E. Lattice Semiconductor Corporation - LFE5UM-45F-8BG554C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11000
Number of Logic Elements/Cells	44000
Total RAM Bits	1990656
Number of I/O	245
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	554-FBGA
Supplier Device Package	554-CABGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um-45f-8bg554c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Acronyms in This Document	9
1. General Description	10
1.1. Features	10
2. Architecture	12
2.1. Overview	12
2.2. PFU Blocks	13
2.2.1. Slice	14
2.2.2. Modes of Operation	17
2.3. Routing	
2.4. Clocking Structure	
2.4.1. sysCLOCK PLL	
2.5. Clock Distribution Network	19
2.5.1. Primary Clocks	20
2.5.2. Edge Clock	21
2.6. Clock Dividers	22
2.7. DDRDLL	23
2.8. svsMEM Memory	24
2.8.1. sysMEM Memory Block	
2.8.2 Bus Size Matching	25
2.8.3 RAM Initialization and ROM Operation	
2.8.4 Memory Cascading	
2.8.5 Single Dual and Pseudo-Dual Port Modes	25
2.8.6 Memory Core Reset	26
2.9 svsDSP™ Slice	26
2.9.1. sysDSP Slice Approach Compared to General DSP	26
2.9.2 sysDSP Slice Architecture Features	20
2.10 Programmable I/O Cells	30
2 11 PIO	32
2 11 1 Innut Register Block	32
2 11 2 Output Register Block	32
2 12 Tristate Register Block	34
2.12. DDR Memory Support	
2 13 1 DOS Grouping for DDR Memory	
2 13 2 DLL Calibrated DOS Delay and Control Block (DOSBLE)	
2.13.2, DEL cambrated DQ3 Delay and control block (DQ3D01)	
2.14. Syst/O Buffer Banks	20 20
2.14.2 Typical cycl/O L/O Pobayiar during Dowar up	
2.14.2. Typical syst/O f/O Benaviol during Power-up	
2.14.4 On Chin Programmable Termination	
2.14.5. Hot Sockoting	40
2.14.5. Hot Socketting	40
2.13.1. SERDES DIOLK	
2,12,2, PW	
2.10.5. SERVES CHEHL HILEHALE BUS	
2.10. FIEXINE DUAI SERDES AFCHILECTURE	
2.17. IEEE 1149.1-Compliant Boundary Scan Testability	
2.18. Device Configuration	
2.18.1. Ennanced Configuration Options	
2.18.2. Single Event Upset (SEU) Support	45
2.18.3. Un-Chip Uscillator	
2.19. Density Shifting	
3. DC and Switching Characteristics	47

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5.1. ECP5/ECP5-5G Part Number Description	97
5.2. Ordering Part Numbers	
5.2.1. Commercial	
5.2.2. Industrial	
Supplemental Information	
For Further Information	
Revision History	

Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	23
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	24
Figure 2.12. Memory Core Reset	26
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	29
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	31
Figure 2.17. Input Register Block for PIO on Top Side of the Device	32
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	32
Figure 2.19. Output Register Block on Top Side	33
Figure 2.20. Output Register Block on Left and Right Sides	34
Figure 2.21. Tristate Register Block on Top Side	34
Figure 2.22. Tristate Register Block on Left and Right Sides	35
Figure 2.23. DQS Grouping on the Left and Right Edges	36
Figure 2.24. DQS Control and Delay Block (DQSBUF)	37
Figure 2.25. ECP5/ECP5-5G Device Family Banks	38
Figure 2.26. On-Chip Termination	40
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	42
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	43
Figure 3.1. LVDS25E Output Termination Example	56
Figure 3.2. BLVDS25 Multi-point Output Example	57
Figure 3.3. Differential LVPECL33	58
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	60
Figure 3.6. Receiver RX.CLK.Centered Waveforms	68
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	68
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	68
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	69
Figure 3.10. DDRX71 Video Timing Waveforms	69
Figure 3.11. Receiver DDRX71 RX Waveforms	70
Figure 3.12. Transmitter DDRX71 TX Waveforms	70
Figure 3.13. Transmitter and Receiver Latency Block Diagram	73
Figure 3.14. SERDES External Reference Clock Waveforms	75
Figure 3.15. sysCONFIG Parallel Port Read Cycle	84
Figure 3.16. sysCONFIG Parallel Port Write Cycle	85
Figure 3.17. svsCONFIG Slave Serial Port Timing	85
Figure 3.18. Power-On-Reset (POR) Timing	86
Figure 3.19. svsCONFIG Port Timing	86
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	87
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	89
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	89
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1. General Description

The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.

