E ·) (Fatice Semiconductor Corporation - LFE5UM5G-45F-8MG285C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	11000
Number of Logic Elements/Cells	44000
Total RAM Bits	1990656
Number of I/O	118
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	285-LFBGA, CSPBGA
Supplier Device Package	285-CSFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um5g-45f-8mg285c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	23
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	24
Figure 2.12. Memory Core Reset	26
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	29
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	31
Figure 2.17. Input Register Block for PIO on Top Side of the Device	32
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	32
Figure 2.19. Output Register Block on Top Side	33
Figure 2.20. Output Register Block on Left and Right Sides	34
Figure 2.21. Tristate Register Block on Top Side	34
Figure 2.22. Tristate Register Block on Left and Right Sides	35
Figure 2.23. DQS Grouping on the Left and Right Edges	36
Figure 2.24. DQS Control and Delay Block (DQSBUF)	37
Figure 2.25. ECP5/ECP5-5G Device Family Banks	38
Figure 2.26. On-Chip Termination	40
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	42
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	43
Figure 3.1. LVDS25E Output Termination Example	56
Figure 3.2. BLVDS25 Multi-point Output Example	57
Figure 3.3. Differential LVPECL33	58
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	60
Figure 3.6. Receiver RX.CLK.Centered Waveforms	68
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	68
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	68
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	69
Figure 3.10. DDRX71 Video Timing Waveforms	69
Figure 3.11. Receiver DDRX71 RX Waveforms	70
Figure 3.12. Transmitter DDRX71 TX Waveforms	70
Figure 3.13. Transmitter and Receiver Latency Block Diagram	73
Figure 3.14. SERDES External Reference Clock Waveforms	75
Figure 3.15. sysCONFIG Parallel Port Read Cycle	84
Figure 3.16. sysCONFIG Parallel Port Write Cycle	85
Figure 3.17. svsCONFIG Slave Serial Port Timing	85
Figure 3.18. Power-On-Reset (POR) Timing	86
Figure 3.19. svsCONFIG Port Timing	86
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	87
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	89
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	89
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.36. Receive and Jitter Tolerance	
Table 3.37. Transmit	
Table 3.38. Receive and Jitter Tolerance	
Table 3.39. Transmit	82
Table 3.40. Receive	82
Table 3.41. Reference Clock	82
Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications	83
Table 3.43. JTAG Port Timing Specifications	
Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces	

Figure 2.2. PFU Diagram

2.2.1. Slice

Each slice contains two LUT4s feeding two registers. In Distributed SRAM mode, Slice 0 through Slice 2 are configured as distributed memory, and Slice 3 is used as Logic or ROM. Table 2.1 shows the capability of the slices along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/ asynchronous), clock select, chip-select and wider RAM/ROM functions.

Slice	PFU (Used in Dis	stributed SRAM)	PFU (Not used as Distributed SRAM)		
Slice	Resources Modes		Resources	Modes	
Slice 0	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 1	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 2	2 LUT4s and 2 Registers	RAM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	
Slice 3	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM	

Table 2.1. Resources and Modes Available per Slice

Figure 2.3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Each slice has 14 input signals, 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are five outputs, four to routing and one to carry-chain (to the adjacent PFU). There are two inter slice/ PFU output signals that are used to support wider LUT functions, such as LUT6, LUT7 and LUT8. Table 2.2 and Figure 2.3 list the signals associated with all the slices. Figure 2.4 on page 16 shows the connectivity of the inter-slice/PFU signals that support LUT5, LUT6, LUT7 and LUT8.

Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)

2.8. sysMEM Memory

ECP5/ECP5-5G devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18 Kb RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buffers (via external PFUs).

2.8.1. sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as listed in Table 2.6 on page 25. FIFOs can be implemented in sysMEM EBR blocks by implementing support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for each data byte. EBR blocks provide byte-enable support for configurations with 18-bit and 36-bit data widths. For more information, refer to ECP5 and ECP5-5G Memory Usage Guide (TN1264).

