E. Lattice Semiconductor Corporation - LFE5UM-85F-8BG554C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	259
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	554-FBGA
Supplier Device Package	554-CABGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um-85f-8bg554c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	23
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	24
Figure 2.12. Memory Core Reset	26
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	29
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	31
Figure 2.17. Input Register Block for PIO on Top Side of the Device	32
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	32
Figure 2.19. Output Register Block on Top Side	33
Figure 2.20. Output Register Block on Left and Right Sides	34
Figure 2.21. Tristate Register Block on Top Side	34
Figure 2.22. Tristate Register Block on Left and Right Sides	35
Figure 2.23. DQS Grouping on the Left and Right Edges	36
Figure 2.24. DQS Control and Delay Block (DQSBUF)	37
Figure 2.25. ECP5/ECP5-5G Device Family Banks	38
Figure 2.26. On-Chip Termination	40
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	42
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	43
Figure 3.1. LVDS25E Output Termination Example	56
Figure 3.2. BLVDS25 Multi-point Output Example	57
Figure 3.3. Differential LVPECL33	58
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	60
Figure 3.6. Receiver RX.CLK.Centered Waveforms	68
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	68
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	68
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	69
Figure 3.10. DDRX71 Video Timing Waveforms	69
Figure 3.11. Receiver DDRX71 RX Waveforms	70
Figure 3.12. Transmitter DDRX71 TX Waveforms	70
Figure 3.13. Transmitter and Receiver Latency Block Diagram	73
Figure 3.14. SERDES External Reference Clock Waveforms	75
Figure 3.15. sysCONFIG Parallel Port Read Cycle	84
Figure 3.16. sysCONFIG Parallel Port Write Cycle	85
Figure 3.17. svsCONFIG Slave Serial Port Timing	85
Figure 3.18. Power-On-Reset (POR) Timing	86
Figure 3.19. svsCONFIG Port Timing	86
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	87
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	89
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	89
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

1. General Description

The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.

The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/Os. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards.

The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.

The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS.

The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.

The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features.

ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.

The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for users to port designs from ECP5UM to ECP5-5G devices to get higher performance. The Lattice Diamond[™] design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

1.1. Features

- Higher Logic Density for Increased System Integration
 - 12K to 84K LUTs
 - 197 to 365 user programmable I/Os
- Embedded SERDES
 - 270 Mb/s, up to 3.2 Gb/s, SERDES interface (ECP5)
 - 270 Mb/s, up to 5.0 Gb/s, SERDES interface (ECP5-5G)
 - Supports eDP in RDR (1.62 Gb/s) and HDR (2.7 Gb/s)
 - Up to four channels per device: PCI Express, Ethernet (1GbE, SGMII, XAUI), and CPRI
- sysDSP™
 - Fully cascadable slice architecture
 - 12 to 160 slices for high performance multiply and accumulate
 - Powerful 54-bit ALU operations
 - Time Division Multiplexing MAC Sharing
 - Rounding and truncation
 - Each slice supports
 - Half 36 x 36, two 18 x 18 or four 9 x 9 multipliers
 - Advanced 18 x 36 MAC and 18 x 18 Multiply-Multiply-Accumulate (MMAC) operations
- Flexible Memory Resources
 - Up to 3.744 Mb sysMEM[™] Embedded Block RAM (EBR)
 - 194K to 669K bits distributed RAM
- sysCLOCK Analog PLLs and DLLs

2.2.2. Modes of Operation

Slices 0-2 have up to four potential modes of operation: Logic, Ripple, RAM and ROM. Slice 3 is not needed for RAM mode, it can be used in Logic, Ripple, or ROM modes.

Logic Mode

In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any four input logic functions can be generated by programming this lookup table. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note that LUT8 requires more than four slices.

Ripple Mode

Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with asynchronous clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed in one PFU using each LUT block in Slice 0 and Slice 1 as a 16 x 2-bit memory in each slice. Slice 2 is used to provide memory address and control signals. A 16 x 2-bit pseudo dual port RAM (PDPR) memory is created in one PFU by using one Slice as the read-write port and the other companion slice as the read-only port. The slice with the read-write port updates the SRAM data contents in both slices at the same write cycle.

