E. Lattice Semiconductor Corporation - LFE5UM-45F-7BG554C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11000
Number of Logic Elements/Cells	44000
Total RAM Bits	1990656
Number of I/O	245
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	554-FBGA
Supplier Device Package	554-CABGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um-45f-7bg554c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Tables

Table 1.1. ECP5 and ECP5-5G Family Selection Guide	11
Table 2.1. Resources and Modes Available per Slice	14
Table 2.2. Slice Signal Descriptions	
Table 2.3. Number of Slices Required to Implement Distributed RAM	
Table 2.4. PLL Blocks Signal Descriptions	
Table 2.5. DDRDLL Ports List	
Table 2.6. sysMEM Block Configurations	
Table 2.7. Maximum Number of Elements in a Slice	
Table 2.8. Input Block Port Description	
Table 2.9. Output Block Port Description	
Table 2.10. Tristate Block Port Description	
Table 2.11. DQSBUF Port List Description	
Table 2.12. On-Chip Termination Options for Input Modes	
Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support	
Table 2.14. Available SERDES Duals per LFE5UM/LFE5UM5G Devices	
Table 2.15. LFE5UM/LFE5UM5G Mixed Protocol Support	
Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)	
Table 3.1. Absolute Maximum Ratings	
Table 3.2. Recommended Operating Conditions	
Table 3.3. Power Supply Ramp Rates	
Table 3.4. Power-On-Reset Voltage Levels	
Table 3.5. Hot Socketing Specifications	
Table 3.6. Hot Socketing Requirements	
Table 3.7. DC Electrical Characteristics	
Table 3.8. ECP5/ECP5-5G Supply Current (Standby)	
Table 3.9. ECP5UM	
Table 3.10. ECP5-5G	
Table 3.11. sysI/O Recommended Operating Conditions	
Table 3.12. Single-Ended DC Characteristics	
Table 3.13. LVDS	
Table 3.14. LVDS25E DC Conditions	
Table 3.15. BLVDS25 DC Conditions	
Table 3.16. LVPECL33 DC Conditions	
Table 3.17. MLVDS25 DC Conditions	
Table 3.18. Input to SLVS	
Table 3.19. Pin-to-Pin Performance	
Table 3.20. Register-to-Register Performance	
Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed	
Table 3.22. ECP5/ECP5-5G External Switching Characteristics	
Table 3.23. sysCLOCK PLL Timing	
Table 3.24. Serial Output Timing and Levels	
Table 3.25. Channel Output Jitter	
Table 3.26. SERDES/PCS Latency Breakdown	
Table 3.27. Serial Input Data Specifications Table 3.28. Passiver Table littler Talerance Specification	
Table 3.28. Receiver Total Jitter Tolerance Specification Table 3.20. External Reference Clock Specification (refeller)	
Table 3.29. External Reference Clock Specification (refclkp/refclkn) Table 3.20. PCIe (2.5. Ch/c)	
Table 3.30. PCIe (2.5 Gb/s)	
Table 3.31. PCIe (5 Gb/s) Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics	
Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics	
Table 3.33. Transmit	
Table 3.35. Transmit	
	80

1. General Description

The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.

The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/Os. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards.

The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS.

The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.

The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for users to port designs from ECP5UM to ECP5-5G devices to get higher performance. The Lattice Diamond[™] design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

1.1. Features

- Higher Logic Density for Increased System Integration
 - 12K to 84K LUTs
 - 197 to 365 user programmable I/Os
- Embedded SERDES
 - 270 Mb/s, up to 3.2 Gb/s, SERDES interface (ECP5)
 - 270 Mb/s, up to 5.0 Gb/s, SERDES interface (ECP5-5G)
 - Supports eDP in RDR (1.62 Gb/s) and HDR (2.7 Gb/s)
 - Up to four channels per device: PCI Express, Ethernet (1GbE, SGMII, XAUI), and CPRI
- sysDSP™
 - Fully cascadable slice architecture
 - 12 to 160 slices for high performance multiply and accumulate
 - Powerful 54-bit ALU operations
 - Time Division Multiplexing MAC Sharing
 - Rounding and truncation
 - Each slice supports
 - Half 36 x 36, two 18 x 18 or four 9 x 9 multipliers
 - Advanced 18 x 36 MAC and 18 x 18 Multiply-Multiply-Accumulate (MMAC) operations
- Flexible Memory Resources
 - Up to 3.744 Mb sysMEM[™] Embedded Block RAM (EBR)
 - 194K to 669K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs

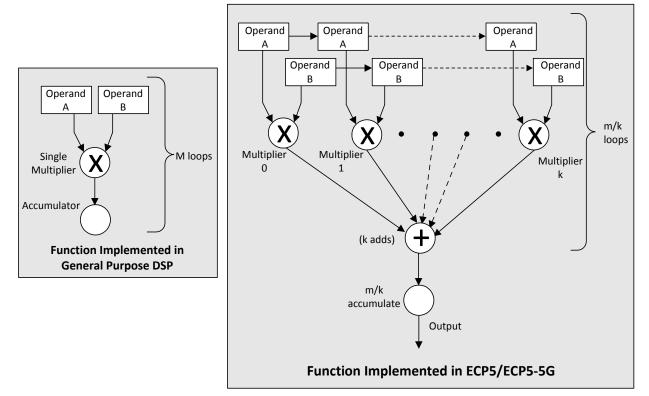


Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches

2.9.2. sysDSP Slice Architecture Features

The ECP5/ECP5-5G sysDSP Slice has been significantly enhanced to provide functions needed for advanced processing applications. These enhancements provide improved flexibility and resource utilization.

The ECP5/ECP5-5G sysDSP Slice supports many functions that include the following:

- Symmetry support. The primary target application is wireless. 1D Symmetry is useful for many applications that use FIR filters when their coefficients have symmetry or asymmetry characteristics. The main motivation for using 1D symmetry is cost/size optimization. The expected size reduction is up to 2x.
 - Odd mode Filter with Odd number of taps
 - Even mode Filter with Even number of taps
 - Two dimensional (2D) symmetry mode supports 2D filters for mainly video applications
- Dual-multiplier architecture. Lower accumulator overhead to half and the latency to half compared to single multiplier architecture
- Fully cascadable DSP across slices. Support for symmetric, asymmetric and non-symmetric filters.
- Multiply (one 18x36, two 18x18 or four 9x9 Multiplies per Slice)
- Multiply (36x36 by cascading across two sysDSP slices)
- Multiply Accumulate (supports one 18x36 multiplier result accumulation or two 18x18 multiplier result accumulation)
- Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18x18 Multiplies feed into an accumulator that can accumulate up to 52 bits)
- Pipeline registers
- 1D Symmetry support. The coefficients of FIR filters have symmetry or negative symmetry characteristics.
 - Odd mode Filter with Odd number of taps
 - Even mode Filter with Even number of taps
- 2D Symmetry support. The coefficients of 2D FIR filters have symmetry or negative symmetry characteristics.
 - 3*3 and 3*5 Internal DSP Slice support

- 5*5 and larger size 2D blocks Semi internal DSP Slice support
- Flexible saturation and rounding options to satisfy a diverse set of applications situations
- Flexible cascading across DSP slices
 - Minimizes fabric use for common DSP and ALU functions
 - Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
 - Provides matching pipeline registers
 - Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade chains
- Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
 - Dynamically selectable ALU OPCODE
 - Ternary arithmetic (addition/subtraction of three inputs)
 - Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
 - Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such as, overflow, underflow and convergent rounding.
 - Flexible cascading across slices to get larger functions
- RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy users
- Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2.14, the ECP5/ECP5-5G sysDSP slice is backwards-compatible with the LatticeECP2[™] and LatticeECP3[™] sysDSP block, such that, legacy applications can be targeted to the ECP5/ECP5-5G sysDSP slice. Figure 2.14 shows the diagram of sysDSP, and Figure 2.15 shows the detailed diagram.

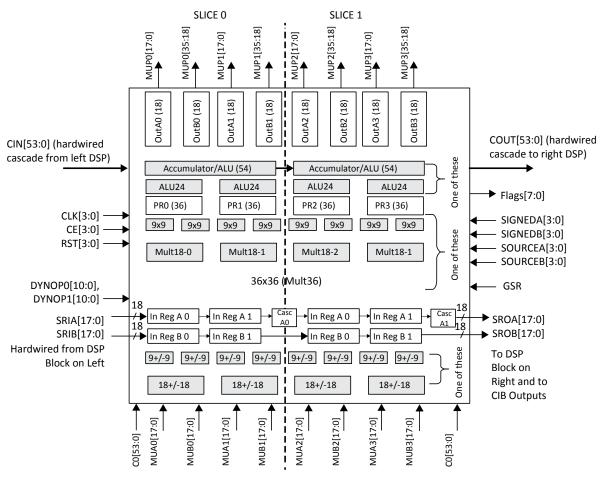
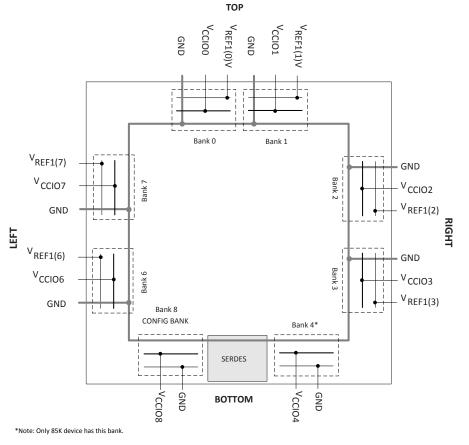
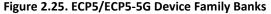


Figure 2.14. Simplified sysDSP Slice Block Diagram

2.14. sysl/O Buffer

Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVDS, HSUL, BLVDS, SSTL Class I and II, LVCMOS, LVTTL, LVPECL, and MIPI.