2.11. **PIO**

The PIO contains three blocks: an input register block, output register block, and tristate register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

2.11.1. Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIOs on the left and right edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the right and left sides includes gearing logic and registers to implement IDDRX1 and IDDRX2 functions. With two PICs sharing the DDR register path, it can also implement IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers to shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers samples the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. The top side of the device supports IDDRX1 gearing function. For more information on gearing function, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.17 shows the input register block for the PIOs on the top edge.

Figure 2.17. Input Register Block for PIO on Top Side of the Device

Figure 2.18 shows the input register block for the PIOs located on the left and right edges.

*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).

Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device

	PIO A	sysIO Buffer	Pad A (T)
••	PIO B	sysIO Buffer	Pad B (C)
••	PIO C	sysIO Buffer	Pad C
••	PIO D	sysIO Buffer ←→	Pad D
↓	PIO A	sysIO Buffer	Pad A (T)
••	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	sysIO Buffer	Pad C
↓	PIO D	sysIO Buffer	Pad D
	DQSBUF	Delay	'
↓ →	PIO A	syslO Buffer	Pad A (T)
↓	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	sysIO Buffer	Pad C
↓ →	PIO D	sysIO Buffer	Pad D
↓	PIO A	sysIO Buffer	Pad A (T)
↓	PIO B	sysIO Buffer	Pad B (C)
↓	PIO C	syslO Buffer ◀ ┿	Pad C
	PIO D	sysIO Buffer	Pad D

Figure 2.23. DQS Grouping on the Left and Right Edges

2.13.2. DLL Calibrated DQS Delay and Control Block (DQSBUF)

To support DDR memory interfaces (DDR2/3, LPDDR2/3), the DQS strobe signal from the memory must be used to capture the data (DQ) in the PIC registers during memory reads. This signal is output from the DDR memory device aligned to data transitions and must be time shifted before it can be used to capture data in the PIC. This time shifted is achieved by using DQSDEL programmable delay line in the DQS Delay Block (DQS read circuit). The DQSDEL is implemented as a slave delay line and works in conjunction with a master DDRDLL.

This block also includes slave delay line to generate delayed clocks used in the write side to generate DQ and DQS with correct phases within one DQS group. There is a third delay line inside this block used to provide write leveling feature for DDR write if needed.

Each of the read and write side delays can be dynamically shifted using margin control signals that can be controlled by the core logic.

FIFO Control Block shown in Figure 2.24 generates the Read and Write Pointers for the FIFO block inside the Input Register Block. These pointers are generated to control the DQS to ECLK domain crossing using the FIFO module.

2.18. Device Configuration

All ECP5/ECP5-5G devices contain two ports that can be used for device configuration. The Test Access Port (TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configuration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 1532 In-System Configuration specification. There are 11 dedicated pins for TAP and sysConfig supports (TDI, TDO, TCK, TMS, CFG[2:0], PROGRAMN, DONE, INITN and CCLK). The remaining sysCONFIG pins are used as dual function pins. Refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260) for more information about using the dual-use pins as general purpose I/Os.

There are various ways to configure an ECP5/ECP5-5G device:

- JTAG
- Standard Serial Peripheral Interface (SPI) Interface to boot PROM Support x1, x2, x4 wide SPI memory interfaces.
- System microprocessor to drive a x8 CPU port SPCM mode
- System microprocessor to drive a serial slave SPI port (SSPI mode)
- Slave Serial model (SCM)

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any time after power-up by sending the appropriate command through the TAP port.

ECP5/ECP5-5G devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash device (slave mode) with the SPI port of the FPGA to perform read-write operations.

2.18.1. Enhanced Configuration Options

ECP5/ECP5-5G devices have enhanced configuration features such as: decryption support, decompression support, TransFR™ I/O and dual-boot and multi-boot image support.

TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. Refer to Minimizing System Interruption During Configuration Using TransFR Technology (TN1087) for details.

