitter tolerance (peak-to-peak)	—	_	_	0.18	UI
J _{RX_SJ} ^{1, 2, 3}	Sinusoidal jitter tolerance (peak-to-peak)	_	_	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3}	Total jitter tolerance (peak-to-peak)	_	—	_	0.65	UI
T _{RX_EYE}	Receiver eye opening	_	0.35	_	_	UI

Notes:

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.

2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

3.28. CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics

3.28.1. AC and DC Characteristics

Table 3.35. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF} ¹	Differential rise/fall time	20% to 80%	_	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance	_	80	100	120	Ω
J _{TX_DDJ} ^{3, 4}	Output data deterministic jitter	—	-	_	0.17	UI
J _{TX_TJ} ^{2, 3, 4}	Total output data jitter	_	_	—	0.35	UI

Notes:

1. Rise and Fall times measured with board trace, connector and approximately 2.5 pf load.

- 2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
- 3. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).
- 4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

3.31. sysCONFIG Port Timing Specifications

Over recommended operating conditions.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications

Symbol	Parameter	Min	Max	Unit	
POR, Confi	guration Initialization, and Wakeup	I	1	1	1
t _{ICFG}	Time from the Application of $V_{CC, V}$ V _{CCAUX} or V _{CCI08} (whichever is the last) to the rising edge of INITN	-	_	33	ms
t _{VMC}	Time from t_{ICFG} to the valid Master CCLK	_	_	5	us
t _{cz}	CCLK from Active to High-Z	_	_	300	ns
Master CCI	LK	T	1	1	1
f _{MCLK}	Frequency	All selected frequencies	-20	20	%
t _{MCLK-DC}	Duty Cycle	All selected frequencies	40	60	%
All Configu	ration Modes				
t _{PRGM}	PROGRAMN LOW pulse accepted	_	110	_	ns
t _{PRGMRJ}	PROGRAMN LOW pulse rejected	_	_	50	ns
t _{INITL}	INITN LOW time	_	_	55	ns
t _{dppint}	PROGRAMN LOW to INITN LOW	_	_	70	ns
t _{DPPDONE}	PROGRAMN LOW to DONE LOW	_	_	80	ns
t _{IODISS}	PROGRAMN LOW to I/O Disabled	_	_	150	ns
Slave SPI		T	1		1
f _{CCLK}	CCLK input clock frequency	_	_	60	MHz
t _{CCLKH}	CCLK input clock pulsewidth HIGH	_	6	_	ns
t _{cclkl}	CCLK input clock pulsewidth LOW	_	6	_	ns
t _{stsu}	CCLK setup time	_	1	_	ns
t _{sth}	CCLK hold time	_	1	_	ns
t _{sтсо}	CCLK falling edge to valid output	_	_	10	ns
t _{stoz}	CCLK falling edge to valid disable	_	_	10	ns
t _{stov}	CCLK falling edge to valid enable	_	_	10	ns
t _{scs}	Chip Select HIGH time	_	25	_	ns
t _{scss}	Chip Select setup time	_	3	_	ns
t _{scsн}	Chip Select hold time	_	3	_	ns
Master SPI		,	,		
f _{CCLK}	Max selected CCLK output frequency	_	_	62	MHz
t _{cclкн}	CCLK output clock pulse width HIGH	_	3.5	_	ns
t _{CCLKL}	CCLK output clock pulse width LOW	_	3.5	_	ns
t _{sтsu}	CCLK setup time	_	5	_	ns
t _{sтн}	CCLK hold time	_	1	_	ns
t _{CSSPI}	INITN HIGH to Chip Select LOW	_	100	200	ns
t _{CFGX}	INITN HIGH to first CCLK edge	_	_	150	ns
Slave Seria	l l				1
f _{CCLK}	CCLK input clock frequency	_	_	66	MHz
t _{sscн}	CCLK input clock pulse width HIGH	_	5	_	ns
t _{SSCL}	CCLK input clock pulse width LOW	_	5	_	ns
t _{SUSCDI}	CCLK setup time	_	0.5	_	ns
t _{HSCDI}	CCLK hold time	_	1.5	_	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	I/O	Description
PLL, DLL and Clock Functions (Contin	nued)	
[L/R]DQS[group_num]	I/O	DQS input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.
[T/R]]DQ[group_num]	I/O	DQ input/output pads: T (top), R (right), group_ num = ball number associated with DQS[T] pin.
Test and Programming (Dedicated F	Pins)	
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration. This is a dedicated input pin.
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled. This is a dedicated input pin.
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration. This is a dedicated input pin.
TDO	О	Output pin. Test Data Out pin used to shift data out of a device using 1149.1. This is a dedicated output pin.
Configuration Pads (Used during sys	sCONFIG)	
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. This is a dedicated pin.
PROGRAMN	1	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin.
ССГК	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. Output Configuration Clock for configuring an FPGA in Master configuration modes (Master SPI, Master Serial). This is a dedicated pin.
HOLDN/DI/BUSY/CSSPIN/CEN	I/O	Parallel configuration mode busy indicator. SPI/SPIm mode data output. This is a shared I/O pin. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.
CSN/SN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.
CS1N	I	Parallel configuration mode active-low chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.
WRITEN	I	Write enable for parallel configuration modes. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.
DOUT/CSON	о	Serial data output. Chip select output. SPI/SPIm mode chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O
D0/MOSI/IO0	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5UM5G-85F-8BG381C	-8	Lead free caBGA	381	Commercial	84	Yes
LFE5UM5G-85F-8BG554C	-8	Lead free caBGA	554	Commercial	84	Yes
LFE5UM5G-85F-8BG756C	-8	Lead free caBGA	756	Commercial	84	Yes