ECP5/ECP5-5G devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2.3 lists the number of slices required to implement different distributed RAM primitives. For more information about using RAM in ECP5/ECP5-5G devices, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

Table 2.3. Number of Slices Required to Implement Distributed RAM

	SPR 16 X 4	PDPR 16 X 4
Number of slices	3	6

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

For more information, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

In Figure 2.15, note that A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C inputs. For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

The ECP5/ECP5-5G sysDSP block supports the following basic elements.

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2.7 shows the capabilities of each of the ECP5/ECP5-5G slices versus the above functions.

Table 2.7. Maximum Number of Elements in a Slice

Width of Multiply	x9	x18	x36
MULT	4	2	1/2
MAC	1	1	—
MULTADDSUB	2	1	—
MULTADDSUBSUM	1*	1/2	Ι

*Note: One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

Some options are available in the four elements. The input register in all the elements can be directly loaded or can be loaded as a shift register from previous operand registers. By selecting "dynamic operation" the following operations are possible:

- In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

For further information, refer to ECP5 and ECP5-5G sysDSP Usage Guide (TN1267).

2.10. Programmable I/O Cells

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. On the ECP5/ECP5-5G devices, the Programmable I/O cells (PIC) are assembled into groups of four PIO cells called a Programmable I/O Cell or PIC. The PICs are placed on all four sides of the device.

On all the ECP5/ECP5-5G devices, two adjacent PIOs can be combined to provide a complementary output driver pair. All PIO pairs can implement differential receivers. Half of the PIO pairs on the left and right edges of these devices can be configured as true LVDS transmit pairs.

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

Table 2.12. On-Chip	Termination O	ptions for In	put Modes
---------------------	----------------------	---------------	-----------

IO_TYPE	Terminate to V _{CCIO} /2* Differential Termination F			
LVDS25	-	100		
BLVDS25	I	100		
MLVDS	Ι	100		
LVPECL33	-	100		
subLVDS	-	100		
SLVS	-	100		
HSUL12	50, 75, 150	-		
HSUL12D	—	100		
SSTL135_1 / 11	50, 75, 150	-		
SSTL135D_I / II	-	100		
SSTL15_I / II	50, 75, 150	-		
SSTL15D_I / II	-	100		
SSTL18_I / II	50, 75, 150	-		
SSTL18D_I / II	-	100		

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

3.10. Supply Current (Standby)

Over recommended operating conditions.

Table 3.8. ECP5/ECP5-5G Supply Current (Standby)

Symbol	Parameter	Device	Typical	Unit
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F	77	mA
		LFE5UM5G-25F	77	mA
	Come Devices Commission Comment	LFE5U-45F/ LFE5UM-45F	116	mA
ICC	Core Power Supply Current	LFE5UM5G-45F	116	mA
		LFE5U-85F/ LFE5UM-85F	212	mA
		LFE5UM5G-85F	212	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	16	mA
I _{CCAUX}	Auxiliary Power Supply Current	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	17	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	26	mA
		LFE5U-12F/ LFE5U-25F/ LFE5UM-25F/ LFE5UM5G-25F	0.5	mA
Ι _{ccio}	Bank Power Supply Current (Per Bank)	LFE5U-45F/ LFE5UM-45F/ LFE5UM5G-45F	0.5	mA
		LFE5U-85F/ LFE5UM-85F/ LFE5UM5G-85F	0.5	mA
		LFE5UM-25F	11	mA
		LFE5UM5G-25F	12	mA
	SERDES Power Supply Current (Per	LFE5UM-45F	9.5	mA
ICCA	Dual)	LFE5UM5G-45F	11	mA
		LFE5UM-85F	9.5	mA
		LFE5UM5G-85F	11	mA

Notes:

- For further information on supply current, see the list of technical documentation in Supplemental Information section on page 102.
- Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

• Frequency 0 Hz.

- Pattern represents a "blank" configuration data file.
- T_J = 85 °C, power supplies at nominal voltage.
- To determine the ECP5/ECP5-5G peak start-up current, use the Power Calculator tool in the Lattice Diamond Design Software.

