
E. Attice Semiconductor Corporation - <u>LFE5UM-25F-7MG285C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	6000
Number of Logic Elements/Cells	24000
Total RAM Bits	1032192
Number of I/O	118
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	285-LFBGA, CSPBGA
Supplier Device Package	285-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um-25f-7mg285c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

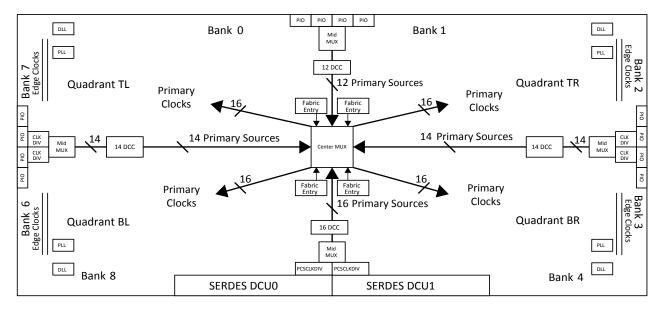


Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking

2.5.1. Primary Clocks

The ECP5/ECP5-5G device family provides low-skew, high fan-out clock distribution to all synchronous elements in the FPGA fabric through the Primary Clock Network.

The primary clock network is divided into four clocking quadrants: Top Left (TL), Bottom Left (BL), Top Right (TR), and Bottom Right (BR). Each of these quadrants has 16 clocks that can be distributed to the fabric in the quadrant.

The Lattice Diamond software can automatically route each clock to one of the four quadrants up to a maximum of 16 clocks per quadrant. The user can change how the clocks are routed by specifying a preference in the Lattice Diamond software to locate the clock to specific. The ECP5/ECP5-5G device provides the user with a maximum of 64 unique clock input sources that can be routed to the primary Clock network.

Primary clock sources are:

- Dedicated clock input pins
- PLL outputs
- CLKDIV outputs
- Internal FPGA fabric entries (with minimum general routing)
- SERDES/PCS/PCSDIV clocks
- OSC clock

These sources are routed to one of four clock switches called a Mid Mux. The outputs of the Mid MUX are routed to the center of the FPGA where another clock switch, called the Center MUX, is used to route the primary clock sources to primary clock distribution to the ECP5/ECP5-5G fabric. These routing muxes are shown in Figure 2.6. Since there is a maximum of 60 unique clock input sources to the clocking quadrants, there are potentially 64 unique clock domains that can be used in the ECP5/ECP5-5G Device. For more information about the primary clock tree and connections, refer to ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

2.5.1.1. Dynamic Clock Control

The Dynamic Clock Control (DCC), Quadrant Clock enable/disable feature allows internal logic control of the quadrant primary clock network. When a clock network is disabled, the clock signal is static and not toggle. All the logic fed by that clock will not toggle, reducing the overall power consumption of the device. The disable function will not create glitch and increase the clock latency to the primary clock network.

This DCC controls the clock sources from the Primary CLOCK MIDMUX before they are fed to the Primary Center MUXs that drive the quadrant clock network. For more information about the DCC, refer to ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263).

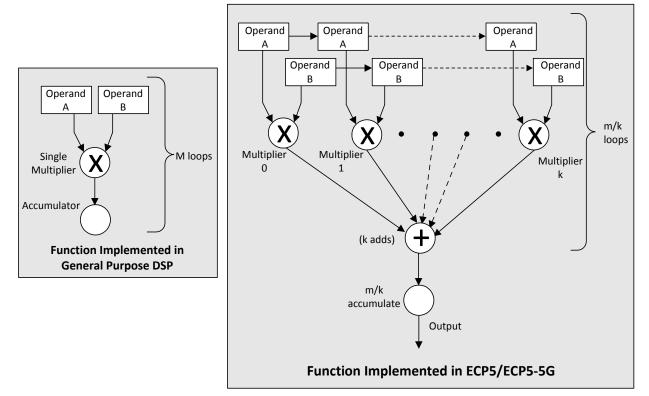
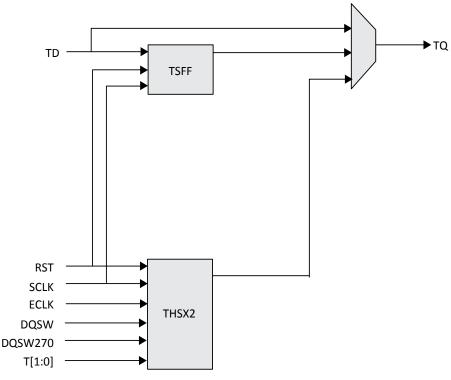


Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches


2.9.2. sysDSP Slice Architecture Features

The ECP5/ECP5-5G sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The ECP5/ECP5-5G sysDSP Slice supports many functions that include the following:

- Symmetry support. The primary target application is wireless. 1D Symmetry is useful for many applications that use FIR filters when their coefficients have symmetry or asymmetry characteristics. The main motivation for using 1D symmetry is cost/size optimization. The expected size reduction is up to 2x.
 - Odd mode Filter with Odd number of taps
 - Even mode Filter with Even number of taps
 - Two dimensional (2D) symmetry mode supports 2D filters for mainly video applications
- Dual-multiplier architecture. Lower accumulator overhead to half and the latency to half compared to single multiplier architecture
- Fully cascadable DSP across slices. Support for symmetric, asymmetric and non-symmetric filters.
- Multiply (one 18x36, two 18x18 or four 9x9 Multiplies per Slice)
- Multiply (36x36 by cascading across two sysDSP slices)
- Multiply Accumulate (supports one 18x36 multiplier result accumulation or two 18x18 multiplier result accumulation)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18x18 Multiplies feed into an accumulator that can accumulate up to 52 bits)
- Pipeline registers
- 1D Symmetry support. The coefficients of FIR filters have symmetry or negative symmetry characteristics.
 - Odd mode Filter with Odd number of taps
 - Even mode Filter with Even number of taps
- 2D Symmetry support. The coefficients of 2D FIR filters have symmetry or negative symmetry characteristics.
 - 3*3 and 3*5 Internal DSP Slice support

Name	Туре	Description	
TD	Input	Tristate Input to Tristate SDR Register	
RST	Input	Reset to the Tristate Block	
TD[1:0]	Input	Tristate input to TSHX2 function	
SCLK	Input	Slow Speed System Clock	
ECLK	Input	High Speed Edge Clock	
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output	
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output	
TQ	Output	Output of the Tristate block	

2.13. DDR Memory Support

2.13.1. DQS Grouping for DDR Memory

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. The support varies by the edge of the device as detailed below.

The left and right sides of the PIC have fully functional elements supporting DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. Every 16 PIOs on the left and right sides are grouped into one DQS group, as shown in Figure 2.23 on page 36. Within each DQS group, there are two pre-placed pins for DQS and DQS# signals. The rest of the pins in the DQS group can be used as DQ signals and DM signal. The number of pins in each DQS group bonded out is package dependent. DQS groups with less than 11 pins bonded out can only be used for LPDDR2/3 Command/ Address busses. In DQS groups with more than 11 pins bonded out, up to two pre-defined pins are assigned to be used as "virtual" VCCIO, by driving these pins to HIGH, with the user connecting these pins to VCCIO power supply. These connections create "soft" connections to V_{CCIO} thru these output pins, and make better connections on VCCIO to help to reduce SSO noise. For details, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

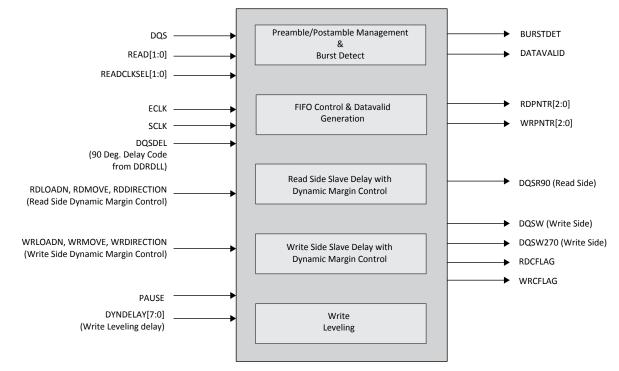
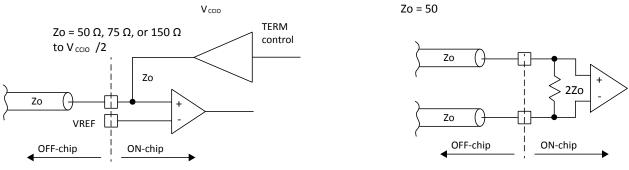


Figure 2.24. DQS Control and Delay Block (DQSBUF)

Table 2.11	DQSBUF	Port List	Description
------------	--------	------------------	-------------

Name	Туре	Description
DQS	Input	DDR memory DQS strobe
READ[1:0]	Input	Read Input from DDR Controller
READCLKSEL[1:0]	Input	Read pulse selection
SCLK	Input	Slow System Clock
ECLK	Input	High Speed Edge Clock (same frequency as DDR memory)
DQSDEL	Input	90° Delay Code from DDRDLL
RDLOADN, RDMOVE, RDDIRECTION	Input	Dynamic Margin Control ports for Read delay
WRLOADN, WRMOVE, WRDIRECTION	Input	Dynamic Margin Control ports for Write delay
PAUSE	Input	Used by DDR Controller to Pause write side signals during DDRDLL Code update or Write Leveling
DYNDELAY[7:0]	Input	Dynamic Write Leveling Delay Control
DQSR90	Output	90° delay DQS used for Read
DQSW270	Output	90° delay clock used for DQ Write
DQSW	Output	Clock used for DQS Write
RDPNTR[2:0]	Output	Read Pointer for IFIFO module
WRPNTR[2:0]	Output	Write Pointer for IFIFO module
DATAVALID	Output	Signal indicating start of valid data
BURSTDET	Output	Burst Detect indicator
RDFLAG	Output	Read Dynamic Margin Control output to indicate max value
WRFLAG	Output	Write Dynamic Margin Control output to indicate max value