2.14.1. sysl/O Buffer Banks


ECP5/ECP5-5G devices have seven sysI/O buffer banks, two banks per side at Top, Left and Right, plus one at the bottom left side. The bottom left side bank (Bank 8) is a shared I/O bank. The I/Os in that bank contains both dedicated and shared I/O for sysConfig function. When a shared pin is not used for configuration, it is available as a user I/O. For LFE5-85 devices, there is an additional I/O bank (Bank 4) that is not available in other device in the family.

In ECP5/ECP5-5G devices, the Left and Right sides are tailored to support high performance interfaces, such as DDR2, DDR3, LPDDR2, LPDDR3 and other high speed source synchronous standards. The banks on the Left and Right sides of the devices feature LVDS input and output buffers, data-width gearing, and DQSBUF block to support DDR2/3 and LPDDR2/3 interfaces. The I/Os on the top and bottom banks do not have LVDS input and output buffer, and gearing logic, but can use LVCMOS to emulate most of differential output signaling.

Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, the banks on the Left and Right sides of the device, have voltage reference input (shared I/O pin), VREF1 per bank, which allow it to be completely independent of each other. The V_{REF} voltage is used to set the threshold for the referenced input buffers, such as SSTL. Figure 2.25 shows the seven banks and their associated supplies.

In ECP5/ECP5-5G devices, single-ended output buffers and ratioed input buffers (LVTTL, and LVCMOS) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

ECP5/ECP5-5G devices contain two types of sysI/O buffer pairs:

• Top (Bank 0 and Bank 1) and Bottom (Bank 8 and Bank 4) sysIO Buffer Pairs (Single-Ended Only)

The sysI/O buffers in the Banks at top and bottom of the device consist of ratioed single-ended output drivers and single-ended input buffers. The I/Os in these banks are not usually used as a pair, except when used as emulated differential output pair. They are used as individual I/Os and be configured as different I/O modes, as long as they are compatible with the V_{CCIO} voltage in the bank. When used as emulated differential outputs, the pair can be used together.

The top and bottom side IOs also support hot socketing. They support IO standards from 3.3 V to 1.2 V. They are ideal for general purpose I/Os, or as ADDR/CMD bus for DDR2/DDR3 applications, or for used as emulated differential signaling.

Bank 4 I/O only exists in the LFE5-85 device.

Bank 8 is a bottom bank that shares with sysConfig I/Os. During configuration, these I/Os are used for programming the device. Once the configuration is completed, these I/Os can be released and user can use these I/Os for functional signals in his design.

The top and bottom side pads can be identified by the Lattice Diamond tool.

Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Outputs)

The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two single-ended input buffers (both ratioed and referenced) and half of the sysI/O buffer pairs (PIOA/B pairs) also has a high-speed differential output driver. One of the referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

2.14.2. Typical sysI/O I/O Behavior during Power-up

The internal Power-On-Reset (POR) signal is deactivated when V_{CC} , V_{CCIO8} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information about controlling the output logic state with valid input logic levels during power-up in ECP5/ECP5-5G devices, see the list of technical documentation in Supplemental Information section on page 102.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

2.14.3. Supported sysI/O Standards

The ECP5/ECP5-5G sysI/O buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSUL. Differential standards supported include LVDS, differential SSTL and differential HSUL. For further information on utilizing the sysI/O buffer to support a variety of standards, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

3. DC and Switching Characteristics

3.1. Absolute Maximum Ratings

Table 3.1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{cc}	Supply Voltage	-0.5	1.32	V
V _{CCA}	Supply Voltage	-0.5	1.32	V
V _{CCAUX} , V _{CCAUXA}	Supply Voltage	-0.5	2.75	V
V _{CCIO}	Supply Voltage	-0.5	3.63	V
—	Input or I/O Transient Voltage Applied	-0.5	3.63	V
V _{CCHRX} , V _{CCHTX}	SERDES RX/TX Buffer Supply Voltages	-0.5	1.32	V
—	Voltage Applied on SERDES Pins	-0.5	1.80	V
T _A	Storage Temperature (Ambient)	-65	150	°C
Tj	Junction Temperature	—	+125	°C

Notes:

