E. Lattice Semiconductor Corporation - <u>LFE5UM-85F-6BG381I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	205
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um-85f-6bg381i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1. ECP5/ECP5-5G Part Number Description	97
5.2. Ordering Part Numbers	
5.2.1. Commercial	
5.2.2. Industrial	
Supplemental Information	
For Further Information	
Revision History	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
ALU	Arithmetic Logic Unit
BGA	Ball Grid Array
CDR	Clock and Data Recovery
CRC	Cycle Redundancy Code
DCC	Dynamic Clock Control
DCS	Dynamic Clock Select
DDR	Double Data Rate
DLL	Delay-Locked Loops
DSP	Digital Signal Processing
EBR	Embedded Block RAM
ECLK	Edge Clock
FFT	Fast Fourier Transforms
FIFO	First In First Out
FIR	Finite Impulse Response
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVPECL	Low Voltage Positive Emitter Coupled Logic
LVTTL	Low Voltage Transistor-Transistor Logic
LUT	Look Up Table
MLVDS	Multipoint Low-Voltage Differential Signaling
PCI	Peripheral Component Interconnect
PCS	Physical Coding Sublayer
PCLK	Primary Clock
PDPR	Pseudo Dual Port RAM
PFU	Programmable Functional Unit
PIC	Programmable I/O Cells
PLL	Phase-Locked Loops
POR	Power On Reset
SCI	SERDES Client Interface
SERDES	Serializer/Deserializer
SEU	Single Event Upset
SLVS	Scalable Low-Voltage Signaling
SPI	Serial Peripheral Interface
SPR	Single Port RAM
SRAM	Static Random-Access Memory
ТАР	Test Access Port
TDM	Time Division Multiplexing

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2. Architecture

2.1. Overview

Each ECP5/ECP5-5G device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and rows of sysDSP[™] Digital Signal Processing slices, as shown in Figure 2.1 on page 13. The LFE5-85 devices have three rows of DSP slices, the LFE5-45 devices have two rows, and both LFE5-25 and LFE5-12 devices have one. In addition, the LFE5UM/LFE5UM5G devices contain SERDES Duals on the bottom of the device.

The Programmable Functional Unit (PFU) contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFU block is optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array.

The ECP5/ECP5-5G devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 18 Kb fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or ROM. In addition, ECP5/ECP5-5G devices contain up to three rows of DSP slices. Each DSP slice has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The ECP5 devices feature up to four embedded 3.2 Gb/s SERDES channels, and the ECP5-5G devices feature up to four embedded 5 Gb/s SERDES channels. Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each group of two SERDES channels, along with its Physical Coding Sublayer (PCS) block, creates a dual DCU (Dual Channel Unit). The functionality of the SERDES/PCS duals can be controlled by SRAM cell settings during device configuration or by registers that are addressable during device operation. The registers in every dual can be programmed via the SERDES Client Interface (SCI). These DCUs (up to two) are located at the bottom of the devices.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the ECP5/ECP5-5G devices are arranged in seven banks (eight banks for LFE5-85 devices in caBGA756 and caBGA554 packages), allowing the implementation of a wide variety of I/O standards. One of these banks (Bank 8) is shared with the programming interfaces. Half of the PIO pairs on the left and right edges of the device can be configured as LVDS transmit pairs, and all pairs on left and right can be configured as LVDS receive pairs. The PIC logic in the left and right banks also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 LVDS, along with memory interfaces including DDR3 and LPDDR3.

The ECP5/ECP5-5G registers in PFU and sysl/O can be configured to be SET or RESET. After power up and the device is configured, it enters into user mode with these registers SET/RESET according to the configuration setting, allowing the device entering to a known state for predictable system function.

Other blocks provided include PLLs, DLLs and configuration functions. The ECP5/ECP5-5G architecture provides up to four Delay-Locked Loops (DLLs) and up to four Phase-Locked Loops (PLLs). The PLL and DLL blocks are located at the corners of each device.

