E. Flattice Semiconductor Corporation - <u>LFE5UM5G-85F-8BG381I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	21000
Number of Logic Elements/Cells	84000
Total RAM Bits	3833856
Number of I/O	205
Number of Gates	-
Voltage - Supply	1.045V ~ 1.155V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	381-FBGA
Supplier Device Package	381-CABGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfe5um5g-85f-8bg381i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

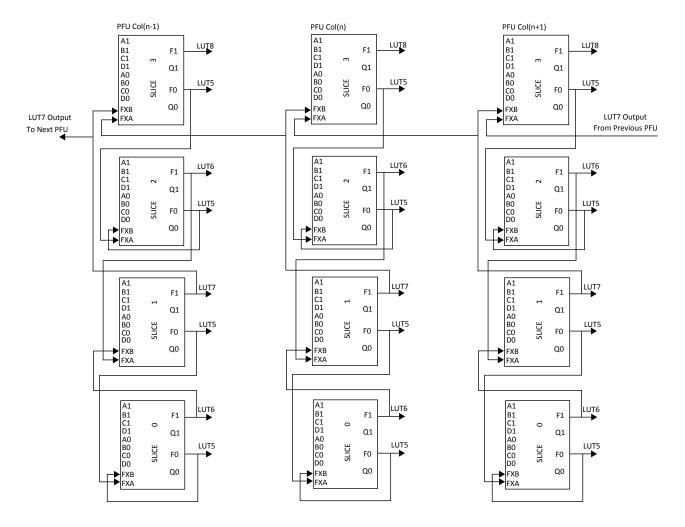
Figures

Figure 2.1. Simplified Block Diagram, LFE5UM/LFE5UM5G-85 Device (Top Level)	13
Figure 2.2. PFU Diagram	14
Figure 2.3. Slice Diagram	15
Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT7, and LUT8	16
Figure 2.5. General Purpose PLL Diagram	18
Figure 2.6. LFE5UM/LFE5UM5G-85 Clocking	20
Figure 2.7. DCS Waveforms	21
Figure 2.8. Edge Clock Sources per Bank	22
Figure 2.9. ECP5/ECP5-5G Clock Divider Sources	22
Figure 2.10. DDRDLL Functional Diagram	
Figure 2.11. ECP5/ECP5-5G DLL Top Level View (For LFE-45 and LFE-85)	
Figure 2.12. Memory Core Reset	
Figure 2.13. Comparison of General DSP and ECP5/ECP5-5G Approaches	27
Figure 2.14. Simplified sysDSP Slice Block Diagram	28
Figure 2.15. Detailed sysDSP Slice Diagram	
Figure 2.16. Group of Four Programmable I/O Cells on Left/Right Sides	
Figure 2.17. Input Register Block for PIO on Top Side of the Device	
Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device	
Figure 2.19. Output Register Block on Top Side	
Figure 2.20. Output Register Block on Left and Right Sides	
Figure 2.21. Tristate Register Block on Top Side	
Figure 2.22. Tristate Register Block on Left and Right Sides	
Figure 2.23. DQS Grouping on the Left and Right Edges	
Figure 2.24. DQS Control and Delay Block (DQSBUF)	
Figure 2.25. ECP5/ECP5-5G Device Family Banks	
Figure 2.26. On-Chip Termination	
Figure 2.27. SERDES/PCS Duals (LFE5UM/LFE5UM5G-85)	
Figure 2.28. Simplified Channel Block Diagram for SERDES/PCS Block	
Figure 3.1. LVDS25E Output Termination Example	
Figure 3.2. BLVDS25 Multi-point Output Example	
Figure 3.3. Differential LVPECL33	
Figure 3.4. MLVDS25 (Multipoint Low Voltage Differential Signaling)	
Figure 3.5. SLVS Interface	
Figure 3.6. Receiver RX.CLK.Centered Waveforms	
Figure 3.7. Receiver RX.CLK.Aligned and DDR Memory Input Waveforms	
Figure 3.8. Transmit TX.CLK.Centered and DDR Memory Output Waveforms	
Figure 3.9. Transmit TX.CLK.Aligned Waveforms	
Figure 3.10. DDRX71 Video Timing Waveforms	
Figure 3.11. Receiver DDRX71 RX Waveforms	
Figure 3.12. Transmitter DDRX71_TX Waveforms	
Figure 3.13. Transmitter and Receiver Latency Block Diagram	
Figure 3.14. SERDES External Reference Clock Waveforms	
Figure 3.15. sysCONFIG Parallel Port Read Cycle	
Figure 3.16. sysCONFIG Parallel Port Write Cycle	
Figure 3.17. sysCONFIG Slave Serial Port Timing	
Figure 3.18. Power-On-Reset (POR) Timing	
Figure 3.19. sysCONFIG Port Timing	
Figure 3.20. Configuration from PROGRAMN Timing	
Figure 3.21. Wake-Up Timing	
Figure 3.22. Master SPI Configuration Waveforms	
Figure 3.23. JTAG Port Timing Waveforms	
Figure 3.24. Output Test Load, LVTTL and LVCMOS Standards	
J ,	