3.12. sysI/O Recommended Operating Conditions

Table 3.11. sysI/O Recommended Operating Conditions

Standard		Vccio		V _{REF} (V)			
Stanuaru	Min	Тур	Max	Min	Тур	Max	
LVCMOS331	3.135	3.3	3.465	—	—	—	
LVCMOS33D ³ Output	3.135	3.3	3.465	_	—	—	
LVCMOS251	2.375	2.5	2.625	—	—	—	
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—	—	—	
LVCMOS12 ¹	1.14	1.2	1.26	—	—	—	
LVTTL33 ¹	3.135	3.3	3.465	—	—	—	
SSTL15_I, _II ²	1.43	1.5	1.57	0.68	0.75	0.9	
SSTL18_I, _II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL135_I, _II ²	1.28	1.35	1.42	0.6	0.675	0.75	
HSUL12 ²	1.14	1.2	1.26	0.588	0.6	0.612	
MIPI D-PHY LP Input ^{3, 5}	1.425	1.5	1.575	—	—	—	
LVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	—	
subLVS ³ (Input only)	—	—	—	—	—	—	
SLVS ³ (Input only)	—	—	—	—	—	—	
LVDS25E ³ Output	2.375	2.5	2.625	—	—	—	
MLVDS ³ Output	2.375	2.5	2.625	—	—	—	
LVPECL33 ^{1, 3} Output	3.135	3.3	3.465	—	—	_	
BLVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	_	
HSULD12D ^{2, 3}	1.14	1.2	1.26	—	—	—	
SSTL135D_I, II ^{2, 3}	1.28	1.35	1.42	_	_	_	
SSTL15D_I, II ^{2, 3}	1.43	1.5	1.57	—	—	—	
SSTL18D_I ^{1, 2, 3} , II ^{1, 2, 3}	1.71	1.8	1.89	_	_	_	

Notes:

1. For input voltage compatibility, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2. V_{REF} is required when using Differential SSTL and HSUL to interface to DDR/LPDDR memories.

3. These differential inputs use LVDS input comparator, which uses V_{CCAUX} power

4. All differential inputs and LVDS25 output are supported in the Left and Right banks only. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

5. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL} . It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.14.8. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard and relies on the advantage of its use of smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The ECP5/ECP5-5G devices can receive differential input up to 800 Mb/s with its LVDS input buffer. This LVDS input buffer is used to meet the SLVS input standard specified by the JEDEC standard. The SLVS output parameters are compared to ECP5/ECP5-5G LVDS input parameters, as listed in Table 3.18.

Table 3.18. Input to SLVS

Parameter	ECP5/ECP5-5G LVDS Input	SLVS Output	Unit
Vcm (min)	50	150	mV
Vcm (max)	2350	250	mV
Differential Voltage (min)	100	140	mV
Differential Voltage (max)	—	270	mV

ECP5/ECP5-5G does not support SLVS output. However, SLVS output can be created using ECP5/ECP5-5G LVDS outputs by level shift to meet the low Vcm/Vod levels required by SLVS. Figure 3.5 shows how the LVDS output can be shifted external to meet SLVS levels.

Figure 3.5. SLVS Interface

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.15. Typical Building Block Function Performance

Table 3.19. Pin-to-Pin Performance

Function	–8 Timing	Unit
Basic Functions		
16-Bit Decoder	5.06	ns
32-Bit Decoder	6.08	ns
64-Bit Decoder	5.06	ns
4:1 Mux	4.45	ns
8:1 Mux	4.63	ns
16:1 Mux	4.81	ns
32:1 Mux	4.85	ns

Notes:

1. I/Os are configured with LVCMOS25 with V_{CCIO}=2.5, 12 mA drive.

2. These functions were generated using Lattice Diamond design software tool. Exact performance may vary with the device and the design software tool version. The design software tool uses internal parameters that have been characterized but are not tested on every device.

3. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from Lattice Diamond design software tool.