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

3.2. Recommended Operating Conditions

Table 3.2. Recommended Operating Conditions

Symbol	Parameter		Min	Max	Unit
V _{CC} ²	Core Supply Voltage	ECP5	1.045	1.155	V
V _{CC} -		ECP5-5G	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage	_	2.375	2.625	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	_	1.14	3.465	V
V_{REF}^1	Input Reference Voltage	_	0.5	1.0	V
t _{JCOM}	Junction Temperature, Commercial Operation	_	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	_	-40	100	°C
SERDES Externa	l Power Supply⁵				
N		ECP5UM	1.045	1.155	V
V _{CCA}	SERDES Analog Power Supply	ECP5-5G	1.164	1.236	V
V _{CCAUXA}	SERDES Auxiliary Supply Voltage	_	2.374	2.625	V
N 6		ECP5UM	0.30	1.155	V
V _{CCHRX} ⁶	SERDES Input Buffer Power Supply	ECP5-5G	0.30	1.26	V
		ECP5UM	1.045	1.155	V
V _{CCHTX}	SERDES Output Buffer Power Supply	ECP5-5G	1.14	1.26	V

Notes:

1. For correct operation, all supplies except V_{REF} must be held in their valid operation range. This is true independent of feature usage.

2. All supplies with same voltage, except SERDES Power Supplies, should be connected together.

- 3. See recommended voltages by I/O standard in Table 3.4 on page 48.
- 4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3 V.
- 5. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for information on board considerations for SERDES power supplies.
- 6. V_{CCHRX} is used for Rx termination. It can be biased to Vcm if external AC coupling is used. This voltage needs to meet all the HDin input voltage level requirements specified in the Rx section of this Data Sheet.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.7. Hot Socketing Requirements

Table 3.6. Hot Socketing Requirements

Description	Min	Тур	Max	Unit
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	_	8	mA
Input current per HDIN pin when device power supply is off, inputs driven ^{1, 2}	_	_	15	mA
Current per HDIN pin when device power ramps up, input driven ³	_	_	50	mA
Current per HDOUT pin when device power supply is off, outputs pulled up ⁴	—	—	30	mA

Notes:

1. Device is powered down with all supplies grounded, both HDINP and HDINN inputs driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, no external AC coupling.

2. Each P and N input must have less than the specified maximum input current during hot plug. For a device with 2 DCU, the total input current would be 15 mA * 4 channels * 2 input pins per channel = 120 mA.

- Device power supplies are ramping up (V_{CCA} and V_{CCAUX}), both HDINP and HDINN inputs are driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, internal AC coupling.
- 4. Device is powered down with all supplies grounded. Both HDOUTP and HDOUN outputs are pulled up to V_{CCHTX} by the far end receiver termination of 50 Ω single ended.

3.8. ESD Performance

Refer to the ECP5 and ECP5-5G Product Family Qualification Summary for complete qualification data, including ESD performance.

3.9. DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Low Leakage	$0 \leq V_{\text{IN}} \leq V_{\text{CCIO}}$	_	—	10	μA
I _{IH} ^{1, 3}	Input or I/O High Leakage	$V_{CCIO} < V_{IN} \leq V_{IH(MAX)}$	—	—	100	μA
I	I/O Active Pull-up Current, sustaining logic HIGH state	$0.7 \: V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO}$	-30	_	_	μA
I _{PU}	I/O Active Pull-up Current, pulling down from logic HIGH state	$0 \leq V_{\text{IN}} \leq 0.7 \; V_{\text{CCIO}}$		_	-150	μA
IPD	I/O Active Pull-down Current, sustaining logic LOW state	$0 \le V_{IN} \le V_{IL}$ (MAX)	30	—	—	μA
IDD	I/O Active Pull-down Current, pulling up from logic LOW state	$0 \leq V_{\text{IN}} \leq V_{\text{CCIO}}$	—	—	150	μA
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	7	pf
V	Hysteresis for Single-Ended	V _{CCIO} = 3.3 V	-	300	_	mV
V _{HYST}	Inputs	V _{CCIO} = 2.5 V	_	250	_	mV

Table 3.7. DC Electrical Characteristics

Notes:

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

- 3. Applicable to general purpose I/Os in top and bottom banks.
- 4. When used as V_{REF} , maximum leakage= 25 μ A.

3.11. SERDES Power Supply Requirements^{1,2,3}

Over recommended operating conditions.

Table 3.9. ECP5UM

Symbol	Description	Тур	Max	Unit
Standby (Pow	ver Down)			'
I _{CCA-SB}	V _{CCA} Power Supply Current (Per Channel)	4	9.5	mA
I _{CCHRX-SB} ⁴	V _{CCHRX} , Input Buffer Current (Per Channel)	—	0.1	mA
I _{CCHTX-SB}	V _{CCHTX} , Output Buffer Current (Per Channel)	_	0.9	mA
Operating (Da	ata Rate = 3.125 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	43	54	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 2.5 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	40	50	mA
I _{CCHRX-OP} 5	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 1.25 Gb/s)			
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	34	43	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	10	13	mA
Operating (Da	ata Rate = 270 Mb/s)	1		
I _{CCA-OP}	V _{CCA} Power Supply Current (Per Channel)	28	38	mA
I _{CCHRX-OP} ⁵	V _{CCHRX} , Input Buffer Current (Per Channel)	0.4	0.5	mA
I _{CCHTX-OP}	V _{CCHTX} , Output Buffer Current (Per Channel)	8	10	mA

Notes:

1. Rx Equalization enabled, Tx De-emphasis (pre-cursor and post-cursor) disabled

2. Per Channel current is calculated with both channels on in a Dual, and divide current by two. If only one channel is on, current will be higher.