The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/Os. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards.

The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS.

The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.

The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for users to port designs from ECP5UM to ECP5-5G devices to get higher performance. The Lattice Diamond[™] design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

1.1. Features

- Higher Logic Density for Increased System Integration
 - 12K to 84K LUTs
 - 197 to 365 user programmable I/Os
- Embedded SERDES
 - 270 Mb/s, up to 3.2 Gb/s, SERDES interface (ECP5)
 - 270 Mb/s, up to 5.0 Gb/s, SERDES interface (ECP5-5G)
 - Supports eDP in RDR (1.62 Gb/s) and HDR (2.7 Gb/s)
 - Up to four channels per device: PCI Express, Ethernet (1GbE, SGMII, XAUI), and CPRI
- sysDSP™
 - Fully cascadable slice architecture
 - 12 to 160 slices for high performance multiply and accumulate
 - Powerful 54-bit ALU operations
 - Time Division Multiplexing MAC Sharing
 - Rounding and truncation
 - Each slice supports
 - Half 36 x 36, two 18 x 18 or four 9 x 9 multipliers
 - Advanced 18 x 36 MAC and 18 x 18 Multiply-Multiply-Accumulate (MMAC) operations
- Flexible Memory Resources
 - Up to 3.744 Mb sysMEM[™] Embedded Block RAM (EBR)
 - 194K to 669K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

Figure 2.4. Conned	tivity Supporting L	LUT5, LUT6,	LUT7, and LUT8
--------------------	---------------------	-------------	----------------

Table 2.2	. Slice	Signal	Descri	ptions
-----------	---------	--------	--------	--------

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Inter-PFU signal	FCO	Fast carry chain output ¹

Notes:

2. Requires two adjacent PFUs.

^{1.} See Figure 2.3 on page 15 for connection details.

2.11. **PIO**

The PIO contains three blocks: an input register block, output register block, and tristate register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

2.11.1. Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIOs on the left and right edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the right and left sides includes gearing logic and registers to implement IDDRX1 and IDDRX2 functions. With two PICs sharing the DDR register path, it can also implement IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers to shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers samples the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. The top side of the device supports IDDRX1 gearing function. For more information on gearing function, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.17 shows the input register block for the PIOs on the top edge.

Figure 2.17. Input Register Block for PIO on Top Side of the Device

Figure 2.18 shows the input register block for the PIOs located on the left and right edges.

*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).

Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device

Name	Туре	Description
TD	Input	Tristate Input to Tristate SDR Register
RST	Input	Reset to the Tristate Block
TD[1:0]	Input	Tristate input to TSHX2 function
SCLK	Input	Slow Speed System Clock
ECLK	Input	High Speed Edge Clock
DQSW	Input	Clock from DQS control Block used to generate DDR memory DQS output
DQSW270	Input	Clock from DQS control Block used to generate DDR memory DQ output
TQ	Output	Output of the Tristate block

2.13. DDR Memory Support

2.13.1. DQS Grouping for DDR Memory

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. The support varies by the edge of the device as detailed below.

The left and right sides of the PIC have fully functional elements supporting DDR2, DDR3, LPDDR2 or LPDDR3 memory interfaces. Every 16 PIOs on the left and right sides are grouped into one DQS group, as shown in Figure 2.23 on page 36. Within each DQS group, there are two pre-placed pins for DQS and DQS# signals. The rest of the pins in the DQS group can be used as DQ signals and DM signal. The number of pins in each DQS group bonded out is package dependent. DQS groups with less than 11 pins bonded out can only be used for LPDDR2/3 Command/ Address busses. In DQS groups with more than 11 pins bonded out, up to two pre-defined pins are assigned to be used as "virtual" VCCIO, by driving these pins to HIGH, with the user connecting these pins to VCCIO power supply. These connections create "soft" connections to V_{CCIO} thru these output pins, and make better connections on VCCIO to help to reduce SSO noise. For details, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

3.10. Supply Current (Standby)

Over recommended operating conditions.

Table 3.8. ECP5/ECP5-5G Supply Current (Standby)

Symbol	Parameter	Device	Typical	Unit
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F	77	mA
		LFE5UM5G-25F	77	mA
	Come Devices Commission Comment	LFE5U-45F/ LFE5UM-45F	116	mA
ICC	Core Power Supply Current	116	mA	
		LFE5U-85F/ LFE5UM-85F	212	mA
		LFE5UM5G-85F	212	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	16	mA
ICCAUX	Auxiliary Power Supply Current	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	17	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	26	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	0.5	mA
I _{CCIO}	Bank Power Supply Current (Per Bank)	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	0.5	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	0.5	mA
		LFE5UM-25F	11	mA
I _{CCA}		LFE5UM5G-25F	12	mA
	SERDES Power Supply Current (Per	LFE5UM-45F	9.5	mA
	Dual)	LFE5UM5G-45F	11	mA
		LFE5UM-85F	9.5	mA
		LFE5UM5G-85F	11	mA

Notes:

- For further information on supply current, see the list of technical documentation in Supplemental Information section on page 102.
- Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

• Frequency 0 Hz.