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.36. Receive and Jitter Tolerance	
Table 3.37. Transmit	
Table 3.38. Receive and Jitter Tolerance	
Table 3.39. Transmit	82
Table 3.40. Receive	82
Table 3.41. Reference Clock	82
Table 3.42. ECP5/ECP5-5G sysCONFIG Port Timing Specifications	83
Table 3.43. JTAG Port Timing Specifications	
Table 3.44. Test Fixture Required Components, Non-Terminated Interfaces	

Acronyms in This Document


A list of acronyms used in this document.

ALUArithmetic Logic UnitBGABall Grid ArrayCDRClock and Data RecoveryCRCCycle Redundancy CodeDCCDynamic Clock ControlDCSDynamic Clock SelectDDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Transistor-Transistor LogicLVTLLow Voltage Transistor-Transistor LogicLVTLPripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSERDESSerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access PortTDMTime D	Acronym	Definition
CDRClock and Data RecoveryCRCCycle Redundancy CodeDCCDynamic Clock ControlDCSDynamic Clock SelectDDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Transistor-Transistor LogicLVTLLow Voltage Positive Emitter Coupled LogicLVTLLow Voltage Transistor-Transistor LogicLVTLPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	ALU	Arithmetic Logic Unit
CRCCycle Redundancy CodeDCCDynamic Clock ControlDCSDynamic Clock SelectDDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	BGA	Ball Grid Array
DCCDynamic Clock ControlDCSDynamic Clock SelectDDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	CDR	Clock and Data Recovery
DCSDynamic Clock SelectDDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICSeralizer/DeserializerSERDESSerializer/DeserializerSELUSingle Event UpsetSERDESSerializer/DeserializerSELUSingle Port RAMSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	CRC	Cycle Redundancy Code
DDRDouble Data RateDLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICSERDES Client InterfaceSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	DCC	Dynamic Clock Control
DLLDelay-Locked LoopsDSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICSERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	DCS	Dynamic Clock Select
DSPDigital Signal ProcessingEBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICSERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	DDR	Double Data Rate
EBREmbedded Block RAMECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable Functional UnitPICSERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	DLL	Delay-Locked Loops
ECLKEdge ClockFFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTLLow Voltage Transistor-Transistor LogicLVTTLLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	DSP	Digital Signal Processing
FFTFast Fourier TransformsFIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	EBR	Embedded Block RAM
FIFOFirst In First OutFIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable Functional UnitPICSERDES Client InterfaceSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	ECLK	Edge Clock
FIRFinite Impulse ResponseLVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable Functional UnitPICSERDES Client InterfaceSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	FFT	Fast Fourier Transforms
LVCMOSLow-Voltage Complementary Metal Oxide SemiconductorLVDSLow-Voltage Differential SignalingLVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	FIFO	First In First Out
LVDSLow-Voltage Differential SignalingLVPECLLow-Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	FIR	Finite Impulse Response
LVPECLLow Voltage Positive Emitter Coupled LogicLVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor
LVTTLLow Voltage Transistor-Transistor LogicLUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	LVDS	Low-Voltage Differential Signaling
LUTLook Up TableMLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	LVPECL	Low Voltage Positive Emitter Coupled Logic
MLVDSMultipoint Low-Voltage Differential SignalingPCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	LVTTL	Low Voltage Transistor-Transistor Logic
PCIPeripheral Component InterconnectPCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	LUT	Look Up Table
PCSPhysical Coding SublayerPCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	MLVDS	Multipoint Low-Voltage Differential Signaling
PCLKPrimary ClockPDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PCI	Peripheral Component Interconnect
PDPRPseudo Dual Port RAMPFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PCS	Physical Coding Sublayer
PFUProgrammable Functional UnitPICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PCLK	Primary Clock
PICProgrammable I/O CellsPLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PDPR	Pseudo Dual Port RAM
PLLPhase-Locked LoopsPORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PFU	Programmable Functional Unit
PORPower On ResetSCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PIC	Programmable I/O Cells
SCISERDES Client InterfaceSERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	PLL	Phase-Locked Loops
SERDESSerializer/DeserializerSEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	POR	Power On Reset
SEUSingle Event UpsetSLVSScalable Low-Voltage SignalingSPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	SCI	SERDES Client Interface
SLVS Scalable Low-Voltage Signaling SPI Serial Peripheral Interface SPR Single Port RAM SRAM Static Random-Access Memory TAP Test Access Port	SERDES	Serializer/Deserializer
SPISerial Peripheral InterfaceSPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	SEU	Single Event Upset
SPRSingle Port RAMSRAMStatic Random-Access MemoryTAPTest Access Port	SLVS	Scalable Low-Voltage Signaling
SRAM Static Random-Access Memory TAP Test Access Port	SPI	Serial Peripheral Interface
TAP Test Access Port	SPR	Single Port RAM
	SRAM	Static Random-Access Memory
TDM Time Division Multiplexing	ТАР	Test Access Port
	TDM	Time Division Multiplexing