Dual-Boot and Multi-Boot Image Support

Dual-boot and multi-boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the ECP5/ECP5-5G devices can be re-booted from this new configuration file. If there is a problem, such as corrupt data during download or incorrect version number with this new boot image, the ECP5/ECP5-5G device can revert back to the original backup golden configuration and try again. This all can be done without power cycling the system. For more information, refer to ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260).

2.18.2. Single Event Upset (SEU) Support

ECP5/ECP5-5G devices support SEU mitigation with three supporting functions:

- SED Soft Error Detect
- SEC Soft Error Correction
- SEI Soft Error Injection

ECP5/ECP5-5G devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, the ECP5/ECP5-5G device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user mode (normal operation) the device can be programmed to generate an error signal.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3. DC and Switching Characteristics

3.1. Absolute Maximum Ratings

Table 3.1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{cc}	Supply Voltage	-0.5	1.32	V
V _{CCA}	Supply Voltage	-0.5	1.32	V
V _{CCAUX} , V _{CCAUXA}	Supply Voltage	-0.5	2.75	V
V _{CCIO}	Supply Voltage	-0.5	3.63	V
—	Input or I/O Transient Voltage Applied	-0.5	3.63	V
V _{CCHRX} , V _{CCHTX}	SERDES RX/TX Buffer Supply Voltages	-0.5	1.32	V
_	Voltage Applied on SERDES Pins	-0.5	1.80	V
T _A	Storage Temperature (Ambient)	-65	150	°C
Tj	Junction Temperature	_	+125	°C

Notes:

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

3.2. Recommended Operating Conditions

Table 3.2. Recommended Operating Conditions

Symbol	Parameter		Min	Max	Unit
V _{CC} ² Core Sup	Coro Supply Voltago	ECP5	1.045	1.155	V
	Core supply voltage	ECP5-5G	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage	_	2.375	2.625	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	_	1.14	3.465	V
V _{REF} ¹	Input Reference Voltage	-	0.5	1.0	V
t _{JCOM}	Junction Temperature, Commercial Operation	_	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-	-40	100	°C
SERDES External Powe	r Supply⁵				
N	SERDES Analog Dower Supply	ECP5UM	1.045	1.155	V
VCCA	SERDES Analog Power Supply	ECP5-5G	1.164	1.236	V
V _{CCAUXA}	SERDES Auxiliary Supply Voltage	_	2.374	2.625	V
N 6	SERDES Input Buffer Dower Supply	ECP5UM	0.30	1.155	V
VCCHRX	SERDES input Builer Power Supply	ECP5-5G	0.30	1.26	V
N	SERDES Output Buffer Dewer Supply	ECP5UM	1.045	1.155	V
V ССНТХ	SERDES Output Burler Power Supply	ECP5-5G	1.14	1.26	V

Notes:

1. For correct operation, all supplies except V_{REF} must be held in their valid operation range. This is true independent of feature usage.

2. All supplies with same voltage, except SERDES Power Supplies, should be connected together.

- 3. See recommended voltages by I/O standard in Table 3.4 on page 48.
- 4. V_{CCAUX} ramp rate must not exceed 30 mV/µs during power-up when transitioning between 0 V and 3 V.
- 5. Refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261) for information on board considerations for SERDES power supplies.
- 6. V_{CCHRX} is used for Rx termination. It can be biased to Vcm if external AC coupling is used. This voltage needs to meet all the HDin input voltage level requirements specified in the Rx section of this Data Sheet.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.12. sysI/O Recommended Operating Conditions