3. To calculate with Tx De-emphasis enabled, use the Diamond Power Calculator tool.

4. For ICCHRX-SB, during Standby, input termination on Rx are disabled.

5. For ICCHRX-OP, during operational, the max specified when external AC coupling is used. If externally DC coupled, the power is based on current pulled down by external driver when the input is driven to LOW.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-DS-02012-1.9

Table 3.20. Register-to-Register Performance

Function	–8 Timing	Unit
Basic Functions	' '	
16-Bit Decoder	441	MHz
32-Bit Decoder	441	MHz
64-Bit Decoder	332	MHz
4:1 Mux	441	MHz
8:1 Mux	441	MHz
16:1 Mux	441	MHz
32:1 Mux	441	MHz
8-Bit Adder	441	MHz
16-Bit Adder	441	MHz
64-Bit Adder	441	MHz
16-Bit Counter	384	MHz
32-Bit Counter	317	MHz
64-Bit Counter	263	MHz
64-Bit Accumulator	288	MHz
Embedded Memory Functions		
1024x18 True-Dual Port RAM (Write Through or Normal), with EBR Output Registers	272	MHz
1024x18 True-Dual Port RAM (Read-Before-Write), with EBR Output Registers	214	MHz
Distributed Memory Functions	'	
16 x 2 Pseudo-Dual Port or 16 x 4 Single Port RAM (One PFU)	441	MHz
16 x 4 Pseudo-Dual Port (Two PFUs)	441	MHz
DSP Functions	· · ·	
9 x 9 Multiplier (All Registers)	225	MHz
18 x 18 Multiplier (All Registers)	225	MHz
36 x 36 Multiplier (All Registers)	225	MHz
18 x 18 Multiply-Add/Sub (All Registers)	225	MHz
18 x 18 Multiply/Accumulate (Input and Output Registers)	225	MHz

Notes:

1. These functions were generated using Lattice Diamond design software tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from Lattice Diamond design software tool.

3.16. Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular temperature and voltage.

3.18. External Switching Characteristics

Over recommended commercial operating conditions.

Table 3.22. ECP5/ECP5-5G External Switching Characteristics

Devenueter	Description	Devies	-	8	_	7	-6		Unit
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit
Clocks									
Primary Clock	Primary Clock								
f _{MAX_PRI}	Frequency for Primary Clock Tree	_	—	370	—	303	_	257	MHz
t _{w_pri}	Clock Pulse Width for Primary Clock	_	0.8	—	0.9	—	1.0	—	ns
t _{skew_pri}	Primary Clock Skew within a Device	-	-	420	_	462	-	505	ps
Edge Clock			-						
f _{MAX_EDGE}	Frequency for Edge Clock Tree	—	_	400	—	350	_	312	MHz
tw_edge	Clock Pulse Width for Edge Clock	_	1.175	_	1.344	_	1.50	—	ns
t _{skew_edge}	Edge Clock Skew within a Bank	-	_	160	-	180	-	200	ps
Generic SDR In	put				•				•
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ithout PL	L					
t _{co}	Clock to Output - PIO Output Register	All Devices	-	5.4	-	6.1	-	6.8	ns
t _{su}	Clock to Data Setup - PIO Input Register	All Devices	0	_	0	_	0	_	ns
t _H	Clock to Data Hold - PIO Input Register	All Devices	2.7	-	3	-	3.3	_	ns
t _{su_del}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.2	-	1.33	-	1.46	_	ns
t _{h_del}	Clock to Data Hold - PIO Input Register with Data Input Delay	All Devices	0	_	0	_	0	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	All Devices	-	400	_	350	-	312	MHz
General I/O Pin	Parameters Using Dedicated Primary (Clock Input w	ith PLL						
t _{copll}	Clock to Output - PIO Output Register	All Devices	_	3.5	_	3.8	_	4.1	ns
t _{supll}	Clock to Data Setup - PIO Input Register	All Devices	0.7	_	0.78		0.85	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	All Devices	0.8	_	0.89	-	0.98	_	ns
t _{su_delpll}	Clock to Data Setup - PIO Input Register with Data Input Delay	All Devices	1.6	_	1.78	_	1.95	_	ns