The configuration block that supports features such as configuration bit-stream decryption, transparent updates and dual-boot support is located at the bottom of each device, to the left of the SERDES blocks. Every device in the ECP5/ECP5-5G family supports a sysCONFIG[™] ports located in that same corner, powered by Vccio8, allowing for serial or parallel device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error detect capability. The ECP5 devices use 1.1 V and ECP5UM5G devices use 1.2 V as their core voltage.

Figure 2.4. Conned	tivity Supporting L	LUT5, LUT6,	LUT7, and LUT8
--------------------	---------------------	-------------	----------------

Table 2.2	. Slice	Signal	Descri	ptions
-----------	---------	--------	--------	--------

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Inter-PFU signal	FCO	Fast carry chain output ¹

Notes:

2. Requires two adjacent PFUs.

^{1.} See Figure 2.3 on page 15 for connection details.

Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)

2.8. sysMEM Memory

ECP5/ECP5-5G devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18 Kb RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers (via external PFUs).

2.8.1. sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as listed in Table 2.6 on page 25. FIFOs can be implemented in sysMEM EBR blocks by implementing support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with 18-bit and 36-bit data widths. For more information, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

Table 2.6. sysMEM Block Configurations

Memory Mode	Configurations				
	16,384 x 1				
	8,192 x 2				
Single Dort	4,096 x 4				
Single Port	2,048 x 9				
	1,024 x 18				
	512 x 36				
	16,384 x 1				
	8,192 x 2				
True Dual Port	4,096 x 4				
	2,048 x 9				
	1,024 x 18				
	16,384 x 1				
	8,192 x 2				
Decudo Dual Dort	4,096 x 4				
PSeudo Dual Port	2,048 x 9				
	1,024 x 18				
	512 x 36				

2.8.2. Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

2.8.3. RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

2.8.4. Memory Cascading

Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

2.8.5. Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports the following forms of write behavior for single port or dual port operation:

- **Normal** Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.
- **Read-Before-Write** When new data is written, the old content of the address appears at the output. This mode is supported for x9, x18, and x36 data widths.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.3. **Power Supply Ramp Rates**

Table 3.3. Power Supply Ramp Rates

Symbol	Parameter	Min	Тур	Max	Unit
t _{RAMP}	Power Supply ramp rates for all supplies	0.01		10	V/ms

Note: Assumes monotonic ramp rates.

Power-On-Reset Voltage Levels 3.4.

Table 3.4. Power-On-Reset Voltage Levels

Symbol	Parameter			Min	Тур	Max	Unit
		Power-On-Reset ramp-up	V _{cc}	0.90	—	1.00	V
V _{PORUP}	All Devices trip point (Monitoring V _{CC} , V _{CCAUX} , and V _{CCIO8})	V _{CCAUX}	2.00	—	2.20	V	
		V _{CCAUX} , and V _{CCIO8})	V _{CCIO8}	0.95	—	1.06	V
N		Power-On-Reset ramp-		0.77	—	0.87	V
V PORDN	All Devices	V_{cc} , and V_{ccAUX}	V _{CCAUX}	1.80	_	2.00	V

Notes:

These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

- Only V_{CCIO8} has a Power-On-Reset ramp up trip point. All other V_{CCIOs} do not have Power-On-Reset ramp up detection.
- V_{CCIO8} does not have a Power-On-Reset ramp down detection. V_{CCIO8} must remain within the Recommended Operating Conditions to ensure proper operation.

Power up Sequence 3.5.

Power-On-Reset (POR) puts the ECP5/ECP5-5G device in a reset state. POR is released when Vcc, VccAUX, and VccI08 are ramped above the VPORUP voltage, as specified above.