Table 3.11. sysI/O Recommended Operating Conditions

Standard		Vccio		V _{REF} (V)			
Stanuaru	Min	Тур	Max	Min	Тур	Max	
LVCMOS331	3.135	3.3	3.465	—	—	—	
LVCMOS33D ³ Output	3.135	3.3	3.465	_	—	—	
LVCMOS251	2.375	2.5	2.625	—	—	—	
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—	—	—	
LVCMOS12 ¹	1.14	1.2	1.26	—	—	—	
LVTTL33 ¹	3.135	3.3	3.465	—	—	—	
SSTL15_I, _II ²	1.43	1.5	1.57	0.68	0.75	0.9	
SSTL18_I, _II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL135_I, _II ²	1.28	1.35	1.42	0.6	0.675	0.75	
HSUL12 ²	1.14	1.2	1.26	0.588	0.6	0.612	
MIPI D-PHY LP Input ^{3, 5}	1.425	1.5	1.575	—	—	—	
LVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	—	
subLVS ³ (Input only)	—	—	—	—	—	—	
SLVS ³ (Input only)	—	—	—	—	—	—	
LVDS25E ³ Output	2.375	2.5	2.625	—	—	—	
MLVDS ³ Output	2.375	2.5	2.625	—	—	—	
LVPECL33 ^{1, 3} Output	3.135	3.3	3.465	—	—	—	
BLVDS25 ^{1, 3} Output	2.375	2.5	2.625	—	—	—	
HSULD12D ^{2, 3}	1.14	1.2	1.26	—	—	—	
SSTL135D_I, II ^{2, 3}	1.28	1.35	1.42	_	_	_	
SSTL15D_I, II ^{2, 3}	1.43	1.5	1.57	—	—	—	
SSTL18D_I ^{1, 2, 3} , II ^{1, 2, 3}	1.71	1.8	1.89	_	_	_	

Notes:

1. For input voltage compatibility, refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262).

2. V_{REF} is required when using Differential SSTL and HSUL to interface to DDR/LPDDR memories.

3. These differential inputs use LVDS input comparator, which uses V_{CCAUX} power

4. All differential inputs and LVDS25 output are supported in the Left and Right banks only. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

5. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL} . It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.13. sysI/O Single-Ended DC Electrical Characteristics

Input/Output	VIL		V _{IH}		V _{oL} Max	V _{он} Min	L 1/m A)	L 1/mA)
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	1 _{0L} - (mA)	_{ЮН} - (тпА)
LVCMOS33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
LVCMOS25	-0.3	0.7	1.7	3.465	0.4	$V_{CCIO} - 0.4$	12, 8, 4	-12, -8, -4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	12, 8, 4	-12, -8, -4
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	$V_{CCIO} - 0.4$	8, 4	-8, -4
LVCMOS12	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.465	0.4	V _{CCIO} – 0.4	8, 4	-8, -4
LVTTL33	-0.3	0.8	2.0	3.465	0.4	V _{CCIO} – 0.4	16, 12, 8, 4	-16, -12, -8, -4
SSTL18_I (DDR2 Memory)	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.465	0.4	V _{CCIO} – 0.4	6.7	-6.7
SSTL18_II	-0.3	V _{REF} -	V _{REF} + 0.125	3.465	0.28	V _{CCIO} -0.28	13.4	-13.4
SSTL15 _I (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	7.5	-7.5
SSTL15_II (DDR3 Memory)	-0.3	$V_{REF} - 0.1$	V _{REF} + 0.1	3.465	0.31	V _{CCIO} -0.31	8.8	-8.8
SSTL135_I (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	0.27	V _{CCIO} – 0.27	7	-7
SSTL135_II (DDR3L Memory)	-0.3	V _{REF} -0.09	V _{REF} + 0.09	3.465	465 0.27	V _{CCIO} – 0.27	8	-8
MIPI D-PHY (LP) ³	-0.3	0.55	0.88	3.465	—	_	—	—
HSUL12 (LPDDR2/3 Memory)	-0.3	V _{REF} -0.1	V _{REF} + 0.1	3.465	0.3	V _{CCIO} – 0.3	4	-4

Table 3.12. Single-Ended DC Characteristics

Notes:

1. For electromigration, the average DC current drawn by the I/O pads within a bank of I/Os shall not exceed 10 mA per I/O (All I/Os used in the same V_{CCIO}).

2. Not all IO types are supported in all banks. Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for details.

3. MIPI D-PHY LP input can be implemented by powering VCCIO to 1.5V, and select MIPI LP primitive to meet MIPI Alliance spec on V_{IH} and V_{IL}. It can also be implemented as LVCMOS12 with VCCIO at 1.2V, which would meet V_{IH}/V_{IL} spec on LVCOM12.