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

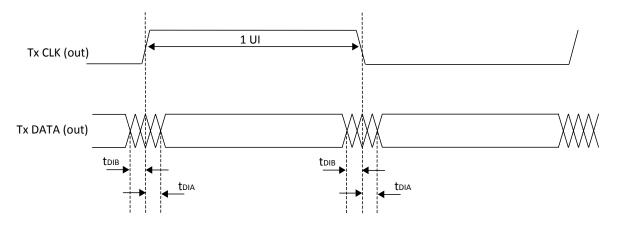
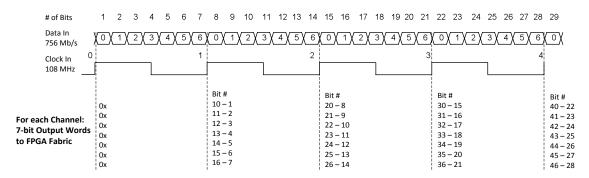



Figure 3.9. Transmit TX.CLK.Aligned Waveforms

Receiver – Shown for one LVDS Channel

Transmitter - Shown for one LVDS Channel

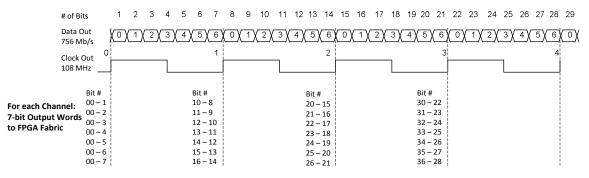


Figure 3.10. DDRX71 Video Timing Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

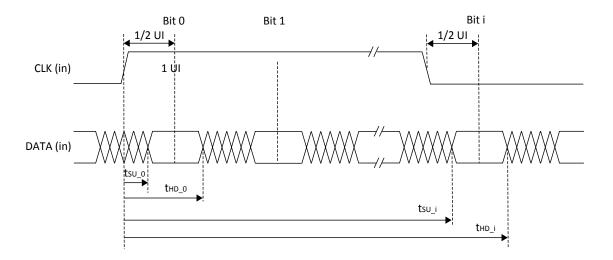


Figure 3.11. Receiver DDRX71_RX Waveforms

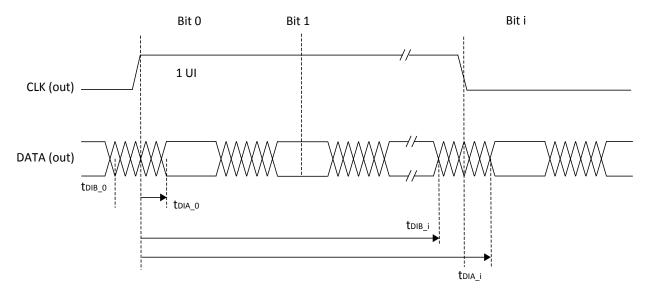


Figure 3.12. Transmitter DDRX71_TX Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.25. PCI Express Electrical and Timing Characteristics

3.25.1. PCIe (2.5 Gb/s) AC and DC Characteristics

Over recommended operating conditions.

Table 3.30. PCIe (2.5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹	· · · · · · · · · · · · · · · · · · ·					
UI	Unit interval	-	399.88	400	400.12	ps
V _{TX-DIFF_P-P}	Differential peak-to-peak output	-	0.8	1.0	1.2	V
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio	_	-3	-3.5	-4	dB
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage	-	-	_	20	mV
V _{TX-RCV-DETECT}	Amount of voltage change allowed during receiver detection	_	_	_	600	mV
V _{TX-CM-DC}	Tx DC common mode voltage	_	0	_	V _{CCHTX}	V
I _{TX-SHORT}	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	_	_	90	mA
Z _{TX-DIFF-DC}	Differential output impedance	—	80	100	120	Ω
RL _{TX-DIFF}	Differential return loss	_	10	—	—	dB
RL _{TX-CM}	Common mode return loss	_	6.0	—	—	dB
T _{TX-RISE}	Tx output rise time	20% to 80%	0.125	_	—	UI
T _{TX-FALL}	Tx output fall time	20% to 80%	0.125	—	_	UI
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link	-	-	_	1.3	ns
T _{TX-EYE}	Transmitter eye width	-	0.75	_	_	UI
T _{TX-EYE-MEDIAN-TO-MAX-} JITTER	Maximum time between jitter median and maximum deviation from median	_	_	_	0.125	UI
Receive ^{1, 2}						
UI	Unit Interval	_	399.88	400	400.12	ps
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage	-	0.34 ³	_	1.2	v
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage	_	65	_	340 ³	mV
V _{RX-CM-AC_P}	RMS AC peak common-mode input voltage	_	_	_	150	mV
Z _{RX-DIFF-DC}	DC differential input impedance	_	80	100	120	Ω
Z _{RX-DC}	DC input impedance	_	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance	_	200K	_	_	Ω
RL _{RX-DIFF}	Differential return loss	_	10	_	_	dB
RL _{RX-CM}	Common mode return loss	_	6.0	_	_	dB

Notes:

- 1. Values are measured at 2.5 Gb/s.
- 2. Measured with external AC-coupling on the receiver.
- 3. Not in compliance with PCI Express 1.1 standard.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.25.2. PCIe (5 Gb/s) – Preliminary AC and DC Characteristics

Over recommended operating conditions.