V_{CCIO8} controls the voltage on the configuration I/O pins. If the ECP5/ECP5-5G device is using Master SPI mode to download configuration data from external SPI Flash, it is required to ramp V_{CCIO8} above V_{IH} of the external SPI Flash, before at least one of the other two supplies (V_{CC} and/or V_{CCAUX}) is ramped to V_{PORUP} voltage level. If the system cannot meet this power up sequence requirement, and requires the V_{CCIO8} to be ramped last, then the system must keep either PROGRAMN or INITN pin LOW during power up, until V_{CCI08} reaches V_{IH} of the external SPI Flash. This ensures the signals driven out on the configuration pins to the external SPI Flash meet the V_{IH} voltage requirement of the SPI Flash. For LFE5UM/LFE5UM5G devices, it is required to power up V_{CCA}, before V_{CCAUXA} is powered up.

Hot Socketing Specifications 3.6.

Table 3.5. Hot Socketing Specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IDK_HS	Input or I/O Leakage Current for Top and Bottom Banks Only	$0 \leq V_{IN} \leq V_{IH}$ (Max)	_	_	±1	mA
	Input or I/O Leakage Current	$0 \leq V_{\text{IN}} < V_{\text{CCIO}}$	—	—	±1	mA
IDK	for Left and Right Banks Only	$V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO} \! + 0.5 \ V$	—	18	—	mA

Notes:

V_{CC}, V_{CCAUX} and V_{CCIO} should rise/fall monotonically. 1.

I_{DK} is additive to I_{PU}, I_{PW} or I_{BH}. 2.

LVCMOS and LVTTL only. 3.

4. Hot socket specification defines when the hot socketed device's junction temperature is at 85 °C or below. When the hot socketed device's junction temperature is above 85 °C, the I_{DK} current can exceed ±1 mA.

3.12. sysI/O Recommended Operating Conditions

Table 3.11. sysI/O Recommended Operating Conditions

Standard		Vccio		V _{REF} (V)			
Stanuaru	Min	Тур	Max	Min	Тур	Max	
LVCMOS331	3.135	3.3	3.465	—	—	—	
LVCMOS33D ³ Output	3.135	3.3	3.465			—	
LVCMOS251	2.375	2.5	2.625	—	—	—	
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—	—	—	
LVCMOS12 ¹	1.14	1.2	1.26	—	—	—	
LVTTL33 ¹	3.135	3.3	3.465	—	—	—	
SSTL15_I, _II ²	1.43	1.5	1.57	0.68	0.75	0.9	
SSTL18_I, _II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL135_I, _II ²	1.28	1.35	1.42	0.6	0.675	0.75	
HSUL12 ²	1.14	1.2	1.26	0.588	0.6	0.612	
MIPI D-PHY LP Input ^{3, 5}	1.425	1.5	1.575	—	—	—	
LVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	—	
subLVS ³ (Input only)	—	—	—	—	—	—	
SLVS ³ (Input only)	—	—	—	—	—	—	
LVDS25E ³ Output	2.375	2.5	2.625	—	—	—	
MLVDS ³ Output	2.375	2.5	2.625	—	—	—	
LVPECL33 ^{1, 3} Output	3.135	3.3	3.465	—	—	_	
BLVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	_	
HSULD12D ^{2, 3}	1.14	1.2	1.26	—	—	—	
SSTL135D_I, II ^{2, 3}	1.28	1.35	1.42	_	_	_	
SSTL15D_I, II ^{2, 3}	1.43	1.5	1.57	—	—	—	
SSTL18D_I ^{1, 2, 3} , II ^{1, 2, 3}	1.71	1.8	1.89	_	_	_	

Notes:

1. For input voltage compatibility, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2. V_{REF} is required when using Differential SSTL and HSUL to interface to DDR/LPDDR memories.