- Pattern represents a "blank" configuration data file.
- T_J = 85 °C, power supplies at nominal voltage.
- To determine the ECP5/ECP5-5G peak start-up current, use the Power Calculator tool in the Lattice Diamond Design Software.

3.13. sysI/O Single-Ended DC Electrical Characteristics

Input/Output	VIL		VIH		V _{oL} Max V _{OH} Min	L 1/m A)	1 1 (m A)	
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	1 _{0L} - (mA)	_{ЮН} - (тпА)
LVCMOS33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
LVCMOS25	-0.3	0.7	1.7	3.465	0.4	$V_{CCIO} - 0.4$	12, 8, 4	-12, -8, -4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	12, 8, 4	-12, -8, -4
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	$V_{CCIO} - 0.4$	8, 4	-8, -4
LVCMOS12	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	8, 4	-8, -4
LVTTL33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
SSTL18_I (DDR2 Memory)	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.465	0.4	V _{CCIO} – 0.4	6.7	-6.7
SSTL18_II	-0.3	V _{REF} -	V _{REF} + 0.125	3.465	0.28	V _{CCIO} -0.28	13.4	-13.4
SSTL15 _I (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	7.5	-7.5
SSTL15_II (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	8.8	-8.8
SSTL135_I (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	7	-7
SSTL135_II (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	8	-8
MIPI D-PHY (LP) ³	-0.3	0.55	0.88	3.465	—	_	—	—
HSUL12 (LPDDR2/3 Memory)	-0.3	V _{REF} -0.1	V _{REF} + 0.1	3.465	0.3	V _{CCIO} – 0.3	4	-4

Table 3.12. Single-Ended DC Characteristics

Notes:

1. For electromigration, the average DC current drawn by the I/O pads within a bank of I/Os shall not exceed 10 mA per I/O (All I/Os used in the same V_{CCIO}).

2. Not all IO types are supported in all banks. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

3. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL}. It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

3.17. Maximum I/O Buffer Speed

Over recommended operating conditions.

Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed

Buffer	Description	Max	Unit			
Maximum Input Frequency						
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	400	MHz			
MLVDS25	MLVDS, Emulated, V_{CCIO} = 2.5 V	400	MHz			
BLVDS25	BLVDS, Emulated, V _{CCIO} = 2.5 V	400	MHz			
MIPI D-PHY (HS Mode)	MIPI Video	400	MHz			
SLVS	SLVS similar to MIPI	400	MHz			
Mini LVDS	Mini LVDS	400	MHz			
LVPECL33	LVPECL, Emulated, V _{CCIO} = 3.3 V	400	MHz			
SSTL18 (all supported classes)	SSTL_18 class I, II, $V_{CCIO} = 1.8 V$	400	MHz			
SSTL15 (all supported classes)	SSTL_15 class I, II, V_{CCIO} = 1.5 V	400	MHz			
SSTL135 (all supported classes)	SSTL_135 class I, II, V _{CCIO} = 1.35 V	400	MHz			
HSUL12 (all supported classes)	HSUL_12 class I, II, V _{CCIO} = 1.2 V	400	MHz			
LVTTL33	LVTTL, V _{CCIO} = 3.3 V	200	MHz			
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	200	MHz			
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	200	MHz			
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	200	MHz			
LVCMOS15	LVCMOS 1.5, V _{CCIO} = 1.5 V	200	MHz			
LVCMOS12	LVCMOS 1.2, V _{CCIO} = 1.2 V	200	MHz			
Maximum Output Frequency		,				
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	150	MHz			
LVDS25	LVDS, V _{CCIO} = 2.5 V	400	MHz			
MLVDS25	MLVDS, Emulated, V _{CCIO} = 2.5 V	150	MHz			
BLVDS25	BLVDS, Emulated, V_{CCIO} = 2.5 V	150	MHz			
LVPECL33	LVPECL, Emulated, V_{CCIO} = 3.3 V	150	MHz			
SSTL18 (all supported classes)	SSTL_18 class I, II, V_{CCIO} = 1.8 V	400	MHz			
SSTL15 (all supported classes)	SSTL_15 class I, II, V_{CCIO} = 1.5 V	400	MHz			
SSTL135 (all supported classes)	SSTL_135 class I, II, V_{CCIO} = 1.35 V	400	MHz			
HSUL12 (all supported classes)	HSUL12 class I, II, V_{CCIO} = 1.2 V	400	MHz			
LVTTL33	LVTTL, VCCIO = 3.3 V	150	MHz			
LVCMOS33 (For all drives)	LVCMOS, 3.3 V	150	MHz			
LVCMOS25 (For all drives)	LVCMOS, 2.5 V	150	MHz			
LVCMOS18 (For all drives)	LVCMOS, 1.8 V	150	MHz			
LVCMOS15 (For all drives)	LVCMOS, 1.5 V	150	MHz			
LVCMOS12 (For all drives)	LVCMOS, 1.2 V	150	MHz			