^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

IO_TYPE	Terminate to V _{CCIO} /2*	Differential Termination Resistor*
LVDS25	_	100
BLVDS25	—	100
MLVDS	—	100
LVPECL33	—	100
subLVDS	—	100
SLVS	_	100
HSUL12	50, 75, 150	—
HSUL12D	—	100
SSTL135_I / II	50, 75, 150	—
SSTL135D_I / II	—	100
SSTL15_I / II	50, 75, 150	-
SSTL15D_I / II	—	100
SSTL18_I / II	50, 75, 150	-
SSTL18D_I / II	_	100

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

2.15.3. SERDES Client Interface Bus

The SERDES Client Interface (SCI) is an IP interface that allows the user to change the configuration thru this interface. This is useful when the user needs to fine-tune some settings, such as input and output buffer that need to be optimized based on the channel characteristics. It is a simple register configuration interface that allows SERDES/PCS configuration without power cycling the device.

The Diamond design tools support all modes of the PCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow users to define their own operation. With these tools, the user can define the mode for each dual in a design.

Popular standards such as 10 Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP (available through Lattice), with two duals (Four SERDES channels and PCS) and some additional logic from the core.

The LFE5UM/LFE5UM5G devices support a wide range of protocols. Within the same dual, the LFE5UM/ LFE5UM5G devices support mixed protocols with semi-independent clocking as long as the required clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2.15 lists the allowable combination of primary and secondary protocol combinations.

2.16. Flexible Dual SERDES Architecture

The LFE5UM/LFE5UM5G SERDES architecture is a dual channel-based architecture. For most SERDES settings and standards, the whole dual (consisting of two SERDES channels) is treated as a unit. This helps in silicon area savings, better utilization, higher granularity on clock/SERDES channel and overall lower cost.

However, for some specific standards, the LFE5UM/LFE5UM5G dual-channel architecture provides flexibility; more than one standard can be supported within the same dual.

Table 2.15 lists the standards that can be mixed and matched within the same dual. In general, the SERDES standards whose nominal data rates are either the same or a defined subset of each other, can be supported within the same dual. The two Protocol columns of the table define the different combinations of protocols that can be implemented together within a Dual.

Protocol		Protocol
PCI Express 1.1	with	SGMII
PCI Express 1.1	with	Gigabit Ethernet
CPRI-3	with	CPRI-2 and CPRI-1
3G-SDI	with	HD-SDI and SD-SDI

Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support

There are some restrictions to be aware of when using spread spectrum clocking. When a dual shares a PCI Express x1 channel with a non-PCI Express channel, ensure that the reference clock for the dual is compatible with all protocols within the dual. For example, a PCI Express spread spectrum reference clock is not compatible with most Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LFE5UM/LFE5UM5G architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, or SGMII channel within the same dual, using a PCI Express spread spectrum clocking as the transmit reference clock will cause a violation of the Gigabit Ethernet, and SGMII transmit jitter specifications.

For further information on SERDES, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

2.17. IEEE 1149.1-Compliant Boundary Scan Testability

All ECP5/ECP5-5G devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port uses VCCIO8 for power supply.

For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

3.7. Hot Socketing Requirements

Table 3.6. Hot Socketing Requirements

Description	Min	Тур	Max	Unit
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	_	8	mA
Input current per HDIN pin when device power supply is off, inputs driven ^{1, 2}	_	_	15	mA
Current per HDIN pin when device power ramps up, input driven ³	_	_	50	mA
Current per HDOUT pin when device power supply is off, outputs pulled up ⁴	—	—	30	mA

Notes:

1. Device is powered down with all supplies grounded, both HDINP and HDINN inputs driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, no external AC coupling.

2. Each P and N input must have less than the specified maximum input current during hot plug. For a device with 2 DCU, the total input current would be 15 mA * 4 channels * 2 input pins per channel = 120 mA.

- Device power supplies are ramping up (V_{CCA} and V_{CCAUX}), both HDINP and HDINN inputs are driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, internal AC coupling.
- 4. Device is powered down with all supplies grounded. Both HDOUTP and HDOUN outputs are pulled up to V_{CCHTX} by the far end receiver termination of 50 Ω single ended.

3.8. ESD Performance

Refer to the ECP5 and ECP5-5G Product Family Qualification Summary for complete qualification data, including ESD performance.