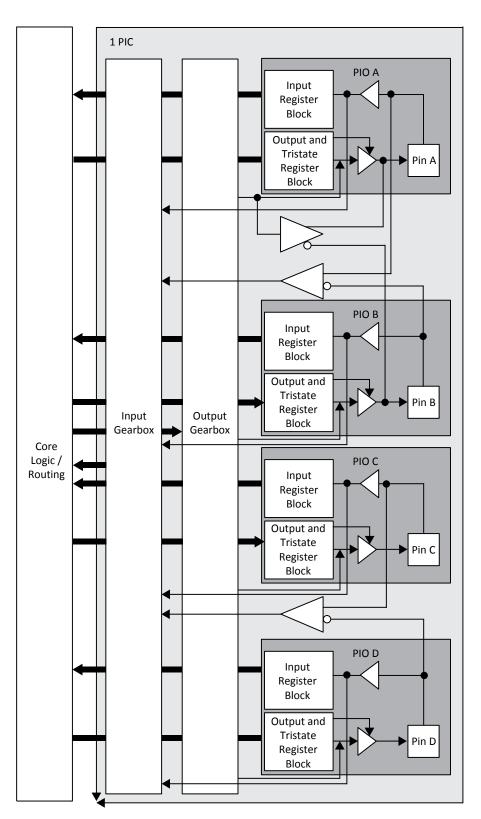
© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2.4. Connectivity Supporting LUT5, LUT6, LUT	7, and LUT8
---	-------------

Table	2.2.	Slice	Signal	Descriptions
-------	------	-------	--------	--------------

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Inter-PFU signal	FCO	Fast carry chain output ¹


Notes:

2. Requires two adjacent PFUs.

^{1.} See Figure 2.3 on page 15 for connection details.

2.11. **PIO**

The PIO contains three blocks: an input register block, output register block, and tristate register block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selection logic.

2.11.1. Input Register Block

The input register blocks for the PIOs on all edges contain delay elements and registers that can be used to condition high-speed interface signals before they are passed to the device core. In addition, the input register blocks for the PIOs on the left and right edges include built-in FIFO logic to interface to DDR and LPDDR memory.

The Input register block on the right and left sides includes gearing logic and registers to implement IDDRX1 and IDDRX2 functions. With two PICs sharing the DDR register path, it can also implement IDDRX71 function used for 7:1 LVDS interfaces. It uses three sets of registers to shift, update, and transfer to implement gearing and the clock domain transfer. The first stage registers samples the high-speed input data by the high-speed edge clock on its rising and falling edges. The second stage registers perform data alignment based on the control signals. The third stage pipeline registers pass the data to the device core synchronized to the low-speed system clock. The top side of the device supports IDDRX1 gearing function. For more information on gearing function, refer to ECP5 and ECP5-5G High-Speed I/O Interface (TN1265).

Figure 2.17 shows the input register block for the PIOs on the top edge.

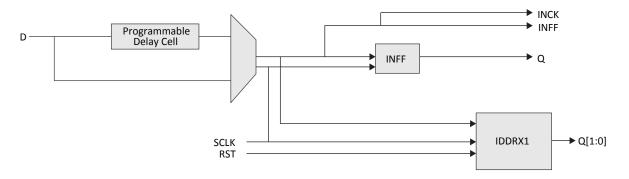
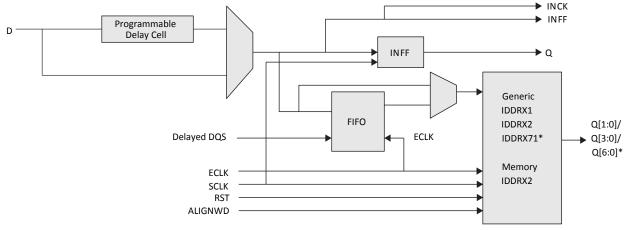
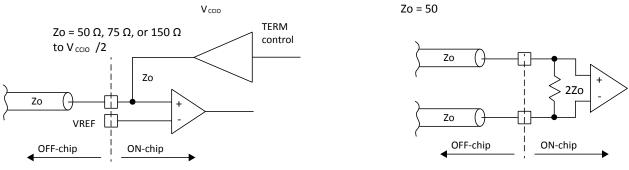



Figure 2.17. Input Register Block for PIO on Top Side of the Device

Figure 2.18 shows the input register block for the PIOs located on the left and right edges.