Table 3.31. PCIe (5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit Interval	—	199.94	200	200.06	ps
B _{WTX-PKG-PLL2}	Tx PLL bandwidth corresponding to PKGTX-PLL2	_	5	-	16	MHz
P _{KGTX-PLL2}	Tx PLL Peaking	_	_	_	1	dB
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	_	0.8	—	1.2	V, p-p
V _{TX-DIFF-PP-LOW}	Low power differential p-p Tx voltage swing	_	0.4	-	1.2	V, p-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5dB	—	3	—	4	dB
V _{TX-DE-RATIO-6dB}	Tx de-emphasis level ratio at 6dB	—	5.5	—	6.5	dB
T _{MIN-PULSE}	Instantaneous lone pulse width	_		—	_	UI
T _{TX-RISE-FALL}	Transmitter rise and fall time	_		—	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-DJ}	Tx deterministic jitter > 1.5 MHz	—	-	—	0.15	UI
T _{TX-RJ}	Tx RMS jitter < 1.5 MHz	—	Ι	-	3	ps, RMS
T _{RF-MISMATCH}	Tx rise/fall time mismatch	_	_	_		UI
R _{LTX-DIFF}	Tx Differential Return Loss, including	50 MHz < freq < 1.25 GHz	10	_	_	dB
''LIX-DIFF	package and silicon	1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	50 MHz < freq < 2.5 GHz	6	_	_	dB
Z _{TX-DIFF-DC}	DC differential Impedance	_	_	_	120	Ω
V _{TX-CM-AC-PP}	Tx AC peak common mode voltage, peak-peak	-	-	-		mV, p-p
I _{TX-SHORT}	Transmitter short-circuit current	—	-	—	90	mA
V _{TX-DC-CM}	Transmitter DC common-mode voltage	_	0	-	1.2	V
V _{TX-IDLE-DIFF-DC}	Electrical Idle Output DC voltage	—	0	—	5	mV
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Differential Output peak voltage	_	-	-		mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	-	-	-	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	—	20	_	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from El Order Set to valid Electrical Idle	_	_	-	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-lane output skew	_	_	_		ps

3.26. CPRI LV2 E.48 Electrical and Timing Characteristics – Preliminary

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit	-					
UI	Unit Interval	_	203.43	203.45	203.47	ps
T _{DCD}	Duty Cycle Distortion	-	-	_	0.05	UI
J _{UBHPJ}	Uncorrelated Bounded High Probability Jitter	_	_	_	0.15	UI
J _{TOTAL}	Total Jitter	-	_	-	0.3	UI
Z _{RX-DIFF-DC}	DC differential Impedance	-	80	-	120	Ω
T _{SKEW}	Skew between differential signals	_	_	_	9	ps
D	Tx Differential Return Loss (S22),	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
R _{LTX-DIFF}	including package and silicon	3.6864 GHz < freq < 4.9152 GHz	Ι	_	-8 + 16.6 *log (freq/3.6864)	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	100 MHz < freq < 3.6864 GHz	6	_	Ι	dB
I _{TX-SHORT}	Transmitter short-circuit current	_	-	_	100	mA
T _{RISE_FALL-DIFF}	Differential Rise and Fall Time	_		_	_	ps
L _{TX-SKEW}	Lane-to-lane output skew	_	_	_		ps
Receive						
UI	Unit Interval	_	203.43	203.45	203.47	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	—	-	—	1.2	V, p-p
V _{RX-EYE_Y1_Y2}	Receiver eye opening mask, Y1 and Y2	_	62.5	_	375	mV, diff
V _{RX-EYE_X1}	Receiver eye opening mask, X1	_	_	_	0.3	UI
T _{RX-TJ}	Receiver total jitter tolerance (not including sinusoidal)	_	_	_	0.6	UI
D	Receiver differential Return Loss,	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
R _{LRX-DIFF}	package plus silicon	3.6864 GHz < freq < 4.9152 GHz	_	_	-8 + 16.6 *log (freq/3.6864)	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	-	6	_	_	dB
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	100	120	Ω

Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics

Note: Data is measured with PRBS7 data pattern, not with PRBS-31 pattern.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Signal Name	I/O	Description			
Configuration Pads (Used during sysCONFIG) (Continued)					
D1/MISO/IO1	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an input in Master mode, and output in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.			
D2/IO2	I/O	Parallel configuration I/O. Open drain during configuration. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.			
D3/IO3	I/O	Parallel configuration I/O. Open drain during configuration. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.			
D4/IO4	I/O	Parallel configuration I/O. Open drain during configuration. This is a shared I/ O pin. When not in configuration, it can be used as general purpose I/O pin.			
D5/IO5	I/O	Parallel configuration I/O. Open drain during configuration. This is a shared I/ O pin. When not in configuration, it can be used as general purpose I/O pin.			
D6/IO6	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.			
D7/IO7	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin			
SERDES Function					
VCCAx	_	SERDES, transmit, receive, PLL and reference clock buffer power supply for SERDES Dual x. All VCCA supply pins must always be powered to the recommended operating voltage range. If no SERDES channels are used, connect VCCA to VCC. VCCAx = 1.1 V for ECP5, VCCAx = 1.2 V for ECP5-5G.			
VCCAUXAx	_	SERDES Aux Power Supply pin for SERDES Dual x. VCCAUXAx = 2.5 V.			
HDRX[P/N]_D[dual_num]CH[chan_num]	Ι	High-speed SERDES inputs, P = Positive, N = Negative, dual_num = [0, 1], chan_num = [0, 1]. These are dedicated SERDES input pins.			
HDTX[P/N]_D[dual_num]CH[chan_num]	0	High-speed SERDES outputs, P = Positive, N = Negative, dual_num = [0, 1], chan_num = [0, 1]. These are dedicated SERDES output pins.			
REFCLK[P/N]_D[dual_num]	Ι	SERDES Reference Clock inputs, P = Positive, N = Negative, dual_num = [0, 1]. These are dedicated SERDES input pins.			
VCCHRX_D[dual_num]CH[chan_num]	_	SERDES High-Speed Inputs Termination Voltage Supplies, dual_num = [0, 1], chan_num = [0, 1]. These pins should be powered to 1.1 V on ECP5, or 1.2 V on ECP5-5G.			
VCCHTX_D[dual_num]CH[chan_num]	_	SERDES High-Speed Outputs Buffer Voltage Supplies, dual_num = [0, 1], chan_num = [0, 1]. These pins should be powered to 1.1 V on ECP5, or 1.2 V on ECP5-5G.			

Notes:

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, care must be given.

2. These pins are dedicated inputs or can be used as general purpose I/O.

3. m defines the associated channel in the quad.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

(Continued)

Date	Version	Section	Change Summary
	All	Changed document number from DS1044 to FPGA-DS-02012.	
	General Description	Updated Features section. Changed "1.1 V core power supply" to "1.1 V core power supply for ECP5, 1.2 V core power supply for ECP5UM5G".	
	Architecture	Updated Overview section. Change "The ECP5/ECP5-5G devices use 1.1 V as their core voltage" to "The ECP5 devices use 1.1V, ECP5UM5G devices use 1.2V as their core voltage"	
	DC and Switching Characteristics	Updated Table 3.2. Recommended Operating Conditions Added ECP5-5G on VCC to be 1.2V +/- 5% Added ECP5-5G on VCCA to be 1.2V +/- 3% Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby) Changed "Core Power Supply Current" for ICC on LFE5UM5G devices Changed "SERDES Power Supply Current (Per Dual)" for ICCA on LFE5UM5G devices Updated Table 3.20. Register-to-Register Performance. Remove "(DDR/SDR)" from DSP Function Changed DSP functions to 225 MHz	
	Pinout Information	Update Section 4.1 Signal Description. Revised Vcc Description to "Power supply pins for core logic. Dedicated pins. VCC = 1.1 V (ECP5), 1.2 V (ECP5UM5G)"	
February 2016 1.6	All	Changed document status from Preliminary to Final.	
	General Description	Updated Features section. Changed "24K to 84K LUTs" to "12K to 84K LUTs". Added LFE5U-12 column to Table 1.1. ECP5 and ECP5-5G Family Selection Guide.	
	DC and Switching Characteristics	Updated Power up Sequence section. Identified typical ICC current for specific devices in Table 3.8. ECP5/ECP5-5G Supply Current (Standby). Updated values in Table 3.9. ECP5. Updated values in Table 3.10. ECP5-5G. Added values to -8 Timing column of Table 3.19. Pin-to-Pin Performance. Added values to -8 Timing column of Table 3.20. Register-to-Register Performance. Changed LFE5-45 to All Devices in Table 3.22. ECP5/ECP5-5G External Switching Characteristics. Added table notes to Table 3.31. PCIe (5 Gb/s). Added table note to Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics.	
	Pinout Information	Added LFE5U-12 column to the table in LFE5U section.	
	Ordering Information	Updated LFE5U in ECP5/ECP5-5G Part Number Description section: added 12 F = 12K LUTs to Logic Capacity. Added LFE5U-12F information to Ordering Part Numbers section.	

7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com