3.9. DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Low Leakage	$0 \leq V_{\text{IN}} \leq V_{\text{CCIO}}$	_	—	10	μA
I _{IH} ^{1, 3}	Input or I/O High Leakage	$V_{CCIO} < V_{IN} \leq V_{IH(MAX)}$	—	—	100	μA
I	I/O Active Pull-up Current, sustaining logic HIGH state	$0.7 \: V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO}$	-30	_	_	μA
I _{PU}	I/O Active Pull-up Current, pulling down from logic HIGH state	$0 \leq V_{\text{IN}} \leq 0.7 \; V_{\text{CCIO}}$		_	-150	μA
IPD	I/O Active Pull-down Current, sustaining logic LOW state	$0 \le V_{IN} \le V_{IL}$ (MAX)	30	—	—	μA
IDD	I/O Active Pull-down Current, pulling up from logic LOW state	$0 \leq V_{IN} \leq V_{CCIO}$	_	—	150	μA
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	7	pf
V	Hysteresis for Single-Ended	V _{CCIO} = 3.3 V	-	300	_	mV
V _{HYST}	Inputs	V _{CCIO} = 2.5 V	_	250	_	mV

Table 3.7. DC Electrical Characteristics

Notes:

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

- 3. Applicable to general purpose I/Os in top and bottom banks.
- 4. When used as V_{REF} , maximum leakage= 25 μ A.

3.11. SERDES Power Supply Requirements^{1,2,3}

Over recommended operating conditions.

Table 3.9. ECP5UM

Symbol	Description	Тур	Max	Unit
Standby (Pow	ver Down)			'
I _{CCA-SB}	V _{CCA} Power Supply Current (Per Channel)	4	9.5	mA
I _{CCHRX-SB} ⁴	V _{CCHRX} , Input Buffer Current (Per Channel)	—	0.1	mA
I _{CCHTX-SB}	V _{CCHTX} , Output Buffer Current (Per Channel)	_	0.9	mA
Operating (Da	ata Rate = 3.125 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	43	54	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 2.5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	40	50	mA
I _{CCHRX-OP} 5	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 1.25 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	34	43	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 270 Mb/s)	1		
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	28	38	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	8	10	mA

Notes:

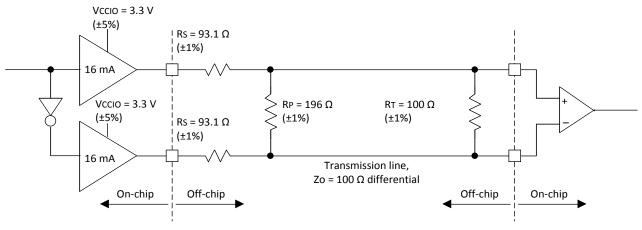
1. Rx Equalization enabled, Tx De-emphasis (pre-cursor and post-cursor) disabled

2. Per Channel current is calculated with both channels on in a Dual, and divide current by two. If only one channel is on, current will be higher.

3. To calculate with Tx De-emphasis enabled, use the Diamond Power Calculator tool.

4. For ICCHRX-SB, during Standby, input termination on Rx are disabled.

5. For ICCHRX-OP, during operational, the max specified when external AC coupling is used. If externally DC coupled, the power is based on current pulled down by external driver when the input is driven to LOW.


© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-DS-02012-1.9

3.14.6. LVPECL33

The ECP5/ECP5-5G devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3.3 is one possible solution for point-to-point signals.

Over recommended operating conditions.

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
Rs	Driver Series Resistor (±1%)	93	Ω
R _P	Driver Parallel Resistor (±1%)	196	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Table 3.16. LVPECL33 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

3.17. Maximum I/O Buffer Speed

Over recommended operating conditions.

Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed

Buffer	Description	Max	Unit
Maximum Input Frequency	·	·	
LVDS25	LVDS, V _{CCIO} = 2.5 V	400	MHz
MLVDS25	MLVDS, Emulated, V _{CCIO} = 2.5 V	400	MHz
BLVDS25	BLVDS, Emulated, V _{CCIO} = 2.5 V	400	MHz
MIPI D-PHY (HS Mode)	MIPI Video	400	MHz
SLVS	SLVS similar to MIPI	400	MHz
Mini LVDS	Mini LVDS	400	MHz
LVPECL33	LVPECL, Emulated, V _{CCIO} = 3.3 V	400	MHz
SSTL18 (all supported classes)	SSTL_18 class I, II, V _{CCIO} = 1.8 V	400	MHz
SSTL15 (all supported classes)	SSTL_15 class I, II, V _{CCIO} = 1.5 V	400	MHz
SSTL135 (all supported classes)	SSTL_135 class I, II, V _{CCIO} = 1.35 V	400	MHz
HSUL12 (all supported classes)	HSUL_12 class I, II, V _{CCIO} = 1.2 V	400	MHz
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	200	MHz
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	200	MHz
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	200	MHz
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	200	MHz
LVCMOS15	LVCMOS 1.5, V _{CCIO} = 1.5 V	200	MHz
LVCMOS12	LVCMOS 1.2, V _{CCIO} = 1.2 V	200	MHz
Maximum Output Frequency			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	150	MHz
LVDS25	LVDS, V _{CCIO} = 2.5 V	400	MHz
MLVDS25	MLVDS, Emulated, V _{CCIO} = 2.5 V	150	MHz
BLVDS25	BLVDS, Emulated, V _{CCIO} = 2.5 V	150	MHz
LVPECL33	LVPECL, Emulated, V _{CCIO} = 3.3 V	150	MHz
SSTL18 (all supported classes)	SSTL_18 class I, II, V _{CCIO} = 1.8 V	400	MHz
SSTL15 (all supported classes)	SSTL_15 class I, II, V _{CCIO} = 1.5 V	400	MHz
SSTL135 (all supported classes)	SSTL_135 class I, II, V _{CCIO} = 1.35 V	400	MHz
HSUL12 (all supported classes)	HSUL12 class I, II, V _{CCI0} = 1.2 V	400	MHz
LVTTL33	LVTTL, VCCIO = 3.3 V	150	MHz
LVCMOS33 (For all drives)	LVCMOS, 3.3 V	150	MHz
LVCMOS25 (For all drives)	LVCMOS, 2.5 V	150	MHz
LVCMOS18 (For all drives)	LVCMOS, 1.8 V	150	MHz
LVCMOS15 (For all drives)	LVCMOS, 1.5 V	150	MHz
LVCMOS12 (For all drives)	LVCMOS, 1.2 V	150	MHz

Notes:

1. These maximum speeds are characterized but not tested on every device.

2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.

3. LVCMOS timing is measured with the load specified in Switching Test Conditions, Table 3.44 on page 90.

- 4. All speeds are measured at fast slew.
- 5. Actual system operation may vary depending on user logic implementation.
- 6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.18. External Switching Characteristics

Over recommended commercial operating conditions.

Table 3.22. ECP5/ECP5-5G External Switching Characteristics

Devenueter	Description	Devies	-	8	_	7	-	6	11
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit
Clocks									
Primary Clock									
f _{MAX_PRI}	Frequency for Primary Clock Tree	_	—	370	—	303	_	257	MHz
t _{w_pri}	Clock Pulse Width for Primary Clock	_	0.8	—	0.9	—	1.0	—	ns
t _{skew_pri}	Primary Clock Skew within a Device	-	-	420	_	462	-	505	ps
Edge Clock			-						
f _{MAX_EDGE}	Frequency for Edge Clock Tree	—	_	400	—	350	_	312	MHz
tw_edge	Clock Pulse Width for Edge Clock	_	1.175	_	1.344	_	1.50	—	ns
t _{skew_edge}	Edge Clock Skew within a Bank	-	-	160	-	180	-	200	ps
Generic SDR In	put				•				•
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ithout PL	L					
t _{co}	Clock to Output - PIO Output Register	All Devices	-	5.4	-	6.1	-	6.8	ns
t _{su}	Clock to Data Setup - PIO Input Register	All Devices	0	_	0	_	0	_	ns
t _H	Clock to Data Hold - PIO Input Register	All Devices	2.7	-	3	-	3.3	_	ns
t _{su_del}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.2	-	1.33	-	1.46	_	ns
t _{h_del}	Clock to Data Hold - PIO Input Register with Data Input Delay	All Devices	0	_	0	_	0	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All Devices	-	400	_	350	-	312	MHz
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ith PLL						
t _{copll}	Clock to Output - PIO Output Register	All Devices	_	3.5	_	3.8	_	4.1	ns
t _{supll}	Clock to Data Setup - PIO Input Register	All Devices	0.7	_	0.78		0.85	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	All Devices	0.8	_	0.89	-	0.98	_	ns
t _{su_delpll}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.6	_	1.78	_	1.95	_	ns

Table 3.31. PCIe (5 Gb/s) (Continued)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Receive ^{1, 2}		'		'	'	
UI	Unit Interval	-	199.94	200	200.06	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	-	0.34 ³	—	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	_	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	—	—	—	88	ps
V _{RX-CM-AC}	Common mode noise from Rx	-	_	_		mV, p-p
D	Receiver differential Return Loss,	50 MHz < freq < 1.25 GHz	10	_	-	dB
R _{LRX-DIFF}	package plus silicon	1.25 GHz < freq < 2.5 GHz	8	_	-	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	-	6	_	-	dB
Z _{RX-DC}	Receiver DC single ended impedance	-	40	_	60	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	-	200K	_	-	Ω
V _{RX-CM-AC-P}	Rx AC peak common mode voltage	_	_	_		mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	-	65	_	340 ³	mv,
L _{RX-SKEW}	Receiver lane-lane skew	-	—	—	8	ns