3.14.6. LVPECL33

The ECP5/ECP5-5G devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3.3 is one possible solution for point-to-point signals.

Over recommended operating conditions.

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
Rs	Driver Series Resistor (±1%)	93	Ω
R _P	Driver Parallel Resistor (±1%)	196	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Table 3.16. LVPECL33 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

3.14.8. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard and relies on the advantage of its use of smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The ECP5/ECP5-5G devices can receive differential input up to 800 Mb/s with its LVDS input buffer. This LVDS input buffer is used to meet the SLVS input standard specified by the JEDEC standard. The SLVS output parameters are compared to ECP5/ECP5-5G LVDS input parameters, as listed in Table 3.18.

Table 3.18. Input to SLVS

Parameter	ECP5/ECP5-5G LVDS Input	SLVS Output	Unit
Vcm (min)	50	150	mV
Vcm (max)	2350	250	mV
Differential Voltage (min)	100	140	mV
Differential Voltage (max)	—	270	mV

ECP5/ECP5-5G does not support SLVS output. However, SLVS output can be created using ECP5/ECP5-5G LVDS outputs by level shift to meet the low Vcm/Vod levels required by SLVS. Figure 3.5 shows how the LVDS output can be shifted external to meet SLVS levels.

Figure 3.5. SLVS Interface

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

			1	-8		-7		-6	
Parameter	Description	Device	Min	Max	Min	Max	Min	Max	Unit
t _{h_delpll}	Clock to Data Hold - PIO Input Register with Data Input Delay	All Devices	0	_	0	_	0	_	ns
Generic DDR Input							•		
Generic DDRX1 Inputs With Clock and Data Centered at Pin (GDDRX1_RX.SCLK.Centered) Using PCLK Clock Input - Figure 3.6									
t _{SU_GDDRX1_centered}	Data Setup Before CLK Input	All Devices	0.52	-	0.52	-	0.52	_	ns
t _{HD_GDDRX1_centered}	Data Hold After CLK Input	All Devices	0.52	_	0.52	_	0.52	_	ns
f _{DATA_GDDRX1_centered}	GDDRX1 Data Rate	All Devices	_	500	_	500	_	500	Mb/s
f _{MAX_GDDRX1_centered}	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	-	250	_	250	MHz
Generic DDRX1 Inp	uts With Clock and Data Aligned	at Pin (GDDR)	(1_RX.SC	LK.Aligne	ed) Using	PCLK Cl	ock Input	- Figure	3.7
$t_{su_GDDRX1_aligned}$	Data Setup from CLK Input	All Devices	-	-0.55	-	-0.55	-	-0.55	ns + 1/2 UI
$t_{HD_GDDRX1_aligned}$	Data Hold from CLK Input	All Devices	0.55	_	0.55	-	0.55	-	ns + 1/2 UI
$f_{DATA_GDDRX1_aligned}$	GDDRX1 Data Rate	All Devices	—	500	-	500	—	500	Mb/s
f _{MAX_GDDRX1_aligned}	GDDRX1 CLK Frequency (SCLK)	All Devices	_	250	_	250	_	250	MHz
Generic DDRX2 Inp	uts With Clock and Data Centere	d at Pin (GDDI	RX2_RX.I	ECLK.Cen	tered) Us	ing PCLK	Clock In	put, Left	and
Right sides Only - F	igure 3.6	1	T		T	1	1	1	1
$t_{SU_GDDRX2_centered}$	Data Setup before CLK Input	All Devices	0.321	. –	0.403	—	0.471	—	ns
$t_{HD_GDDRX2_centered}$	Data Hold after CLK Input	All Devices	0.321	. —	0.403	_	0.471	_	ns
$f_{\text{DATA}_{GDDRX2}_{centered}}$	GDDRX2 Data Rate	All Devices	_	800	_	700	_	624	Mb/s
$f_{MAX_GDDRX2_centered}$	GDDRX2 CLK Frequency (ECLK)	All Devices	-	400	—	350	—	312	MHz
Generic DDRX2 Inp	uts With Clock and Data Aligned	at Pin (GDDR)	(2_RX.EC	LK.Aligne	ed) Using	PCLK Cl	ock Input	, Left an	d Right
sides Only - Figure	3.7								1
t _{SU_GDDRX2_aligned}	Data Setup from CLK Input	All Devices	—	-0.344	—	-0.42	_	-0.495	ns + 1/2 UI
$t_{HD_GDDRX2_aligned}$	Data Hold from CLK Input	All Devices	0.344	—	0.42	_	0.495	-	ns + 1/2 UI
$f_{DATA_GDDRX2_aligned}$	GDDRX2 Data Rate	All Devices	_	800	—	700	—	624	Mb/s
f _{MAX_GDDRX2_aligned}	GDDRX2 CLK Frequency	All Devices	—	400	_	350	_	312	MHz
Video DDRX71 Inpu	uts With Clock and Data Aligned a	t Pin (GDDRX	71_RX.E	CLK) Usin	g PLL Clo	ck Input	, Left and	Right si	des Only
Figure 3.11									
t _{su_lvds71_i}	Data Setup from CLK Input (bit i)	All Devices	_	-0.271	—	-0.39	_	-0.41	ns+(1/2+i) * UI
t _{HD_LVDS71_i}	Data Hold from CLK Input (bit i)	All Devices	0.271	—	0.39	_	0.41	_	ns+(1/2+i) * UI
f _{DATA_LVDS71}	DDR71 Data Rate	All Devices	_	756	—	620	—	525	Mb/s
f _{MAX_LVDS71}	DDR71 CLK Frequency (ECLK)	All Devices	_	378	—	310	—	262.5	MHz