Notes:

1. These maximum speeds are characterized but not tested on every device.

2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.

3. LVCMOS timing is measured with the load specified in Switching Test Conditions, Table 3.44 on page 90.

- 4. All speeds are measured at fast slew.
- 5. Actual system operation may vary depending on user logic implementation.
- 6. Maximum data rate equals 2 times the clock rate when utilizing DDR.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

Demonstern	Description	Devies	-	-8	-	-7		-6		
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit	
Generic DDR Outpu	ut								•	
Generic DDRX1 Ou	tputs With Clock and Data Cente	red at Pin (GD	DRX1_TX	.SCLK.Ce	ntered) (Jsing PCL	K Clock Ir	nput - Fig	ure 3.6	
t _{DVB_GDDRX1_centered}	Data Output Valid before CLK Output	All Devices	-0.67	_	-0.67	-	-0.67	_	ns + 1/2 UI	
t _{DVA_GDDRX1_centered}	Data Output Valid after CLK Output	All Devices	-0.67	_	-0.67	-	-0.67	-	ns + 1/2 UI	
f _{DATA_GDDRX1_centered}	GDDRX1 Data Rate	All Devices	_	500	-	500	—	500	Mb/s	
f _{MAX_GDDRX1_centered}	GDDRX1 CLK Frequency (SCLK)	All Devices	All Devices — 250 — 25				—	MHz		
Generic DDRX1 Ou	eneric DDRX1 Outputs With Clock and Data Aligi			Pin (GDDRX1_TX.SCLK.Aligned) Using PCLK Clock Input - Figure						
t _{DIB_GDDRX1_aligned}	Data Output Invalid before CLK Output	All Devices	-0.3	_	-0.3	_	-0.3	_	ns	
$t_{\text{DIA}_\text{GDDRX1}_\text{aligned}}$	Data Output Invalid after CLK Output	All Devices	_	0.3	_	0.3	-	0.3	ns	
$f_{DATA_GDDRX1_aligned}$	GDDRX1 Data Rate	All Devices	—	500	—	500	—	500	Mb/s	
$f_{MAX_GDDRX1_aligned}$	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	—	250	—	250	MHz	
Generic DDRX2 Ou	tputs With Clock and Data Cente	red at Pin (GD	DRX2_TX	.ECLK.Ce	ntered) l	Jsing PCL	K Clock Iı	nput, Left	and	
Right sides Only - F	igure 3.8			1		1	1			
$t_{\text{DVB}_{GDDRX2}_{centered}}$	Data Output Valid Before CLK Output	All Devices	- 0.442	—	-0.56	-	– 0.676	_	ns + 1/2 UI	
$t_{\text{DVA}_{GDDRX2}_{centered}}$	Data Output Valid After CLK Output	All Devices	—	0.442	_	0.56	_	0.676	ns + 1/2 UI	
$f_{DATA_GDDRX2_centered}$	GDDRX2 Data Rate	All Devices	_	800		700	—	624	Mb/s	
$f_{MAX_GDDRX2_centered}$	GDDRX2 CLK Frequency (ECLK)	All Devices	_	400	-	350	—	312	MHz	
Generic DDRX2 Outputs With Clock and Data Aligned at Pin (GDDRX2_TX.ECLK.Aligned) Using PCLK Clock Input, Left and Right									d Right	
sides Only - Figure	3.9			1	1	1	1	i.	1	
$t_{DIB_GDDRX2_aligned}$	CLK Output	All Devices	-0.16	_	-0.18	_	-0.2	_	ns	
$t_{\text{DIA}_{GDDRX2}_{aligned}}$	Data Output Invalid after CLK Output	All Devices	_	0.16	-	0.18	-	0.2	ns	
$f_{DATA_GDDRX2_aligned}$	GDDRX2 Data Rate	All Devices	—	800		700	—	624	Mb/s	
$f_{MAX_GDDRX2_aligned}$	GDDRX2 CLK Frequency (ECLK)	All Devices	—	400	—	350	—	312	MHz	
Video DDRX71 Out	puts With Clock and Data Aligne	d at Pin (GDDF	х71_тх.	ECLK) Us	ing PLL Cl	ock Input	t, Left an	d Right si	des Only	
- Figure 3.12					1	1	1	1		
t _{dib_lvds71_i}	Data Output Invalid before CLK Output	All Devices	-0.16	—	-0.18	_	-0.2		ns + (i) * UI	
t _{dia_lvds71_i}	Data Output Invalid after CLK Output	All Devices	—	0.16	_	0.18	_	0.2	ns + (i) * UI	
f _{data_lvds71}	DDR71 Data Rate	All Devices	_	756	—	620	—	525	Mb/s	
f _{MAX_LVDS71}	DDR71 CLK Frequency (ECLK)	All Devices	_	378	—	310	—	262.5	MHz	
Memory Interface										
DDR2/DDR3/DDR3	L/LPDDR2/LPDDR3 READ (DQ Inj	put Data are A	ligned to	DQS)						
t _{dvbdq_ddr2}										
t _{dvbdq_ddr3}	Data Output Valid before DQS					_		_	ns + 1/2	
t _{DVBDQ_DDR3L}	/BDQ_DDR3L Input		_	-0.26	_	0.317	_	0.374	U	
LDVBDQ_LPDDR2										
tovado ddral	Data Output Valid after DQS	All Devices	0.26	_	0.317	_	0.374	_	ns + 1/2	
t _{DVADQ_LPDDR2}	Input								UI	
t _{dvadq_lpddr3}										