Notes:

1. Values are measured at 5 Gb/s.

2. Measured with external AC-coupling on the receiver.

3. Not in compliance with PCI Express standard.

Table 3.36. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	—	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—	—	dB
Z _{RX_DIFF}	Differential termination resistance	—	80	100	120	Ω
J _{RX_DJ} ^{2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	_	—	_	0.37	UI
J _{RX_RJ} ^{2, 3, 4}	Random jitter tolerance (peak-to-peak)	-	—	_	0.18	UI
J _{RX_SJ} ^{2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	_	—	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	-	—	_	0.65	UI
T _{RX_EYE}	Receiver eye opening	_	0.35	_	—	UI

Notes:

- 1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.
- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

3.29. Gigabit Ethernet/SGMII(1.25Gbps)/CPRI LV E.12 Electrical and Timing Characteristics

3.29.1. AC and DC Characteristics

Table 3.37. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF}	Differential rise/fall time	20% to 80%	_	80	_	ps
Z _{TX_DIFF_DC}	Differential impedance	-	80	100	120	Ω
J _{TX_DDJ} ^{2, 3}	Output data deterministic jitter	-	_	—	0.10	UI
J _{TX_TJ} ^{1, 2, 3}	Total output data jitter	_	—	—	0.24	UI

Notes:

1. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

2. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Table 3.38. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10	-	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6	-	—	dB
Z _{RX_DIFF}	Differential termination resistance	-	80	100	120	Ω
J _{RX_DJ} ^{1, 2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	-	-	_	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4}	Random jitter tolerance (peak-to-peak)	-	-	-	0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	-	-	_	0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	—	_	_	0.71	UI
T _{RX_EYE}	Receiver eye opening	—	0.29	-	_	UI

Notes:

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.

- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications (Continued)

Symbol	Parameter		Min	Max	Unit
Slave Para	llel				
f _{cclк}	CCLK input clock frequency	—	—	50	MHz
t _{BSCH}	CCLK input clock pulsewidth HIGH	—	6	_	ns
t _{BSCL}	CCLK input clock pulsewidth LOW	—	6	_	ns
t _{CORD}	CCLK to DOUT for Read Data	—	—	12	ns
t _{sucbdi}	Data Setup Time to CCLK	—	1.5	_	ns
t _{HCBDI}	Data Hold Time to CCLK	—	1.5	_	ns
t _{sucs}	CSN, CSN1 Setup Time to CCLK	—	2.5	_	ns
t _{HCS}	CSN, CSN1 Hold Time to CCLK	—	1.5	_	ns
t _{suwd}	WRITEN Setup Time to CCLK	—	45	_	ns
t _{HCWD}	WRITEN Hold Time to CCLK	—	2	_	ns
t _{DCB}	CCLK to BUSY Delay Time	—	_	12	ns

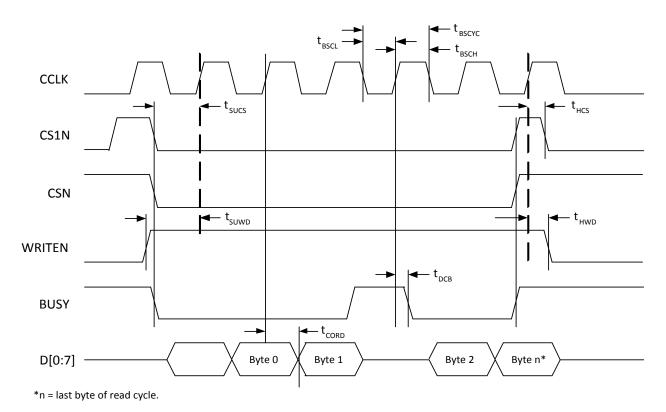
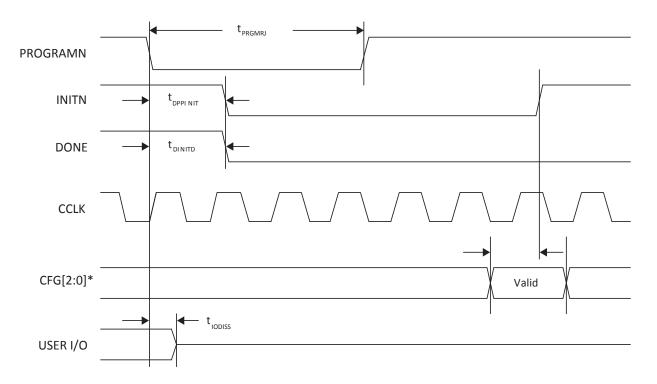



Figure 3.15. sysCONFIG Parallel Port Read Cycle

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

*The CFG pins are normally static (hardwired).