Table 3.22. ECP5/ECP5-5G External Switching Characteristics (Continued)

3.22. SERDES High-Speed Data Receiver

Table 3.27. Serial Input Data Specifications

Symbol	Description	Min	Тур	Max	Unit
V _{RX-DIFF-S}	Differential input sensitivity	150	—	1760	mV, p-p
V _{RX-IN}	Input levels	0	—	V _{CCA} +0.5 ²	V
V _{RX-CM-DCCM}	Input common mode range (internal DC coupled mode)	0.6	_	V _{CCA}	V
V _{RX-CM-ACCM}	Input common mode range (internal AC coupled mode) ²	0.1	_	V _{CCA} +0.2	V
T _{RX-RELOCK}	SCDR re-lock time ¹	—	1000	_	Bits
Z _{RX-TERM}	Input termination 50/75 Ω /High Z	-20%	50/75/5 K	+20%	Ω
RL _{RX-RL}	Return loss (without package)	—	—	-10	dB

Notes:

1. This is the typical number of bit times to re-lock to a new phase or frequency within ±300 ppm, assuming 8b10b encoded data.

2. Up to 1.655 for ECP5, and 1.76 for ECP5-5G.

3.23. Input Data Jitter Tolerance

A receiver's ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface standards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for different jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type.

Description	Frequency	Condition	Min	Тур	Max	Unit
Deterministic		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Random	5 Gb/s	s 400 mV differential eye		—	TBD	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	TBD	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	_	0.37	UI <i>,</i> p-p
Random	3.125 Gb/s	400 mV differential eye	—	—	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	—	0.37	UI <i>,</i> p-p
Random	2.5 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	—	0.65	UI <i>,</i> p-p
Deterministic		400 mV differential eye	—	—	0.37	UI, p-p
Random	1.25 Gb/s	400 mV differential eye	—	_	0.18	UI <i>,</i> p-p
Total		400 mV differential eye	—	_	0.65	UI <i>,</i> p-p

Table 3.28. Receiver Total Jitter Tolerance Specification

Notes:

1. Jitter tolerance measurements are done with protocol compliance tests: 3.125 Gb/s - XAUI Standard, 2.5 Gb/s - PCIe Standard, 1.25 Gb/s - SGMII Standard.