*For 7:1 LVDS interface only. It is required to use PIO pair pins (PIOA/B or PIOC/D).


Figure 2.18. Input Register Block for PIO on Left and Right Side of the Device

2.14.4. On-Chip Programmable Termination

The ECP5/ECP5-5G devices support a variety of programmable on-chip terminations options, including:

- Dynamically switchable Single-Ended Termination with programmable resistor values of 50 Ω , 75 Ω , or 150 Ω .
- Common mode termination of 100 Ω for differential inputs.

Parallel Single-Ended Input

Differential Input

Figure 2.26. On-Chip Termination

See Table 2.12 for termination options for input modes.

IO_TYPE	Terminate to V _{CCIO} /2*	Differential Termination Resistor*
LVDS25	_	100
BLVDS25	—	100
MLVDS	—	100
LVPECL33	—	100
subLVDS	—	100
SLVS	_	100
HSUL12	50, 75, 150	—
HSUL12D	—	100
SSTL135_I / II	50, 75, 150	—
SSTL135D_I / II	—	100
SSTL15_I / II	50, 75, 150	-
SSTL15D_I / II	—	100
SSTL18_I / II	50, 75, 150	-
SSTL18D_I / II	_	100

*Notes:

TERMINATE to $V_{CCIO}/2$ (Single-Ended) and DIFFRENTIAL TERMINATION RESISTOR when turned on can only have one setting per bank. Only left and right banks have this feature.

Use of TERMINATE to $V_{CCIO}/2$ and DIFFRENTIAL TERMINATION RESISTOR are mutually exclusive in an I/O bank. On-chip termination tolerance ±20%.

Refer to ECP5 and ECP5-5G sysIO Usage Guide (TN1262) for on-chip termination usage and value ranges.

2.14.5. Hot Socketing

ECP5/ECP5-5G devices have been carefully designed to ensure predictable behavior during power-up and power-down. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. See the Hot Socketing Specifications section on page 48.

2.15. SERDES and Physical Coding Sublayer

LFE5UM/LFE5UM5G devices feature up to 4 channels of embedded SERDES/PCS arranged in dual-channel blocks at the bottom of the devices. Each channel supports up to 3.2 Gb/s (ECP5), or up to 5 Gb/s (ECP5-5G) data rate. Figure 2.27 shows the position of the dual blocks for the LFE5-85. Table 2.13 shows the location of available SERDES Duals for all devices. The LFE5UM/LFE5UM5G SERDES/PCS supports a range of popular serial protocols, including:

- PCI Express Gen1 and Gen2 (2.5 Gb/s) on ECP5UM; Gen 1, Gen2 (2.5 Gb/s and 5 Gb/s) on ECP5-5G
- Ethernet (XAUI, GbE 1000 Base CS/SX/LX and SGMII)
- SMPTE SDI (3G-SDI, HD-SDI, SD-SDI)
- CPRI (E.6.LV: 614.4 Mb/s, E.12.LV: 1228.8 Mb/s, E.24.LV: 2457.6 Mb/s, E.30.LV: 3072 Mb/s), also E.48.LV2:4915 Mb/s in ECP5-5G
- JESD204A/B ADC and DAC converter interface: 312.5 Mb/s to 3.125 Gb/s (ECP5) / 5 Gb/s (ECP5-5G)

Each dual contains two dedicated SERDES for high speed, full duplex serial data transfer. Each dual also has a PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the standards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated protocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in duals, multiple baud rates can be supported within a dual with the use of dedicated, per channel /1, /2 and /11 rate dividers. Additionally, two duals can be arranged together to form x4 channel link.

ECP5UM devices and ECP5-5G devices are pin-to-pin compatible. But, the ECP5UM devices require 1.1 V on VCCA, VCCHRX and VCCHTX supplies. ECP5-5G devices require 1.2 V on these supplies. When designing either family device with migration in mind, these supplies need to be connected such that it is possible to adjust the voltage level on these supplies.

When a SERDES Dual in a 2-Dual device is not used, the power VCCA power supply for that Dual should be connected. It is advised to connect the VCCA of unused channel to core if the user knows he will not use the Dual at all, or it should be connected to a different regulated supply, if that Dual may be used in the future.