3. These differential inputs use LVDS input comparator, which uses V_{CCAUX} power

4. All differential inputs and LVDS25 output are supported in the Left and Right banks only. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

5. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL} . It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.13. sysl/O Single-Ended DC Electrical Characteristics

Input/Output	VIL		V _{IH}		V _{oL} Max	V _{он} Min	1 1 (m A)	L 1/m A)
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	1 _{0L} - (mA)	_{ЮН} - (тпА)
LVCMOS33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
LVCMOS25	-0.3	0.7	1.7	3.465	0.4	$V_{CCIO} - 0.4$	12, 8, 4	-12, -8, -4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	12, 8, 4	-12, -8, -4
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	$V_{CCIO} - 0.4$	8, 4	-8, -4
LVCMOS12	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	8, 4	-8, -4
LVTTL33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
SSTL18_I (DDR2 Memory)	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.465	0.4	V _{CCIO} – 0.4	6.7	-6.7
SSTL18_II	-0.3	V _{REF} -	V _{REF} + 0.125	3.465	0.28	V _{CCIO} -0.28	13.4	-13.4
SSTL15 _I (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	7.5	-7.5
SSTL15_II (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	8.8	-8.8
SSTL135_I (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	7	-7
SSTL135_II (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	8	-8
MIPI D-PHY (LP) ³	-0.3	0.55	0.88	3.465	—	_	—	—
HSUL12 (LPDDR2/3 Memory)	-0.3	V _{REF} -0.1	V _{REF} + 0.1	3.465	0.3	V _{CCIO} – 0.3	4	-4

Table 3.12. Single-Ended DC Characteristics

Notes:

1. For electromigration, the average DC current drawn by the I/O pads within a bank of I/Os shall not exceed 10 mA per I/O (All I/Os used in the same V_{CCIO}).

2. Not all IO types are supported in all banks. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

3. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL}. It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

3.14.8. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard and relies on the advantage of its use of smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The ECP5/ECP5-5G devices can receive differential input up to 800 Mb/s with its LVDS input buffer. This LVDS input buffer is used to meet the SLVS input standard specified by the JEDEC standard. The SLVS output parameters are compared to ECP5/ECP5-5G LVDS input parameters, as listed in Table 3.18.

Table 3.18. Input to SLVS

Parameter	ECP5/ECP5-5G LVDS Input	SLVS Output	Unit
Vcm (min)	50	150	mV
Vcm (max)	2350	250	mV
Differential Voltage (min)	100	140	mV
Differential Voltage (max)	—	270	mV

ECP5/ECP5-5G does not support SLVS output. However, SLVS output can be created using ECP5/ECP5-5G LVDS outputs by level shift to meet the low Vcm/Vod levels required by SLVS. Figure 3.5 shows how the LVDS output can be shifted external to meet SLVS levels.

Figure 3.5. SLVS Interface

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.20. SERDES High-Speed Data Transmitter

Table 3.24. Serial Output Timing and Levels

Symbol	Description	Min	Тур	Max	Unit
V _{TX-DIFF-PP}	Peak-Peak Differential voltage on selected amplitude ^{1, 2}	-25%	—	25%	mV, p-p
V _{TX-CM-DC}	Output common mode voltage	—	V _{CCHTX} / 2	—	mV, p-p
T _{TX-R}	Rise time (20% to 80%)	50	—	—	ps
T _{TX-F}	Fall time (80% to 20%)	50	—	—	ps
T _{TX-CM-AC-P}	RMS AC peak common-mode output voltage	—	—	20	mV
7	Single ended output impedance for 50/75 $\boldsymbol{\Omega}$	-20%	50/75	20%	Ω
Z _{TX_SE}	Single ended output impedance for 6K $\boldsymbol{\Omega}$	-25%	6K	25%	Ω
RL _{TX_DIFF}	Differential return loss (with package included) ³	—	—	-10	dB
RL _{TX_COM}	Common mode return loss (with package included) 3	—	—	-6	dB

Notes:

1. Measured with 50 Ω Tx Driver impedance at V_{CCHTx} \pm 5\%.

2. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for settings of Tx amplitude.