2. For ECP5-5G family devices only.

3.26. CPRI LV2 E.48 Electrical and Timing Characteristics – Preliminary

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Transmit			L	1	I	1
UI	Unit Interval	_	203.43	203.45	203.47	ps
T _{DCD}	Duty Cycle Distortion	-	_	_	0.05	UI
J _{UBHPJ}	Uncorrelated Bounded High Probability Jitter	-	_	-	0.15	UI
J _{TOTAL}	Total Jitter	-	_	_	0.3	UI
Z _{RX-DIFF-DC}	DC differential Impedance	-	80	_	120	Ω
T _{SKEW}	Skew between differential signals	-	_	-	9	ps
D	Tx Differential Return Loss (S22),	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
R _{LTX-DIFF}	including package and silicon	3.6864 GHz < freq < 4.9152 GHz	—	_	-8 + 16.6 *log (freq/3.6864)	dB
R _{LTX-CM}	Tx Common Mode Return Loss, including package and silicon	100 MHz < freq < 3.6864 GHz	6	-	-	dB
I _{TX-SHORT}	Transmitter short-circuit current	_	_	—	100	mA
T _{RISE_FALL} -DIFF	Differential Rise and Fall Time	_		—	_	ps
L _{TX-SKEW}	Lane-to-lane output skew	_	_	—		ps
Receive		·				
UI	Unit Interval	_	203.43	203.45	203.47	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	-	_	—	1.2	V, p-p
V _{RX-EYE_Y1_Y2}	Receiver eye opening mask, Y1 and Y2	_	62.5	_	375	mV, diff
V _{RX-EYE_X1}	Receiver eye opening mask, X1	-	_	-	0.3	UI
T _{RX-TJ}	Receiver total jitter tolerance (not including sinusoidal)	_	_	_	0.6	UI
R _{LRX-DIFF}	Receiver differential Return Loss,	100 MHz < freq < 3.6864 GHz	_	_	-8	dB
	package plus silicon	3.6864 GHz < freq < 4.9152 GHz	-	-	-8 + 16.6 *log (freq/3.6864)	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	_	6	-	_	dB
Z _{RX-DIFF-DC}	Receiver DC differential impedance	_	80	100	120	Ω

Table 3.32. CPRI LV2 E.48 Electrical and Timing Characteristics

Note: Data is measured with PRBS7 data pattern, not with PRBS-31 pattern.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

*The CFG pins are normally static (hardwired).

Part number	art number Grade Package		Pins	Temp.	LUTs (K)	SERDES
LFE5UM5G-85F-8BG381C	-8	Lead free caBGA	381	Commercial	84	Yes
LFE5UM5G-85F-8BG554C	-8	Lead free caBGA	554	Commercial	84	Yes
LFE5UM5G-85F-8BG756C	-8	Lead free caBGA	756	Commercial	84	Yes