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

Deveryoten	Description	Davias	_	-8	-	7	-	-6	11
Parameter	Description	Device	Min	Мах	Min	Max	Min	Max	Unit
fdata_ddr2 fdata_ddr3 fdata_ddr3l fdata_ddr3l fdata_lpddr2 fdata_lpddr3	DDR Memory Data Rate	All Devices	_	800	_	700	_	624	Mb/s
fmax_ddr2 fmax_ddr3 fmax_ddr3l fmax_lpddr2 fmax_lpddr3	DDR Memory CLK Frequency (ECLK)	All Devices	_	400	_	350	_	312	MHz
DDR2/DDR3/DDR	3L/LPDDR2/LPDDR3 WRITE (DO	Q Output Data	are Cente	ered to DC	QS)				
tDQVBS_DDR2 tDQVBS_DDR3 tDQVBS_DDR3L tDQVBS_LPDDR2 tDQVBS_LPDDR3 tDQVAS_DDR2	Data Output Valid before DQS Output	All Devices	_	-0.25	_	-0.25	_	-0.25	UI
t _{DQVAS_DDR3} t _{DQVAS_DDR3L} t _{DQVAS_LPDDR2} t _{DQVAS_LPDDR3}	Data Output Valid after DQS Output	All Devices	0.25	_	0.25	_	0.25	_	UI
fdata_ddr2 fdata_ddr3 fdata_ddr3 fdata_ddr3l fdata_lpddr2 fdata_lpddr3	DDR Memory Data Rate	All Devices	_	800	_	700	_	624	Mb/s
fmax_ddr2 fmax_ddr3 fmax_ddr3l fmax_lpddr2 fmax_lpddr3	DDR Memory CLK Frequency (ECLK)	All Devices	_	400	_	350	_	312	MHz

Notes:

1. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the Diamond software.

 General I/O timing numbers are based on LVCMOS 2.5, 12 mA, Fast Slew Rate, 0pf load. Generic DDR timing are numbers based on LVDS I/O. DDR2 timing numbers are based on SSTL18. DDR3 timing numbers are based on SSTL15. LPDDR2 and LPDDR3 timing numbers are based on HSUL12.

- 3. Uses LVDS I/O standard for measurements.
- 4. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
- 5. All numbers are generated with the Diamond software.