3. Return los = -10 dB (differential), -6 dB (common mode) for 100 MHz \leq f <= 1.6 GHz with 50 Ω output impedance configuration. This includes degradation due to package effects.

Table 3.25. Channel Output Jitter

Description	Frequency	Min	Тур	Max	Unit
Deterministic	5 Gb/s	—	—	TBD	UI, p-p
Random	5 Gb/s	—	—	TBD	UI, p-p
Total	5 Gb/s	—	—	TBD	UI, p-p
Deterministic	3.125 Gb/s	_	_	0.17	UI, p-p
Random	3.125 Gb/s	—	—	0.25	UI, p-p
Total	3.125 Gb/s	—	—	0.35	UI, p-p
Deterministic	2.5 Gb/s	—	—	0.17	UI, p-p
Random	2.5 Gb/s	—	—	0.20	UI, p-p
Total	2.5 Gb/s	—	—	0.35	UI, p-p
Deterministic	1.25 Gb/s	—	—	0.10	UI, p-p
Random	1.25 Gb/s	—	—	0.22	UI, p-p
Total	1.25 Gb/s	_	_	0.24	UI, p-p

Notes:

1. Values are measured with PRBS 2⁷-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, reference clock @ 10X mode.

2. For ECP5-5G family devices only.

3.22. SERDES High-Speed Data Receiver

Table 3.27. Serial Input Data Specifications

Symbol	Description	Min	Тур	Max	Unit
V _{RX-DIFF-S}	Differential input sensitivity	150	—	1760	mV, p-p
V _{RX-IN}	Input levels	0	—	V _{CCA} +0.5 ²	V
V _{RX-CM-DCCM}	Input common mode range (internal DC coupled mode)	0.6	_	V _{CCA}	V
V _{RX-CM-ACCM}	Input common mode range (internal AC coupled mode) ²	0.1	_	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ¹	—	1000	_	Bits
Z _{RX-TERM}	Input termination 50/75 Ω /High Z	-20%	50/75/5 K	+20%	Ω
RL _{RX-RL}	Return loss (without package)	—	—	-10	dB

Notes:

1. This is the typical number of bit times to re-lock to a new phase or frequency within ±300 ppm, assuming 8b10b encoded data.

2. Up to 1.655 for ECP5, and 1.76 for ECP5-5G.

3.23. Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min	Тур	Max	Unit
Deterministic		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Random	5 Gb/s	400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	_	0.37	UI <i>,</i> p-p
Random	3.125 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	_	0.37	UI <i>,</i> p-p
Random	2.5 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	-	0.37	UI, p-p
Random	1.25 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p

Table 3.28. Receiver Total Jitter Tolerance Specification

Notes:

1. Jitter tolerance measurements are done with protocol compliance tests: 3.125 Gb/s - XAUI Standard, 2.5 Gb/s - PCIe Standard, 1.25 Gb/s - SGMII Standard.

2. For ECP5-5G family devices only.

3.25.2. PCIe (5 Gb/s) – Preliminary AC and DC Characteristics

Over recommended operating conditions.