4.2. PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO within PIC	DDR Strobe (DQS) and Data (DQ) Pins
F	or Left and Right Edges of the Device	Only
	А	DQ
	В	DQ
P[L/R] [n-6]	С	DQ
	D	DQ
	А	DQ
	В	DQ
P[L/R] [n-3]	С	DQ
	D	DQ
	А	DQS (P)
	В	DQS (N)
P[L/R] [n]	С	DQ
	D	DQ
	А	DQ
	В	DQ
P[L/R] [n+3]	С	DQ
	D	DQ

Note: "n" is a row PIC number.

4.3. **Pin Information Summary**

4.3.1. **LFE5UM/LFE5UM5G**

Pin Information Summary			5UM/ M5G-25	LFE5UN	1/LFE5U	M5G-45	LFE5UM/LFE5UM5G-85			
Pin Type		285 csfBG	381 caBGA	285 csfBGA	381 caBG	554 caBGA	285 csfBGA	381 caBG	554 caBGA	756 caBGA
	Bank 0	6	24	6	27	32	6	27	32	56
	Bank 1	6	32	6	33	40	6	33	40	48
	Bank 2	21	32	21	32	32	21	34	32	48
General Purpose	Bank 3	28	32	28	33	48	28	33	48	64
Inputs/Outputs per Bank	Bank 4	0	0	0	0	0	0	0	14	24
	Bank 6	26	32	26	33	48	26	33	48	64
	Bank 7	18	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13
Total Single-Ended User I/O		118	197	118	203	245	118	205	259	365
VCC		13	20	13	20	24	13	20	24	36
VCCAUX (Core)		3	4	3	4	9	3	4	9	8
	Bank O	1	2	1	2	3	1	2	3	4
	Bank 1	1	2	1	2	3	1	2	3	4
	Bank 2	2	3	2	3	4	2	3	4	4
VICEIO	Bank 3	2	3	2	3	3	2	3	3	4
VCCIO	Bank 4	0	0	0	0	0	0	0	2	2
	Bank 6	2	3	2	3	4	2	3	4	4
	Bank 7	2	3	2	3	3	2	3	3	4
	Bank 8	2	2	2	2	2	2	2	2	2

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.3.2. LFE5U

Pin Information Summary	L	.FE5U-1	2	L	.FE5U-2	5		LFE5	U-45		LFE5U-85				
Pin Type		256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	554 caBGA	285 csfBG	381 caBGA	554 caBGA	756 caBG
	Bank 0	24	6	24	24	6	24	24	6	27	32	6	27	32	56
	Bank 1	32	6	32	32	6	32	32	6	33	40	6	33	40	48
General	Bank 2	32	21	32	32	21	32	32	21	32	32	21	34	32	48
Purpose	Bank 3	32	28	32	32	28	32	32	28	33	48	28	33	48	64
Inputs/Outputs	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	14	24
per Bank	Bank 6	32	26	32	32	26	32	32	26	33	48	26	33	48	64
	Bank 7	32	18	32	32	18	32	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Total Single-Ende	d User	197	118	197	197	118	197	197	118	203	245	118	205	259	365
VCC		6	13	20	6	13	20	6	13	20	24	13	20	24	36
VCCAUX (Core)		2	3	4	2	3	4	2	3	4	9	3	4	9	8
	Bank 0	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 1	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 2	2	2	3	2	2	3	2	2	3	4	2	3	4	4
VCCIO	Bank 3	2	2	3	2	2	3	2	2	3	3	2	3	3	4
В	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	2	2
	Bank 6	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 7	2	2	3	2	2	3	2	2	3	3	2	3	3	4
	Bank 8	1	2	2	1	2	2	1	2	2	2	2	2	2	2
ТАР		4	4	4	4	4	4	4	4	4	4	4	4	4	4
Miscellaneous De	dicated	7	7	7	7	7	7	7	7	7	7	7	7	7	7
GND		27	123	99	27	123	99	27	123	99	198	123	99	198	267
NC		0	1	26	0	1	26	0	1	26	33	1	26	33	29
Reserved		0	4	6	0	4	6	0	4	6	12	4	6	12	12
Total Balls		256	285	381	256	285	381	256	285	381	554	285	381	554	756
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8
High Speed Differ Input / Output Pa		Bank Bank	16/8 0	14/7 0	16/8 0	16/8 0	14/7 0	16/8 0	16/8 0	14/7 0	16/8 0	24/12 0	14/7 0	16/8 0	24/1 0
	111 3	Bank			-	-	-	-	-	-	-	24/12	-		
		Bank	16/8 16/8	13/6 8/6	16/8 16/8	16/8 16/8	13/6 8/6	16/8 16/8	16/8 16/8	13/6 8/6	16/8 16/8	16/8	13/6 8/6	16/8 16/8	24/1
		Bank	0	0	0	0	0	0	0	0	10/8	0	0	0	16/8 0
Total High Speed		64/32	45/27	64/32	64/32	-	64/32	64/32	-	64/32	80/40	45/27	65/33	80/40	112/
Total High Speed		Bank	43/27	04/32	04/32	43/27	04/32	04/32	43/27	04/32	0	0	03/33	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
DQS Groups		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
(> 11 pins in grou	(a	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
, <u>1</u>	. /	Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total DQS Groups	5	8	6	8	8	6	8	8	6	8	10	6	8	10	14

Supplemental Information

For Further Information

A variety of technical notes for the ECP5/ECP5-5G family are available.