FPGA-DS-02012-1.9

3.20. SERDES High-Speed Data Transmitter

Table 3.24. Serial Output Timing and Levels

Symbol	Description	Min	Тур	Max	Unit
V _{TX-DIFF-PP}	Peak-Peak Differential voltage on selected amplitude ^{1, 2}	-25%	—	25%	mV, p-p
V _{TX-CM-DC}	Output common mode voltage	—	V _{CCHTX} / 2	—	mV, p-p
T _{TX-R}	Rise time (20% to 80%)	50	—	—	ps
T _{TX-F}	Fall time (80% to 20%)	50	—	—	ps
T _{TX-CM-AC-P}	RMS AC peak common-mode output voltage	—	—	20	mV
7	Single ended output impedance for 50/75 $\boldsymbol{\Omega}$	-20%	50/75	20%	Ω
ZTX_SE	Single ended output impedance for 6K $\boldsymbol{\Omega}$	-25%	6K	25%	Ω
RL _{TX_DIFF}	Differential return loss (with package included) ³	—	—	-10	dB
RL _{TX_COM}	Common mode return loss (with package included) 3	_	_	-6	dB

Notes:

1. Measured with 50 Ω Tx Driver impedance at V_{CCHTx} \pm 5\%.

2. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for settings of Tx amplitude.

3. Return los = -10 dB (differential), -6 dB (common mode) for 100 MHz \leq f <= 1.6 GHz with 50 Ω output impedance configuration. This includes degradation due to package effects.

Table 3.25. Channel Output Jitter

Description	Frequency	Min	Тур	Max	Unit
Deterministic	5 Gb/s	—	—	TBD	UI, p-p
Random	5 Gb/s	—	—	TBD	UI, p-p
Total	5 Gb/s	—	—	TBD	UI, p-p
Deterministic	3.125 Gb/s	—	_	0.17	UI, p-p
Random	3.125 Gb/s	—	—	0.25	UI, p-p
Total	3.125 Gb/s	—	—	0.35	UI, p-p
Deterministic	2.5 Gb/s	—	—	0.17	UI, p-p
Random	2.5 Gb/s	—	—	0.20	UI, p-p
Total	2.5 Gb/s	—	—	0.35	UI, p-p
Deterministic	1.25 Gb/s	—	—	0.10	UI, p-p
Random	1.25 Gb/s	—	—	0.22	UI, p-p
Total	1.25 Gb/s	_	_	0.24	UI, p-p

Notes:

1. Values are measured with PRBS 2⁷-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, reference clock @ 10X mode.

2. For ECP5-5G family devices only.

3.24. SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3.29 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min	Тур	Max	Unit
F _{REF}	Frequency range	50	—	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	—	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ^{2, 4}	200	—	V _{CCAUXA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	—	2*V _{CCAUXA}	mV, p-p differential
V _{REF-IN}	Input levels	0	—	V _{CCAUXA} + 0.4	V
D _{REF}	Duty cycle ³	40	—	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-30%	100/HiZ	+30%	Ω
C _{REF-IN-CAP}	Input capacitance	_	_	7	pF

Table 3.29. External Reference Clock Specification (refclkp/refclkn)

Notes:

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

- 2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. With single-ended clock, a reference voltage needs to be externally connected to CLKREFN pin, and the input voltage needs to be swung around this reference voltage.
- 3. Measured at 50% amplitude.
- 4. Single-ended clocking is achieved by applying a reference voltage V_{REF} on REFCLKN input, with the clock applied to REFCLKP input pin. V_{REF} should be set to mid-point of the REFCLKP voltage swing.

Figure 3.14. SERDES External Reference Clock Waveforms

3.25. PCI Express Electrical and Timing Characteristics

3.25.1. PCIe (2.5 Gb/s) AC and DC Characteristics

Over recommended operating conditions.

Table 3.30. PCIe (2.5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit interval	_	399.88	400	400.12	ps
V _{TX-DIFF_P-P}	Differential peak-to-peak output	—	0.8	1.0	1.2	V
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio	_	-3	-3.5	-4	dB
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage	_	_	_	20	mV
V _{TX-RCV-DETECT}	Amount of voltage change allowed during receiver detection	_	_	_	600	mV
V _{TX-CM-DC}	Tx DC common mode voltage	_	0	_	V _{CCHTX}	V
I _{TX-SHORT}	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	_	_	90	mA
Z _{TX-DIFF-DC}	Differential output impedance	—	80	100	120	Ω
RL _{TX-DIFF}	Differential return loss	—	10	_	—	dB
RL _{TX-CM}	Common mode return loss	—	6.0	_	—	dB
T _{TX-RISE}	Tx output rise time	20% to 80%	0.125	_	—	UI
T _{TX-FALL}	Tx output fall time	20% to 80%	0.125	_	—	UI
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link	-	-	-	1.3	ns
T _{TX-EYE}	Transmitter eye width	—	0.75	_	—	UI
T _{TX-EYE-MEDIAN-TO-MAX-} JITTER	Maximum time between jitter median and maximum deviation from median	-	-	-	0.125	UI
Receive ^{1, 2}						
UI	Unit Interval	_	399.88	400	400.12	ps
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage	_	0.34 ³	_	1.2	v
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage	_	65	—	340 ³	mV
V _{RX-CM-AC_P}	RMS AC peak common-mode input voltage	_	_	_	150	mV
Z _{RX-DIFF-DC}	DC differential input impedance	_	80	100	120	Ω
Z _{RX-DC}	DC input impedance	_	40	50	60	Ω
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance	_	200K	—	-	Ω
RL _{RX-DIFF}	Differential return loss	_	10	—	-	dB
RL _{RX-CM}	Common mode return loss	-	6.0	—	—	dB