Table 3.31. PCIe (5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit ¹						
UI	Unit Interval	—	199.94	200	200.06	ps
B _{WTX-PKG-PLL2}	Tx PLL bandwidth corresponding to PKGTX-PLL2	-	5	_	16	MHz
P _{KGTX-PLL2}	Tx PLL Peaking	-	_	—	1	dB
V _{TX-DIFF-PP}	Differential p-p Tx voltage swing	-	0.8	—	1.2	V, p-р
V _{TX-DIFF-PP-LOW}	Low power differential p-p Tx voltage swing	-	0.4	_	1.2	V, p-p
V _{TX-DE-RATIO-3.5dB}	Tx de-emphasis level ratio at 3.5dB	-	3	—	4	dB
V _{TX-DE-RATIO-6dB}	Tx de-emphasis level ratio at 6dB	-	5.5	_	6.5	dB
T _{MIN-PULSE}	Instantaneous lone pulse width	_		_	_	UI
T _{TX-RISE-FALL}	Transmitter rise and fall time	_		_	_	UI
T _{TX-EYE}	Transmitter Eye, including all jitter sources	_	0.75	_	_	UI
T _{TX-DJ}	Tx deterministic jitter > 1.5 MHz	_	_	_	0.15	UI
T _{TX-RJ}	Tx RMS jitter < 1.5 MHz		-	_	3	ps, RMS
T _{RF-MISMATCH}	Tx rise/fall time mismatch	-	_	—		UI
D	Tx Differential Return Loss, including	50 MHz < freq < 1.25 GHz	10	_	_	dB
INLTX-DIFF	package and silicon	1.25 GHz < freq < 2.5 GHz	8	_	_	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	50 MHz < freq < 2.5 GHz	6	_	-	dB
Z _{TX-DIFF-DC}	DC differential Impedance	-	_	—	120	Ω
V _{TX-CM-AC-PP}	Tx AC peak common mode voltage, peak-peak	-	-	—		mV, p-p
I _{TX-SHORT}	Transmitter short-circuit current	-	-	_	90	mA
V _{TX-DC-CM}	Transmitter DC common-mode voltage	_	0	_	1.2	v
V _{TX-IDLE-DIFF-DC}	Electrical Idle Output DC voltage	-	0	_	5	mV
V _{TX-IDLE-DIFF-AC-p}	Electrical Idle Differential Output peak voltage	_	_	_		mV
V _{TX-RCV-DETECT}	Voltage change allowed during Receiver Detect	_	_	_	600	mV
T _{TX-IDLE-MIN}	Min. time in Electrical Idle	-	20	—	_	ns
T _{TX-IDLE-SET-TO-IDLE}	Max. time from El Order Set to valid Electrical Idle	_	_	_	8	ns
T _{TX-IDLE-TO-DIFF-DATA}	Max. time from Electrical Idle to valid differential output	_	_	_	8	ns
L _{TX-SKEW}	Lane-to-lane output skew	-	_	—		ps

Table 3.31. PCIe (5 Gb/s) (Continued)

Symbol	Description	Test Conditions	Min	Тур	Мах	Unit
Receive ^{1, 2}		' 				
UI	Unit Interval	—	199.94	200	200.06	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	—	0.34 ³	_	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	Ι	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	—	—	_	88	ps
V _{RX-CM-AC}	Common mode noise from Rx	_	_	Ι		тV <i>,</i> p-р
D	Receiver differential Return Loss,	50 MHz < freq < 1.25 GHz	10	Ι	Ι	dB
nlrx-diff	package plus silicon	1.25 GHz < freq < 2.5 GHz	8	Ι	Ι	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	Ι	Ι	dB
Z _{RX-DC}	Receiver DC single ended impedance	—	40		60	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	_	200K		I	Ω
V _{RX-CM-AC-P}	Rx AC peak common mode voltage	_	_	_		mV <i>,</i> peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65	-	340 ³	mv,
L _{RX-SKEW}	Receiver lane-lane skew	_	_	_	8	ns

Notes:

1. Values are measured at 5 Gb/s.

2. Measured with external AC-coupling on the receiver.

3. Not in compliance with PCI Express standard.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

- 1. Time taken from V_{CC} , V_{CCAUX} or V_{CCIO8} , whichever is the last to cross the POR trip point.
- 2. Device is in a Master Mode (SPI, SPIm).
- 3. The CFG pins are normally static (hardwired).

Figure 3.19. sysCONFIG Port Timing

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 3.23. JTAG Port Timing Waveforms

3.33. Switching Test Conditions

Figure 3.24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 3.44.