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

Demonstern	Description	Device	-8		-	-7		-6	
Parameter			Min	Max	Min	Max	Min	Max	Unit
Generic DDR Outpu	ut								•
Generic DDRX1 Ou	tputs With Clock and Data Cente	red at Pin (GD	DRX1_TX	.SCLK.Ce	ntered) (Jsing PCL	K Clock Ir	nput - Fig	ure 3.6
t _{DVB_GDDRX1_centered}	Data Output Valid before CLK Output	All Devices	-0.67	_	-0.67	-	-0.67	_	ns + 1/2 UI
t _{DVA_GDDRX1_centered}	Data Output Valid after CLK Output	All Devices	-0.67	_	-0.67	-	-0.67	-	ns + 1/2 UI
f _{DATA_GDDRX1_centered}	GDDRX1 Data Rate	All Devices	_	500	-	500	—	500	Mb/s
f _{MAX_GDDRX1_centered}	GDDRX1 CLK Frequency (SCLK)	All Devices	—	250	—	250	—	250	MHz
Generic DDRX1 Ou	tputs With Clock and Data Aligne	ed at Pin (GDD	RX1_TX.9	SCLK.Alig	ned) Usin	g PCLK C	lock Inpu	t - Figure	3.9
t _{DIB_GDDRX1_aligned}	Data Output Invalid before CLK Output	All Devices	-0.3	_	-0.3	_	-0.3	_	ns
$t_{\text{DIA}_\text{GDDRX1}_\text{aligned}}$	Data Output Invalid after CLK Output	All Devices	_	0.3	_	0.3	-	0.3	ns
$f_{DATA_GDDRX1_aligned}$	GDDRX1 Data Rate	All Devices	—	500	—	500	—	500	Mb/s
$f_{MAX_GDDRX1_aligned}$	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	—	250	—	250	MHz
Generic DDRX2 Ou	tputs With Clock and Data Cente	red at Pin (GD	DRX2_TX	.ECLK.Ce	ntered) l	Jsing PCL	K Clock Iı	nput, Left	and
Right sides Only - F	igure 3.8			1		1	1		
$t_{\text{DVB}_{GDDRX2}_{centered}}$	Data Output Valid Before CLK Output	All Devices	- 0.442	—	-0.56	-	– 0.676	_	ns + 1/2 UI
$t_{\text{DVA}_{GDDRX2}_{centered}}$	Data Output Valid After CLK Output	All Devices	—	0.442	_	0.56	_	0.676	ns + 1/2 UI
$f_{DATA_GDDRX2_centered}$	GDDRX2 Data Rate	All Devices	_	800		700	—	624	Mb/s
$f_{MAX_GDDRX2_centered}$	GDDRX2 CLK Frequency (ECLK)	All Devices	_	400	-	350	—	312	MHz
Generic DDRX2 Ou	tputs With Clock and Data Aligne	d at Pin (GDD	RX2_TX.I	ECLK.Alig	ned) Usin	g PCLK C	lock Inpu	t, Left an	d Right
sides Only - Figure	3.9			1	1	1	1	i.	1
$t_{DIB_GDDRX2_aligned}$	CLK Output	All Devices	-0.16	_	-0.18	_	-0.2	_	ns
$t_{\text{DIA}_{GDDRX2}_{aligned}}$	Data Output Invalid after CLK Output	All Devices	_	0.16	-	0.18	-	0.2	ns
$f_{DATA_GDDRX2_aligned}$	GDDRX2 Data Rate	All Devices	—	800		700	—	624	Mb/s
$f_{MAX_GDDRX2_aligned}$	GDDRX2 CLK Frequency (ECLK)	All Devices	—	400	—	350	—	312	MHz
Video DDRX71 Out	puts With Clock and Data Aligne	d at Pin (GDDF	х71_тх.	ECLK) Us	ing PLL Cl	ock Input	t, Left an	d Right si	des Only
- Figure 3.12					1	1	1	1	
t _{dib_lvds71_i}	Data Output Invalid before CLK Output	All Devices	-0.16	—	-0.18	_	-0.2		ns + (i) * UI
t _{dia_lvds71_i}	Data Output Invalid after CLK Output	All Devices	—	0.16	_	0.18	_	0.2	ns + (i) * UI
f _{data_lvds71}	DDR71 Data Rate	All Devices	_	756	—	620	—	525	Mb/s
f _{MAX_LVDS71}	DDR71 CLK Frequency (ECLK)	All Devices	_	378	—	310	—	262.5	MHz
Memory Interface									
DDR2/DDR3/DDR3	L/LPDDR2/LPDDR3 READ (DQ Inj	put Data are A	ligned to	DQS)					
t _{dvbdq_ddr2}									
t _{dvbdq_ddr3}	Data Output Valid before DQS					_		_	ns + 1/2
t _{DVBDQ_DDR3L}	Input	All Devices	_	-0.26	_	0.317	_	0.374	U
LDVBDQ_LPDDR2									
UVADQ_DDR2									
tovado ddral	Data Output Valid after DQS	All Devices	0.26	_	0.317	_	0.374	_	ns + 1/2
t _{DVADQ_LPDDR2}	Input								UI
t _{dvadq_lpddr3}									

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

Figure 3.9. Transmit TX.CLK.Aligned Waveforms

Receiver – Shown for one LVDS Channel

Transmitter - Shown for one LVDS Channel

Figure 3.10. DDRX71 Video Timing Waveforms

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.21. SERDES/PCS Block Latency

Table 3.26 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel clock cycles. Figure 3.13 shows the location of each block.