Notes:

- 1. Values are measured at 2.5 Gb/s.
- 2. Measured with external AC-coupling on the receiver.
- 3. Not in compliance with PCI Express 1.1 standard.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.36. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	—	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—	—	dB
Z _{RX_DIFF}	Differential termination resistance	_	80	100	120	Ω
J _{RX_DJ} ^{2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	_	_	_	0.37	UI
J _{RX_RJ} ^{2, 3, 4}	Random jitter tolerance (peak-to-peak)	_	—	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	_	—	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	_	—	—	0.65	UI
T _{RX_EYE}	Receiver eye opening	—	0.35	—	-	UI

Notes:

- 1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.
- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

3.29. Gigabit Ethernet/SGMII(1.25Gbps)/CPRI LV E.12 Electrical and Timing Characteristics

3.29.1. AC and DC Characteristics

Table 3.37. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF}	Differential rise/fall time	20% to 80%	-	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance	-	80	100	120	Ω
J _{TX_DDJ} ^{2, 3}	Output data deterministic jitter	-	-	_	0.10	UI
J _{TX_TJ} ^{1, 2, 3}	Total output data jitter	-	1	—	0.24	UI

Notes:

1. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

2. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Table 3.38. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10	—	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6	—	—	dB
Z _{RX_DIFF}	Differential termination resistance	-	80	100	120	Ω
J _{RX_DJ} ^{1, 2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	-	—	—	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4}	Random jitter tolerance (peak-to-peak)	-	—	—	0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	-	—	—	0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	—	—	—	0.71	UI
T _{RX_EYE}	Receiver eye opening	—	0.29	—	—	UI

Notes:

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.

- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary	LFE5 LFE5UI	5UM/ M5G-25	LFE5UN	//LFE5U	M5G-45	LFE5UM/LFE5UM5G-85				
Pin Type		285 csfBG	381 caBGA	285 csfBGA	381 caBG	554 caBGA	285 csfBGA	381 caBG	554 caBGA	756 caBGA
ТАР		4	4	4	4	4	4	4	4	4
Miscellaneous Dedicated Pins	7	7	7	7	7	7	7	7	7	
GND		83	59	83	59	113	83	59	113	166
NC		1	8	1	2	33	1	0	17	29
Reserved		0	2	0	2	4	0	2	4	4
SERDES		14	28	14	28	28	14	28	28	28
	VCCA0	2	2	2	2	6	2	2	6	8
VCCA (SERDES)	VCCA1	0	2	0	2	6	0	2	6	9
	VCCAUXA0	2	2	2	2	2	2	2	2	2
VCCAUX (SERDES)	VCCAUXA1	0	2	0	2	2	0	2	2	2
GNDA (SERDES)		26	26	26	26	49	26	26	49	60
Total Balls		285	381	285	381	554	285	381	554	756
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
	Bank 2	10/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8	24/12
High Speed Differential Input	Bank 3	14/7	16/8	14/7	16/8	24/12	14/7	16/8	24/12	32/16
/ Output Pairs	Bank 4	0	0	0	0	0	0	0	0	0
	Bank 6	13/6	16/8	13/6	16/8	24/12	13/6	16/8	24/12	32/16
	Bank 7	8/6	16/8	8/6	16/8	16/8	8/6	16/8	16/8	24/12
	Bank 8	0	0	0	0	0	0	0	0	0
Total High Speed Differential I/	O Pairs	45/2	64/32	45/27	64/3	80/40	45/27	65/3	80/40	112/5
	Bank 0	0	0	0	0	0	0	0	0	0
	Bank 1	0	0	0	0	0	0	0	0	0
DQS Groups	Bank 2	1	2	1	2	2	1	2	2	3
(> 11 pins in group)	Bank 3	2	2	2	2	3	2	2	3	4
	Bank 4	0	0	0	0	0	0	0	0	0
	Bank 6	2	2	2	2	3	2	2	3	4
	Bank 7	1	2	1	2	2	1	2	2	3
	Bank 8	0	0	0	0	0	0	0	0	0
Total DQS Groups		6	8	6	8	10	6	8	10	14