*CL Includes Test Fixture and Probe Capacitance

Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards

Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	VT
		œ		LVCMOS 3.3 = 1.5 V	—
LVTTL and other LVCMOS settings (L \ge H, H \ge L)				LVCMOS 2.5 = $V_{CCIO}/2$	—
	×		0 pF	LVCMOS 1.8 = V _{CCIO} /2	_
				LVCMOS 1.5 = $V_{CCIO}/2$	—
				LVCMOS 1.2 = $V_{CCIO}/2$	—
LVCMOS 2.5 I/O (Z ≥ H)	8	1 MΩ	0 pF	V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ L)	1 MΩ	x	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)	8	100	0 pF	V _{он} – 0.10	—
LVCMOS 2.5 I/O (L ≥ Z)	100	×	0 pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

5. Ordering Information

5.1. ECP5/ECP5-5G Part Number Description

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-45F-8BG554C	-8	Lead free caBGA	554	Commercial	44	No
LFE5U-85F-6MG285C	-6	Lead free csfBGA	285	Commercial	84	No
LFE5U-85F-7MG285C	-7	Lead free csfBGA	285	Commercial	84	No
LFE5U-85F-8MG285C	-8	Lead free csfBGA	285	Commercial	84	No
LFE5U-85F-6BG381C	-6	Lead free caBGA	381	Commercial	84	No
LFE5U-85F-7BG381C	-7	Lead free caBGA	381	Commercial	84	No
LFE5U-85F-8BG381C	-8	Lead free caBGA	381	Commercial	84	No
LFE5U-85F-6BG554C	-6	Lead free caBGA	554	Commercial	84	No
LFE5U-85F-7BG554C	-7	Lead free caBGA	554	Commercial	84	No
LFE5U-85F-8BG554C	-8	Lead free caBGA	554	Commercial	84	No
LFE5U-85F-6BG756C	-6	Lead free caBGA	756	Commercial	84	No
LFE5U-85F-7BG756C	-7	Lead free caBGA	756	Commercial	84	No
LFE5U-85F-8BG756C	-8	Lead free caBGA	756	Commercial	84	No
LFE5UM-25F-6MG285C	-6	Lead free csfBGA	285	Commercial	24	Yes
LFE5UM-25F-7MG285C	-7	Lead free csfBGA	285	Commercial	24	Yes
LFE5UM-25F-8MG285C	-8	Lead free csfBGA	285	Commercial	24	Yes
LFE5UM-25F-6BG381C	-6	Lead free caBGA	381	Commercial	24	Yes
LFE5UM-25F-7BG381C	-7	Lead free caBGA	381	Commercial	24	Yes
LFE5UM-25F-8BG381C	-8	Lead free caBGA	381	Commercial	24	Yes
LFE5UM-45F-6MG285C	-6	Lead free csfBGA	285	Commercial	44	Yes
LFE5UM-45F-7MG285C	-7	Lead free csfBGA	285	Commercial	44	Yes
LFE5UM-45F-8MG285C	-8	Lead free csfBGA	285	Commercial	44	Yes
LFE5UM-45F-6BG381C	-6	Lead free caBGA	381	Commercial	44	Yes
LFE5UM-45F-7BG381C	-7	Lead free caBGA	381	Commercial	44	Yes
LFE5UM-45F-8BG381C	-8	Lead free caBGA	381	Commercial	44	Yes
LFE5UM-45F-6BG554C	-6	Lead free caBGA	554	Commercial	44	Yes
LFE5UM-45F-7BG554C	-7	Lead free caBGA	554	Commercial	44	Yes
LFE5UM-45F-8BG554C	-8	Lead free caBGA	554	Commercial	44	Yes
LFE5UM-85F-6MG285C	-6	Lead free csfBGA	285	Commercial	84	Yes
LFE5UM-85F-7MG285C	-7	Lead free csfBGA	285	Commercial	84	Yes
LFE5UM-85F-8MG285C	-8	Lead free csfBGA	285	Commercial	84	Yes
LFE5UM-85F-6BG381C	-6	Lead free caBGA	381	Commercial	84	Yes
LFE5UM-85F-7BG381C	-7	Lead free caBGA	381	Commercial	84	Yes
LFE5UM-85F-8BG381C	-8	Lead free caBGA	381	Commercial	84	Yes
LFE5UM-85F-6BG554C	-6	Lead free caBGA	554	Commercial	84	Yes
LFE5UM-85F-7BG554C	-7	Lead free caBGA	554	Commercial	84	Yes
LFE5UM-85F-8BG554C	-8	Lead free caBGA	554	Commercial	84	Yes
LFE5UM-85F-6BG756C	-6	Lead free caBGA	756	Commercial	84	Yes
LFE5UM-85F-7BG756C	-7	Lead free caBGA	756	Commercial	84	Yes
LFE5UM-85F-8BG756C	-8	Lead free caBGA	756	Commercial	84	Yes
LFE5UM5G-25F-8MG285C	-8	Lead tree cstBGA	285	Commercial	24	Yes
LFE5UM5G-25F-8BG381C	-8	Lead free caBGA	381	Commercial	24	Yes
LFE5UM5G-45F-8MG285C	-8	Lead tree cstBGA	285	Commercial	44	Yes
LFE5UM5G-45F-8BG381C	-8	Lead free caBGA	381	Commercial	44	Yes
LFE5UM5G-45F-8BG554C	-8	Lead free caBGA	554	Commercial	44	Yes
LFE5UM5G-85F-8MG285C	-8	Lead free csfBGA	285	Commercial	84	Yes