Table 3.2	26. SERDES/PCS Latency Breakdown

Item	Description	Min	Avg	Max	Fixed	Bypass	Unit ³
Transmit Data Latency ¹							
T 1	FPGA Bridge - Gearing disabled with same clocks	3	—	4	-	1	byte clk
11	FPGA Bridge - Gearing enabled	5	—	7	—	—	word clk
Т2	8b10b Encoder	_	—	—	2	1	byte clk
Т3	SERDES Bridge transmit	_	—	—	2	1	byte clk
тл	Serializer: 8-bit mode	_	—	—	15 + ∆1	—	UI + ps
14	Serializer: 10-bit mode	_	—	—	18 + Δ 1	—	UI + ps
тс	Pre-emphasis ON	_	—	—	1 + ∆2	—	UI + ps
15	Pre-emphasis OFF	_	—	—	0 + ∆3	—	UI + ps
Receive	Data Latency ²						
D1	Equalization ON	_	—	—	Δ1	—	UI + ps
KI .	Equalization OFF	_	—	—	Δ2	—	UI + ps
22	Deserializer: 8-bit mode	_	—	—	10 + ∆3	—	UI + ps
R2	Deserializer: 10-bit mode	_	—	—	12 + ∆3	—	UI + ps
R3	SERDES Bridge receive	_	—	—	2	—	byte clk
R4	Word alignment	3.1	—	4	—	1	byte clk
R5	8b10b decoder	_	—	—	1	0	byte clk
R6	Clock Tolerance Compensation	7	15	23	_	1	byte clk
57	FPGA Bridge - Gearing disabled with same clocks	4	_	5	_	1	byte clk
К/	FPGA Bridge - Gearing enabled	7	_	9	_	_	word clk

Notes:

1. $\Delta 1 = -245 \text{ ps}, \Delta 2 = +88 \text{ ps}, \Delta 3 = +112 \text{ ps}.$

2. $\Delta 1 = +118 \text{ ps}, \Delta 2 = +132 \text{ ps}, \Delta 3 = +700 \text{ ps}.$

3. byte clk = 8UIs (8-bit mode), or 10 UIs (10-bit mode); word clk = 16UIs (8-bit mode), or 20 UIs (10-bit mode).

Table 3.31. PCIe (5 Gb/s) (Continued)

Symbol	Description	Test Conditions	Min	Тур	Мах	Unit
Receive ^{1, 2}		' 				
UI	Unit Interval	—	199.94	200	200.06	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	—	0.34 ³	_	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	Ι	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	—	—	_	88	ps
V _{RX-CM-AC}	Common mode noise from Rx	_	_	Ι		тV <i>,</i> p-р
D	Receiver differential Return Loss, package plus silicon	50 MHz < freq < 1.25 GHz	10	Ι	Ι	dB
nlrx-diff		1.25 GHz < freq < 2.5 GHz	8	Ι	Ι	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	Ι	Ι	dB
Z _{RX-DC}	Receiver DC single ended impedance	—	40		60	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	_	200K		I	Ω
V _{RX-CM-AC-P}	Rx AC peak common mode voltage	_	_	_		mV <i>,</i> peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	_	65	-	340 ³	mv,
L _{RX-SKEW}	Receiver lane-lane skew	_	_	_	8	ns

Notes:

1. Values are measured at 5 Gb/s.

2. Measured with external AC-coupling on the receiver.

3. Not in compliance with PCI Express standard.

Table 3.36. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	—	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	-	—	dB
Z _{RX_DIFF}	Differential termination resistance	_	80	100	120	Ω
J _{RX_DJ} ^{2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	_	—	-	0.37	UI
J _{RX_RJ} ^{2, 3, 4}	Random jitter tolerance (peak-to-peak)	_	—	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	—	_	_	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	_	—	—	0.65	UI
T _{RX_EYE}	Receiver eye opening	—	0.35	—	-	UI

Notes:

- 1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.
- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

3.29. Gigabit Ethernet/SGMII(1.25Gbps)/CPRI LV E.12 Electrical and Timing Characteristics

3.29.1. AC and DC Characteristics

Table 3.37. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
T _{RF}	Differential rise/fall time	20% to 80%	-	80	—	ps
Z _{TX_DIFF_DC}	Differential impedance	—	80	100	120	Ω
J _{TX_DDJ} ^{2, 3}	Output data deterministic jitter	-	-	_	0.10	UI
J _{TX_TJ} ^{1, 2, 3}	Total output data jitter	-	1	—	0.24	UI

Notes:

1. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

2. Jitter values are measured with each CML output AC coupled into a 50 Ω impedance (100 Ω differential impedance).

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

Table 3.38. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 1.25 GHz	10	-	—	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 1.25 GHz	6	-	—	dB
Z _{RX_DIFF}	Differential termination resistance	-	80	100	120	Ω
J _{RX_DJ} ^{1, 2, 3, 4}	Deterministic jitter tolerance (peak-to-peak)	-	_	-	0.34	UI
J _{RX_RJ} ^{1, 2, 3, 4}	Random jitter tolerance (peak-to-peak)	-	—	-	0.26	UI
J _{RX_SJ} ^{1, 2, 3, 4}	Sinusoidal jitter tolerance (peak-to-peak)	-	—	-	0.11	UI
J _{RX_TJ} ^{1, 2, 3, 4}	Total jitter tolerance (peak-to-peak)	—	—	-	0.71	UI
T _{RX_EYE}	Receiver eye opening	—	0.29	—	—	UI

Notes:

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter.

- 2. Jitter values are measured with each high-speed input AC coupled into a 50 Ω impedance.
- 3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
- 4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.30. SMPTE SD/HD-SDI/3G-SDI (Serial Digital Interface) Electrical and Timing Characteristics

3.30.1. AC and DC Characteristics

Table 3.39. Transmit

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
BR _{SDO}	Serial data rate	—	270	—	2975	Mb/s
T _{JALIGNMENT} ²	Serial output jitter, alignment	270 Mb/s ⁶				UI
T _{JALIGNMENT} ²	Serial output jitter, alignment	1485 Mb/s	—	—	0.2	UI
T _{JALIGNMENT} ^{1, 2}	Serial output jitter, alignment	2970 Mb/s	—	—	0.3	UI
T _{JTIMING}	Serial output jitter, timing	270 Mb/s ⁶	—	—	0.2	UI
T _{JTIMING}	Serial output jitter, timing	1485 Mb/s	—	—	1	UI
T _{JTIMING}	Serial output jitter, timing	2970 Mb/s	—	—	2	UI

Notes:

1. Timing jitter is measured in accordance with SMPTE serial data transmission standards.

- 2. Jitter is defined in accordance with SMPTE RP1 184-1996 as: jitter at an equipment output in the absence of input jitter.
- 3. All Tx jitter are measured at the output of an industry standard cable driver, with the Lattice SERDES device configured to 50Ω output impedance connecting to the external cable driver with differential signaling.
- 4. The cable driver drives: RL=75 Ω , AC-coupled at 270, 1485, or 2970 Mb/s.
- 5. All LFE5UM/LFE5UM5G devices are compliant with all SMPTE compliance tests, except 3G-SDI Level-A pathological compliance pattern test.
- 6. 270 Mb/s is supported with Rate Divider only.

Table 3.40. Receive

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
BR _{SDI}	Serial input data rate	—	270		2970	Mb/s

Table 3.41. Reference Clock

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
F _{VCLK}	Video output clock frequency	—	54	_	148.5	MHz
DCv	Duty cycle, video clock	—	45	50	55	%

Note: SD-SDI (270 Mb/s) is supported with Rate Divider only. For Single Rate: Reference Clock = 54 MHz and Rate Divider = /2. For Tri-Rate: Reference Clock = 148.5 MHz and Rate Divider = /11.

*In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.

Figure 3.16. sysCONFIG Parallel Port Write Cycle

Figure 3.17. sysCONFIG Slave Serial Port Timing

- 1. Time taken from V_{CC} , V_{CCAUX} or V_{CCIO8} , whichever is the last to cross the POR trip point.
- 2. Device is in a Master Mode (SPI, SPIm).
- 3. The CFG pins are normally static (hardwired).