4.3.2. LFE5U

Pin Information Summary	L	LFE5U-12			LFE5U-25			LFE5U-45				LFE5U-85			
Pin Type		256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	256 caBGA	285 csfBGA	381 caBGA	554 caBGA	285 csfBG	381 caBGA	554 caBGA	756 caBG
	Bank 0	24	6	24	24	6	24	24	6	27	32	6	27	32	56
	Bank 1	32	6	32	32	6	32	32	6	33	40	6	33	40	48
General	Bank 2	32	21	32	32	21	32	32	21	32	32	21	34	32	48
Purpose	Bank 3	32	28	32	32	28	32	32	28	33	48	28	33	48	64
Inputs/Outputs	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	14	24
per Bank	Bank 6	32	26	32	32	26	32	32	26	33	48	26	33	48	64
	Bank 7	32	18	32	32	18	32	32	18	32	32	18	32	32	48
	Bank 8	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Total Single-Ende	d User	197	118	197	197	118	197	197	118	203	245	118	205	259	365
VCC		6	13	20	6	13	20	6	13	20	24	13	20	24	36
VCCAUX (Core)		2	3	4	2	3	4	2	3	4	9	3	4	9	8
	Bank 0	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 1	2	1	2	2	1	2	2	1	2	3	1	2	3	4
	Bank 2	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 3	2	2	3	2	2	3	2	2	3	3	2	3	3	4
VCCIO	Bank 4	0	0	0	0	0	0	0	0	0	0	0	0	2	2
	Bank 6	2	2	3	2	2	3	2	2	3	4	2	3	4	4
	Bank 7	2	2	3	2	2	3	2	2	3	3	2	3	3	4
	Bank 8	1	2	2	1	2	2	1	2	2	2	2	2	2	2
ТАР		4	4	4	4	4	4	4	4	4	4	4	4	4	4
Miscellaneous De	dicated	7	7	7	7	7	7	7	7	7	7	7	7	7	7
GND		27	123	99	27	123	99	27	123	99	198	123	99	198	267
NC		0	1	26	0	1	26	0	1	26	33	1	26	33	29
Reserved		0	4	6	0	4	6	0	4	6	12	4	6	12	12
Total Balls		256	285	381	256	285	381	256	285	381	554	285	381	554	756
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	16/8	16/8	10/8	17/9	16/8
High Speed Differ	ential	Bank	16/8	14/7	16/8	16/8	14/7	16/8	16/8	14/7	16/8	24/12	14/7	16/8	24/1
Input / Output Pa	irs	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	16/8	13/6	16/8	16/8	13/6	16/8	16/8	13/6	16/8	24/12	13/6	16/8	24/1
		Bank	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8	8/6	16/8	16/8
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total High Speed		64/32	45/27	64/32	64/32	45/27	64/32	64/32	45/27	64/32	80/40	45/27	65/33	80/40	112/
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
DQS Groups		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
(> 11 pins in grou	p)	Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
		Bank	2	2	2	2	2	2	2	2	2	3	2	2	3
		Bank	2	1	2	2	1	2	2	1	2	2	1	2	2
		Bank	0	0	0	0	0	0	0	0	0	0	0	0	0
Total DQS Groups	5	8	6	8	8	6	8	8	6	8	10	6	8	10	14

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	DC and Switching Characteristics	SERDES High-Speed Data Receiver section. Updated Table 3.26. Serial Input Data Specifications, Table 3.28. Receiver Total Jitter Tolerance Specification, and Table 3.29. External Reference Clock Specification (refclkp/refclkn).
			Modified section heading to XXAUI/CPRI LV E.30 Electrical and Timing Characteristics. Updated Table 3.33 Transmit and Table 3.34. Receive and Jitter Tolerance.
			Modified section heading to CPRI LV E.24 Electrical and Timing Characteristics. Updated Table 3.35. Transmit and Table 3.36. Receive and Jitter Tolerance.
			Modified section heading to Gigabit Ethernet/SGMII/CPRI LV E.12 Electrical and Timing Characteristics. Updated Table 3.37. Transmit and Table 3.38. Receive and Jitter Tolerance.
June 2014	1.1	Ordering Information	Updated ECP5/ECP5-5G Part Number Description and Ordering Part Numbers sections.
March 2014	1.0	All	Initial release.