For an unused channel in a Dual, it is advised to connect the VCCHTX to VCCA, and user can leave VCCHRX unconnected.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine multiple protocols and baud rates within a device, refer to ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261).

3.7. Hot Socketing Requirements

Table 3.6. Hot Socketing Requirements

Description	Min	Тур	Max	Unit
Input current per SERDES I/O pin when device is powered down and inputs driven.	_	_	8	mA
Input current per HDIN pin when device power supply is off, inputs driven ^{1, 2}	_	_	15	mA
Current per HDIN pin when device power ramps up, input driven ³	_	_	50	mA
Current per HDOUT pin when device power supply is off, outputs pulled up ⁴	—	—	30	mA

Notes:

1. Device is powered down with all supplies grounded, both HDINP and HDINN inputs driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, no external AC coupling.

2. Each P and N input must have less than the specified maximum input current during hot plug. For a device with 2 DCU, the total input current would be 15 mA * 4 channels * 2 input pins per channel = 120 mA.

- Device power supplies are ramping up (V_{CCA} and V_{CCAUX}), both HDINP and HDINN inputs are driven by a CML driver with maximum allowed output V_{CCHTX}, 8b/10b data, internal AC coupling.
- 4. Device is powered down with all supplies grounded. Both HDOUTP and HDOUN outputs are pulled up to V_{CCHTX} by the far end receiver termination of 50 Ω single ended.

3.8. ESD Performance

Refer to the ECP5 and ECP5-5G Product Family Qualification Summary for complete qualification data, including ESD performance.

3.9. DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ^{1, 4}	Input or I/O Low Leakage	$0 \leq V_{\text{IN}} \leq V_{\text{CCIO}}$	_	—	10	μA
I _{IH} ^{1, 3}	Input or I/O High Leakage	$V_{CCIO} < V_{IN} \leq V_{IH(MAX)}$	—	—	100	μA
I	I/O Active Pull-up Current, sustaining logic HIGH state	$0.7 \: V_{CCIO} \! \leq \! V_{IN} \! \leq \! V_{CCIO}$	-30	_	_	μA
I _{PU}	I/O Active Pull-up Current, pulling down from logic HIGH state	$0 \leq V_{\text{IN}} \leq 0.7 \; V_{\text{CCIO}}$		_	-150	μA
1	I/O Active Pull-down Current, sustaining logic LOW state	$0 \le V_{IN} \le V_{IL}$ (MAX)	30	—	—	μA
I _{PD}	I/O Active Pull-down Current, pulling up from logic LOW state	$0 \leq V_{IN} \leq V_{CCIO}$	—	—	150	μA
C1	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	8	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, \\ V_{CC} = 1.2 \text{ V}, V_{IO} = 0 \text{ to } V_{IH(MAX)}$	_	5	7	pf
V	Hysteresis for Single-Ended	V _{CCIO} = 3.3 V	-	300	_	mV
V _{HYST}	Inputs	V _{CCIO} = 2.5 V	_	250	_	mV

Table 3.7. DC Electrical Characteristics

Notes:

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25 °C, f = 1.0 MHz.

- 3. Applicable to general purpose I/Os in top and bottom banks.
- 4. When used as V_{REF} , maximum leakage= 25 μ A.

3.14. sysl/O Differential Electrical Characteristics

3.14.1. LVDS

Over recommended operating conditions.

Table 3.13. LVDS

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
$V_{\text{INP}}, V_{\text{INM}}$	Input Voltage	-	0	_	2.4	V
V _{CM}	Input Common Mode Voltage	Half the sum of the two Inputs	0.05	—	2.35	V
V _{THD}	Differential Input Threshold	Difference between the two Inputs	±100	_	_	mV
I _{IN}	Input Current	Power On or Power Off	-	—	±10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ω	-	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ω	0.9 V	1.03	_	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ω	250	350	450	mV
ΔV_{OD}	Change in V_{OD} Between High and Low	_	_	_	50	mV
V _{OS}	Output Voltage Offset	$(V_{OP} + V_{OM})/2, R_T = 100 \Omega$	1.125	1.25	1.375	V
ΔV_{OS}	Change in Vos Between H and L	—	-	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0 V Driver outputs shorted to each other	_	_	12	mA

Note: On the left and right sides of the device, this specification is valid only for $V_{CCIO} = 2.5$ V or 3.3 V.

3.14.2. **SSTLD**

All differential SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

3.14.3. LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3 V V_{CCIO} . The default drive current for LVCMOS33D output is 12 mA with the option to change the device strength to 4 mA, 8 mA, 12 mA or 16 mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

3.14.4. LVDS25E

The top and bottom sides of ECP5/ECP5-5G devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3.1 is one possible solution for point-to-point signals.