5.2.2. Industrial

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-12F-6BG256I	-6	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-7BG256I	-7	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-8BG256I	-8	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-6MG285I	-6	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-7MG285I	-7	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-8MG285I	-8	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-6BG381I	-6	Lead free caBGA	381	Industrial	12	No
LFE5U-12F-7BG381I	-7	Lead free caBGA	381	Industrial	12	No
LFE5U-12F-8BG381I	-8	Lead free caBGA	381	Industrial	12	No
LFE5U-25F-6BG256I	-6	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-7BG256I	-7	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-8BG256I	-8	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-6MG285I	-6	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-7MG285I	-7	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-8MG285I	-8	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-6BG381I	-6	Lead free caBGA	381	Industrial	24	No
LFE5U-25F-7BG381I	-7	Lead free caBGA	381	Industrial	24	No
LFE5U-25F-8BG381I	-8	Lead free caBGA	381	Industrial	24	No
LFE5U-45F-6BG256I	-6	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-7BG256I	-7	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-8BG256I	-8	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-6MG285I	-6	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-7MG285I	-7	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-8MG285I	-8	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-6BG381I	-6	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-7BG381I	-7	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-8BG381I	-8	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-6BG554I	-6	Lead free caBGA	554	Industrial	44	No
LFE5U-45F-7BG554I	-7	Lead free caBGA	554	Industrial	44	No
LFE5U-45F-8BG554I	-8	Lead free caBGA	554	Industrial	44	No
LFE5U-85F-6MG285I	-6	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-7MG285I	-7	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-8MG285I	-8	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-6BG381I	-6	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-7BG381I	-7	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-8BG381I	-8	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-6BG554I	-6	Lead free caBGA	554	Industrial	84	No
LFE5U-85F-7BG554I	-7	Lead free caBGA	554	Industrial	84	No
LFE5U-85F-8BG554I	-8	Lead free caBGA	554	Industrial	84	No

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	All	Changed document status from Advance to Preliminary.
		General Description	Updated Features section.
			Deleted Serial RapidIO protocol under Embedded SERDES.
			Corrected data rate under Pre-Engineered Source Synchronous
			Changed DD3. LPDDR3 to DDR2/3, LPDDR2/3.
			Mentioned transmit de-emphasis "pre- and post-cursors".
		Architecture	Updated Overview section.
			Revised description of PFU blocks.
			 Specified SRAM cell settings in describing the control of SERDES/PCS duals.
			Updated SERDES and Physical Coding Sublayer section.
			Changed PCI Express 2.0 to PCI Express Gen1 and Gen2.
			Deleted Serial RapidIO protocol.
			Updated Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support.
			Updated On-Chip Oscillator section.
			• Deleted "130 MHz ±15% CMOS" oscillator.
			• Updated Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)
		DC and Switching	Updated Absolute Maximum Ratings section. Added supply voltages
		Characteristics	V _{CCA} and V _{CCAUXA} .
			Updated sysI/O Recommended Operating Conditions section. Revised HSULD12D VCCIO values and removed table note.
			Updated sysI/O Single-Ended DC Electrical Characteristics section. Revised some values for SSTL15 _I, SSTL15 _II, SSTL135 _I, SSTL15 _II, and HSUL12.
			Updated External Switching Characteristics section. Changed parameters to $t_{SKEW_{PR}}V_{CCA}$ and $t_{SKEW_{EDGE}}$ and added LFE5-85 as device.
			Updated ECP5 Family Timing Adders section. Added SSTL135_II buffer type data. Removed LVCMOS33_20mA, LVCMOS25_20mA, LVCMOS25_16mA, LVCMOS25D_16mA, and LVCMOS18_16mA buffer types. Changed buffer type to LVCMOS12_4mA and LVCMOS12_8mA. Updated Maximum I/O Buffer Speed section. Revised Max values.
			Updated sysCLOCK PLL Timing section. Revised t_{DT} Min and Max values. Revised t_{OPJIT} Max value. Revised number of samples in table note 1.
			Updated SERDES High-Speed Data Transmitter section. Updated Table 3.24. Serial Output Timing and Levels and Table 3.25. Channel Output Jitter.