- High-Speed PCB Design Considerations (TN1033)
- Transmission of High-Speed Serial Signals Over Common Cable Media (TN1066)
- PCB Layout Recommendations for BGA Packages (TN1074)
- Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)
- Electrical Recommendations for Lattice SERDES (FPGA-TN-02077)
- LatticeECP3, ECP-5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184)
- Using TraceID (TN1207)
- Sub-LVDS Signaling Using Lattice Devices (TN1210)
- Advanced Security Encryption Key Programming Guide for ECP5, ECP5-5G, LatticeECP3, and LatticeECP2/MS Devices (TN1215)
- LatticeECP3, LatticeECP2/M, ECP5 and ECP5-5G Dual Boot and Multiple Boot Feature (TN1216)
- ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260)
- ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261)
- ECP5 and ECP5-5G sysIO Usage Guide (TN1262)
- ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263)
- ECP5 and ECP5-5G Memory Usage Guide (TN1264)
- ECP5 and ECP5-5G High-Speed I/O Interface (TN1265)
- Power Consumption and Management for ECP5 and ECP5-5G Devices (TN1266)
- ECP5 and ECP5-5G sysDSP Usage Guide (TN1267)
- ECP5 and ECP5-5G Hardware Checklist (FPGA-TN-02038)
- Solder Reflow Guide for Surface Mount Devices (FPGA-TN-02041)
- ECP5 and ECP5-5G PCI Express Soft IP Ease of Use Guidelines (FPGA-TN-02045)
- Programming External SPI Flash through JTAG for ECP5/ECP5-5G (FPGA-TN-02050)
- Adding Scalable Power and Thermal Management to ECP5 Using L-ASC10 (AN6095)

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL): www.jedec.org
- PCI: www.pcisig.com

(Continued)

Date	Version	Section	Change Summary
April 2017	1.7	All	Changed document number from DS1044 to FPGA-DS-02012.
		General Description	Updated Features section. Changed "1.1 V core power supply" to "1.1 V core power supply for ECP5, 1.2 V core power supply for ECP5UM5G".
		Architecture	Updated Overview section. Change "The ECP5/ECP5-5G devices use 1.1 V as their core voltage" to "The ECP5 devices use 1.1V, ECP5UM5G devices use 1.2V as their core voltage"
		DC and Switching Characteristics	Updated Table 3.2. Recommended Operating Conditions Added ECP5-5G on VCC to be 1.2V +/- 5% Added ECP5-5G on VCCA to be 1.2V +/- 3% Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby) Changed "Core Power Supply Current" for ICC on LFE5UM5G devices Changed "SERDES Power Supply Current (Per Dual)" for ICCA on LFE5UM5G devices Updated Table 3.20. Register-to-Register Performance. Remove "(DDR/SDR)" from DSP Function Changed DSP functions to 225 MHz
		Pinout Information	Update Section 4.1 Signal Description. Revised Vcc Description to "Power supply pins for core logic. Dedicated pins. VCC = 1.1 V (ECP5), 1.2 V (ECP5UM5G)"
February 2016	1.6	All	Changed document status from Preliminary to Final.
	,	General Description	Updated Features section. Changed "24K to 84K LUTs" to "12K to 84K LUTs". Added LFE5U-12 column to Table 1.1. ECP5 and ECP5-5G Family Selection Guide.
		DC and Switching Characteristics	Updated Power up Sequence section. Identified typical ICC current for specific devices in Table 3.8. ECP5/ECP5-5G Supply Current (Standby). Updated values in Table 3.9. ECP5. Updated values in Table 3.10. ECP5-5G. Added values to -8 Timing column of Table 3.19. Pin-to-Pin Performance. Added values to -8 Timing column of Table 3.20. Register-to-Register Performance. Changed LFE5-45 to All Devices in Table 3.22. ECP5/ECP5-5G External Switching Characteristics. Added table notes to Table 3.31. PCIe (5 Gb/s). Added table note to Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics.
		Pinout Information	Added LFE5U-12 column to the table in LFE5U section.
		Ordering Information	Updated LFE5U in ECP5/ECP5-5G Part Number Description section: added 12 F = 12K LUTs to Logic Capacity. Added LFE5U-12F information to Ordering Part Numbers section.