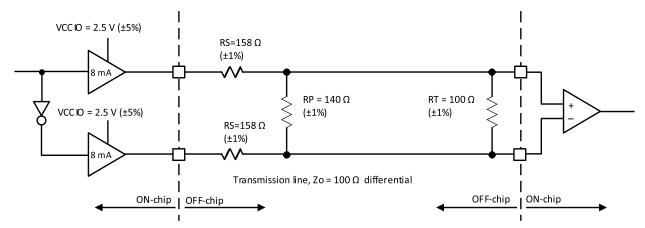
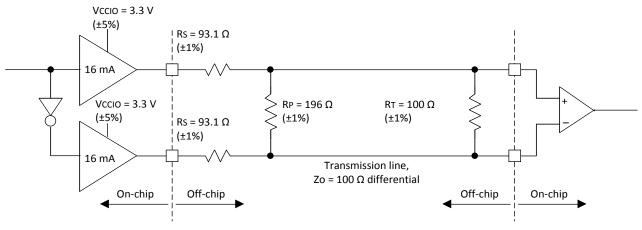


Figure 3.1. LVDS25E Output Termination Example

Table 3.14. LVDS25E DC Conditions


Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
Rs	Driver Series Resistor (±1%)	158	Ω
R _P	Driver Parallel Resistor (±1%)	140	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	1.43	V
V _{OL}	Output Low Voltage	1.07	V
V _{OD}	Output Differential Voltage	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

Note: For input buffer, see LVDS Table 3.13 on page 55.

3.14.6. LVPECL33

The ECP5/ECP5-5G devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3.3 is one possible solution for point-to-point signals.

Over recommended operating conditions.

Parameter	Description	Typical	Unit
V _{CCIO}	Output Driver Supply (±5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
Rs	Driver Series Resistor (±1%)	93	Ω
R _P	Driver Parallel Resistor (±1%)	196	Ω
R _T	Receiver Termination (±1%)	100	Ω
V _{OH}	Output High Voltage	2.05	V
V _{OL}	Output Low Voltage	1.25	V
V _{OD}	Output Differential Voltage	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
ZBACK	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Table 3.16. LVPECL33 DC Conditions

Note: For input buffer, see LVDS Table 3.13 on page 55.

3.14.8. SLVS

Scalable Low-Voltage Signaling (SLVS) is based on a point-to-point signaling method defined in the JEDEC JESD8-13 (SLVS-400) standard. This standard evolved from the traditional LVDS standard and relies on the advantage of its use of smaller voltage swings and a lower common-mode voltage. The 200 mV (400 mV p-p) SLVS swing contributes to a reduction in power.

The ECP5/ECP5-5G devices can receive differential input up to 800 Mb/s with its LVDS input buffer. This LVDS input buffer is used to meet the SLVS input standard specified by the JEDEC standard. The SLVS output parameters are compared to ECP5/ECP5-5G LVDS input parameters, as listed in Table 3.18.

Table 3.18. Input to SLVS

Parameter	ECP5/ECP5-5G LVDS Input	SLVS Output	Unit
Vcm (min)	50	150	mV
Vcm (max)	2350	250	mV
Differential Voltage (min)	100	140	mV
Differential Voltage (max)	-	270	mV

ECP5/ECP5-5G does not support SLVS output. However, SLVS output can be created using ECP5/ECP5-5G LVDS outputs by level shift to meet the low Vcm/Vod levels required by SLVS. Figure 3.5 shows how the LVDS output can be shifted external to meet SLVS levels.

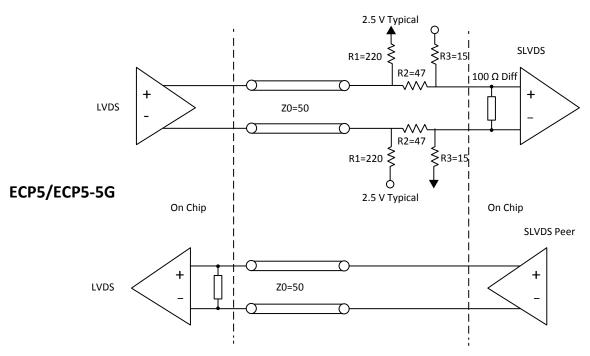


Figure 3.5. SLVS Interface

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.25. PCI Express Electrical and Timing Characteristics

3.25.1. PCIe (2.5 Gb/s) AC and DC Characteristics

Over recommended operating conditions.