Figure 3.19. sysCONFIG Port Timing

Figure 3.22. Master SPI Configuration Waveforms

3.32. JTAG Port Timing Specifications

Over recommended operating conditions.

Table 3.43. JTAG Port Timing Specifications

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency		25	MHz
t _{втсрн}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{btcpl}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	_	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{втсо}	TAP controller falling edge of clock to valid output		10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable		10	ns
t _{btcoen}	TAP controller falling edge of clock to valid enable		10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	ns
t _{btcrh}	BSCAN test capture register hold time	25	_	ns
t _{витсо}	BSCAN test update register, falling edge of clock to valid output		25	ns
t _{btuodis}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t btupoen	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

5.2. Ordering Part Numbers

5.2.1. Commercial

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-12F-6BG256C	-6	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-7BG256C	-7	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-8BG256C	-8	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-6MG285C	-6	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-7MG285C	-7	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-8MG285C	-8	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-6BG381C	-6	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-7BG381C	-7	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-8BG381C	-8	Lead free caBGA	381	Commercial	12	No
LFE5U-25F-6BG256C	-6	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-7BG256C	-7	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-8BG256C	-8	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-6MG285C	-6	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-7MG285C	-7	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-8MG285C	-8	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-6BG381C	-6	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-7BG381C	-7	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-8BG381C	-8	Lead free caBGA	381	Commercial	24	No
LFE5U-45F-6BG256C	-6	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-7BG256C	-7	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-8BG256C	-8	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-6MG285C	-6	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-7MG285C	-7	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-8MG285C	-8	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-6BG381C	-6	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-7BG381C	-7	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-8BG381C	-8	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-6BG554C	-6	Lead free caBGA	554	Commercial	44	No
LFE5U-45F-7BG554C	-7	Lead free caBGA	554	Commercial	44	No

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

(Continued)

Date	Version	Section	Change Summary
April 2017	1.7	All	Changed document number from DS1044 to FPGA-DS-02012.
		General Description	Updated Features section. Changed "1.1 V core power supply" to "1.1 V core power supply for ECP5, 1.2 V core power supply for ECP5UM5G".
		Architecture	Updated Overview section. Change "The ECP5/ECP5-5G devices use 1.1 V as their core voltage" to "The ECP5 devices use 1.1V, ECP5UM5G devices use 1.2V as their core voltage"
		DC and Switching Characteristics	Updated Table 3.2. Recommended Operating Conditions Added ECP5-5G on VCC to be 1.2V +/- 5% Added ECP5-5G on VCCA to be 1.2V +/- 3% Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby) Changed "Core Power Supply Current" for ICC on LFE5UM5G devices Changed "SERDES Power Supply Current (Per Dual)" for ICCA on LFE5UM5G devices Updated Table 3.20. Register-to-Register Performance. Remove "(DDR/SDR)" from DSP Function Changed DSP functions to 225 MHz
		Pinout Information	Update Section 4.1 Signal Description. Revised Vcc Description to "Power supply pins for core logic. Dedicated pins. VCC = 1.1 V (ECP5), 1.2 V (ECP5UM5G)"
February 2016	1.6	All	Changed document status from Preliminary to Final.
		General Description	Updated Features section. Changed "24K to 84K LUTs" to "12K to 84K LUTs". Added LFE5U-12 column to Table 1.1. ECP5 and ECP5-5G Family Selection Guide.
		DC and Switching Characteristics	Updated Power up Sequence section. Identified typical ICC current for specific devices in Table 3.8. ECP5/ECP5-5G Supply Current (Standby). Updated values in Table 3.9. ECP5. Updated values in Table 3.10. ECP5-5G. Added values to -8 Timing column of Table 3.19. Pin-to-Pin Performance. Added values to -8 Timing column of Table 3.20. Register-to-Register Performance. Changed LFE5-45 to All Devices in Table 3.22. ECP5/ECP5-5G External Switching Characteristics. Added table notes to Table 3.31. PCIe (5 Gb/s). Added table note to Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics.
		Pinout Information	Added LFE5U-12 column to the table in LFE5U section.
		Ordering Information	Updated LFE5U in ECP5/ECP5-5G Part Number Description section: added 12 F = 12K LUTs to Logic Capacity. Added LFE5U-12F information to Ordering Part Numbers section.