5.2.2. Industrial

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-12F-6BG256I	-6	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-7BG256I	-7	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-8BG256I	-8	Lead free caBGA	256	Industrial	12	No
LFE5U-12F-6MG285I	-6	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-7MG285I	-7	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-8MG285I	-8	Lead free csfBGA	285	Industrial	12	No
LFE5U-12F-6BG381I	-6	Lead free caBGA	381	Industrial	12	No
LFE5U-12F-7BG381I	-7	Lead free caBGA	381	Industrial	12	No
LFE5U-12F-8BG381I	-8	Lead free caBGA	381	Industrial	12	No
LFE5U-25F-6BG256I	-6	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-7BG256I	-7	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-8BG256I	-8	Lead free caBGA	256	Industrial	24	No
LFE5U-25F-6MG285I	-6	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-7MG285I	-7	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-8MG285I	-8	Lead free csfBGA	285	Industrial	24	No
LFE5U-25F-6BG381I	-6	Lead free caBGA	381	Industrial	24	No
LFE5U-25F-7BG381I	-7	Lead free caBGA	381	Industrial	24	No
LFE5U-25F-8BG381I	-8	Lead free caBGA	381	Industrial	24	No
LFE5U-45F-6BG256I	-6	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-7BG256I	-7	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-8BG256I	-8	Lead free caBGA	256	Industrial	44	No
LFE5U-45F-6MG285I	-6	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-7MG285I	-7	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-8MG285I	-8	Lead free csfBGA	285	Industrial	44	No
LFE5U-45F-6BG381I	-6	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-7BG381I	-7	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-8BG381I	-8	Lead free caBGA	381	Industrial	44	No
LFE5U-45F-6BG554I	-6	Lead free caBGA	554	Industrial	44	No
LFE5U-45F-7BG554I	-7	Lead free caBGA	554	Industrial	44	No
LFE5U-45F-8BG554I	-8	Lead free caBGA	554	Industrial	44	No
LFE5U-85F-6MG285I	-6	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-7MG285I	-7	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-8MG285I	-8	Lead free csfBGA	285	Industrial	84	No
LFE5U-85F-6BG381I	-6	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-7BG381I	-7	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-8BG381I	-8	Lead free caBGA	381	Industrial	84	No
LFE5U-85F-6BG554I	-6	Lead free caBGA	554	Industrial	84	No
LFE5U-85F-7BG554I	-7	Lead free caBGA	554	Industrial	84	No
LFE5U-85F-8BG554I	-8	Lead free caBGA	554	Industrial	84	No

Revision History

Date	Version	Section	Change Summary							
March 2018	1.9	All	Updated formatting and page referencing.							
		General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-45.							
		Architecture	Added a row for SGMII in Table 2.13. LFE5UM/LFE5UM5G SERDES Standard Support. Updated footnote #1.							
		DC and Switching	Updated Table 3.2. Recommended Operating Conditions.							
		Characteristics	Added 2 rows and updated values in Table 3.7. DC Electrical Characteristics.							
			Updated Table 3.8. ECP5/ECP5-5G Supply Current (Standby).							
			Updated Table 3.11. sysl/O Recommended Operating Conditions.							
			Updated Table 3.12. Single-Ended DC Characteristics.							
			Updated Table 3.13. LVDS.							
			Updated Table 3.14. LVDS25E DC Conditions.							
			Updated Table 3.21. ECP5/ECP5-5G Maximum I/O Buffer Speed.							
			Updated Table 3.28. Receiver Total Jitter Tolerance Specification.							
			Updated header name of section 3.28 CPRI LV E.24/SGMII(2.5Gbps) Electrical and Timing Characteristics.							
			Updated header name of section 3.29 Gigabit Ethernet/CGMII(1, 25Gbps)/CBRI LVE 12 Electrical and Timing							
										Characteristics
								Pinout Information	Updated table in section 4.3.2 LFE5U.	
		Ordering Information	Added table rows in 5.2.1 Commercial.							
					Added table rows in 5.2.2 Industrial.					
		Supplemental Information	Updated For Further Information section.							
November 2017	1.8	General Description	Updated Table 1.1. ECP5 and ECP5-5G Family Selection Guide. Added caBGA256 package in LFE5U-12 and LFE5U-25.							

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	DC and Switching Characteristics	SERDES High-Speed Data Receiver section. Updated Table 3.26. Serial Input Data Specifications, Table 3.28. Receiver Total Jitter Tolerance Specification, and Table 3.29. External Reference Clock Specification (refclkp/refclkn).
			Modified section heading to XXAUI/CPRI LV E.30 Electrical and Timing Characteristics. Updated Table 3.33 Transmit and Table 3.34. Receive and Jitter Tolerance.
			Modified section heading to CPRI LV E.24 Electrical and Timing Characteristics. Updated Table 3.35. Transmit and Table 3.36. Receive and Jitter Tolerance.
			Modified section heading to Gigabit Ethernet/SGMII/CPRI LV E.12 Electrical and Timing Characteristics. Updated Table 3.37. Transmit and Table 3.38. Receive and Jitter Tolerance.
June 2014	1.1	Ordering Information	Updated ECP5/ECP5-5G Part Number Description and Ordering Part Numbers sections.
March 2014	1.0	All	Initial release.