Table 3.30. PCIe (2.5 Gb/s)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit		
Transmit ¹								
UI	Unit interval	-	399.88	400	400.12	ps		
V _{TX-DIFF_P-P}	Differential peak-to-peak output	-	0.8	1.0	1.2	V		
V _{TX-DE-RATIO}	De-emphasis differential output voltage ratio	_	-3	-3.5	-4	dB		
V _{TX-CM-AC_P}	RMS AC peak common-mode output voltage	-	-	_	20	mV		
V _{TX-RCV-DETECT}	Amount of voltage change allowed during receiver detection	_	_	_	600	mV		
V _{TX-CM-DC}	Tx DC common mode voltage	_	0	_	V _{CCHTX}	V		
I _{TX-SHORT}	Output short circuit current	V _{TX-D+} =0.0 V V _{TX-D-} =0.0 V	_	_	90	mA		
Z _{TX-DIFF-DC}	Differential output impedance	—	80	100	120	Ω		
RL _{TX-DIFF}	Differential return loss	_	10	_	—	dB		
RL _{TX-CM}	Common mode return loss	_	6.0	_	—	dB		
T _{TX-RISE}	Tx output rise time	20% to 80%	0.125	_	—	UI		
T _{TX-FALL}	Tx output fall time	20% to 80%	0.125	_	_	UI		
L _{TX-SKEW}	Lane-to-lane static output skew for all lanes in port/link	-	-	_	1.3	ns		
T _{TX-EYE}	Transmitter eye width	_	0.75	_	_	UI		
T _{TX-EYE-MEDIAN-TO-MAX-} JITTER	Maximum time between jitter median and maximum deviation from median	_	_	_	0.125	UI		
Receive ^{1, 2}								
UI	Unit Interval	_	399.88	400	400.12	ps		
V _{RX-DIFF_P-P}	Differential peak-to-peak input voltage	-	0.34 ³	_	1.2	v		
V _{RX-IDLE-DET-DIFF_P-P}	Idle detect threshold voltage	_	65	_	340 ³	mV		
V _{RX-CM-AC_P}	RMS AC peak common-mode input voltage	_	_	_	150	mV		
Z _{RX-DIFF-DC}	DC differential input impedance	_	80	100	120	Ω		
Z _{RX-DC}	DC input impedance	_	40	50	60	Ω		
Z _{RX-HIGH-IMP-DC}	Power-down DC input impedance	_	200K	_	_	Ω		
RL _{RX-DIFF}	Differential return loss	_	10	_	_	dB		
RL _{RX-CM}	Common mode return loss	_	6.0	_	_	dB		

Notes:

- 1. Values are measured at 2.5 Gb/s.
- 2. Measured with external AC-coupling on the receiver.
- 3. Not in compliance with PCI Express 1.1 standard.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 3.31. PCIe (5 Gb/s) (Continued)

Symbol	Description	Test Conditions	Min	Тур	Max	Unit
Receive ^{1, 2}		'		'	'	
UI	Unit Interval	-	199.94	200	200.06	ps
V _{RX-DIFF-PP}	Differential Rx peak-peak voltage	-	0.34 ³	—	1.2	V, p-p
T _{RX-RJ-RMS}	Receiver random jitter tolerance (RMS)	1.5 MHz – 100 MHz Random noise	_	_	4.2	ps, RMS
T _{RX-DJ}	Receiver deterministic jitter tolerance	—	—	—	88	ps
V _{RX-CM-AC}	Common mode noise from Rx	-	_	_		mV, p-p
P	Receiver differential Return Loss,	50 MHz < freq < 1.25 GHz	10	_	-	dB
R _{LRX-DIFF}	package plus silicon	1.25 GHz < freq < 2.5 GHz	8	_	-	dB
R _{LRX-CM}	Receiver common mode Return Loss, package plus silicon	-	6	_	-	dB
Z _{RX-DC}	Receiver DC single ended impedance	-	40	_	60	Ω
Z _{RX-HIGH-IMP-DC}	Receiver DC single ended impedance when powered down	-	200K	_	-	Ω
V _{RX-CM-AC-P}	Rx AC peak common mode voltage	_	_	_		mV, peak
V _{RX-IDLE-DET-DIFF-PP}	Electrical Idle Detect Threshold	-	65	_	340 ³	mv,
L _{RX-SKEW}	Receiver lane-lane skew	-	—	—	8	ns

Notes:

1. Values are measured at 5 Gb/s.

2. Measured with external AC-coupling on the receiver.

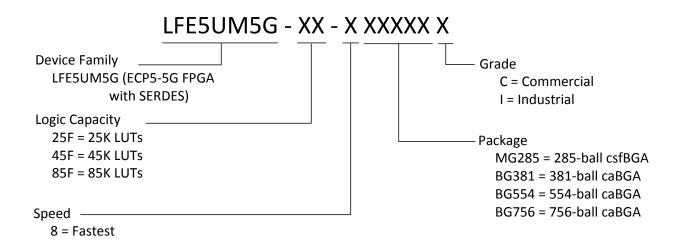
3. Not in compliance with PCI Express standard.