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	All	Changed document status from Advance to Preliminary.
		General Description	Updated Features section.
			Deleted Serial RapidIO protocol under Embedded SERDES.
			Corrected data rate under Pre-Engineered Source Synchronous
			Changed DD3. LPDDR3 to DDR2/3, LPDDR2/3.
			Mentioned transmit de-emphasis "pre- and post-cursors".
		Architecture	Updated Overview section.
			Revised description of PFU blocks.
			 Specified SRAM cell settings in describing the control of SERDES/PCS duals.
			Updated SERDES and Physical Coding Sublayer section.
			Changed PCI Express 2.0 to PCI Express Gen1 and Gen2.
			Deleted Serial RapidIO protocol.
			 Updated Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support.
			Updated On-Chip Oscillator section.
			• Deleted "130 MHz ±15% CMOS" oscillator.
			 Updated Table 2.16. Selectable Master Clock (MCLK) Frequencies during Configuration (Nominal)
		DC and Switching	Updated Absolute Maximum Ratings section. Added supply voltages
		Characteristics	V _{CCA} and V _{CCAUXA} .
			Updated sysI/O Recommended Operating Conditions section. Revised HSULD12D VCCIO values and removed table note.
			Updated sysI/O Single-Ended DC Electrical Characteristics section. Revised some values for SSTL15 _I, SSTL15 _II, SSTL135_I, SSTL15_II, and HSUL12.
			Updated External Switching Characteristics section. Changed parameters to $t_{\text{SKEW}_{PR}}V_{\text{CCA}}$ and $t_{\text{SKEW}_{\text{EDGE}}}$ and added LFE5-85 as device.
			Updated ECP5 Family Timing Adders section. Added SSTL135_II buffer type data. Removed LVCMOS33_20mA, LVCMOS25_20mA, LVCMOS25_16mA, LVCMOS25D_16mA, and LVCMOS18_16mA buffer types. Changed buffer type to LVCMOS12_4mA and LVCMOS12_8mA.
			Updated Maximum I/O Buffer Speed section. Revised Max values.
			Updated sysCLOCK PLL Timing section. Revised t _{DT} Min and Max values. Revised t _{OPJIT} Max value. Revised number of samples in table note 1.
			Updated SERDES High-Speed Data Transmitter section. Updated Table 3.24. Serial Output Timing and Levels and Table 3.25. Channel Output Jitter.