4. Pinout Information

4.1. Signal Descriptions

Signal Name	I/O	Description
General Purpose		
P[L/R] [Group Number]_[A/B/C/D]	ı/o	 [L/R] indicates the L (Left), or R (Right) edge of the device. [Group Number] indicates the PIO [A/B/C/D] group. [A/B/C/D] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tristated with an internal pull-down resistor enabled. If any pin is not used (or not bonded to a package pin), it is tristated and default to have pull-down enabled after configuration. PIO A and B are grouped as a pair, and PIO C and D are group as a pair. Each pair supports true LVDS differential input buffer. Only PIO A and B pair supports true LVDS differential output buffer. Each A/B and C/D pair supports programmable on/off differential input termination of 100 Ω.
P[T/B][Group Number]_[A/B] I/O		[T/B] indicates the T (top) or B (bottom) edge of the device. [Group Number] indicates the PIO [A/B] group. [A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with sysConfig pins. These pins, when not used as configuration pins, can be programmed as I/Os for user logic. During configuration, the pins not used in configuration are tristated with an internal pull-down resistor enabled. If any pin is not used (or not bonded to a package pin), it is tristated and default to have pull-down enabled after configuration. PIOs on top and bottom do not support differential input signaling or true LVDS output signaling, but it can support emulated differential output buffer. PIO A/B forms a pair of emulated differential output buffer.
GSRN	1	Global RESET signal (active low). Any I/O pin can be GSRN.
NC	_	No connect.
RESERVED	_	This pin is reserved and should not be connected to anything on the board.
GND	_	Ground. Dedicated pins.
V _{cc}	-	Power supply pins for core logic. Dedicated pins. V _{CC} = 1.1 V (ECP5), 1.2 V (ECP5UM5G)
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers. $V_{CCAUX} = 2.5 V.$
V _{CCIOx}	_	Dedicated power supply pins for I/O bank x. V_{CCIO8} is used for configuration and JTAG.
VREF1_x	_	Reference supply pins for I/O bank x. Pre-determined shared pin in each bank are assigned as VREF1 input. When not used, they may be used as I/O pins.
PLL, DLL and Clock Functions		
[LOC][_GPLL[T, C]_IN	I	General Purpose PLL (GPLL) input pads: [LOC] = ULC, LLC, URC and LRC, T = true and C = complement. These pins are shared I/O pins. When not configured as GPLL input pads, they can be used as general purpose I/O pins.
GR_PCLK[Bank][num]	I	General Routing Signals in Banks 0, 1, 2, 3, 4, 6 and 7. There are two in each bank ([num] = 0, 1). Refer to ECP5 sysClock PLL/DLL Design and Usage Guide (TN1263). These pins are shared I/O pins. When not configured as GR pins, they can be used as general purpose I/O pins.
PCLK[T/C][Bank]_[num]	I/O	General Purpose Primary CLK pads: [T/C] = True/Complement, [Bank] = (0, 1, 2, 3, 6 and 7). There are two in each bank ([num] = 0, 1). These are shared I/ O pins. When not configured as PCLK pins, they can be used as general purpose I/O pins.

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.


All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Name	I/O	Description		
PLL, DLL and Clock Functions (Contin	nued)			
[L/R]DQS[group_num]	I/O	DQS input/output pads: T (top), R (right), group_num = ball number associated with DQS[T] pin.		
[T/R]]DQ[group_num]	I/O	DQ input/output pads: T (top), R (right), group_ num = ball number associated with DQS[T] pin.		
Test and Programming (Dedicated F	Pins)			
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration. This is a dedicated input pin.		
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up ena This is a dedicated input pin.		
TDI	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration. This is a dedicated input pin.		
TDO	О	Output pin. Test Data Out pin used to shift data out of a device using 1149.1. This is a dedicated output pin.		
Configuration Pads (Used during sys	sCONFIG)			
CFG[2:0]	I	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins.		
INITN	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. This is a dedicated pin.		
PROGRAMN	1	Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin.		
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and t		
ССГК	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and CPU modes. Output Configuration Clock for configuring an FPGA in Master configuration modes (Master SPI, Master Serial). This is a dedicated pin.		
HOLDN/DI/BUSY/CSSPIN/CEN	I/O	Parallel configuration mode busy indicator. SPI/SPIm mode data output. This is a shared I/O pin. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.		
CSN/SN	I/O	Parallel configuration mode active-low chip select. Slave SPI chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.		
CS1N	I	Parallel configuration mode active-low chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.		
WRITEN	I	Write enable for parallel configuration modes. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.		
DOUT/CSON	о	Serial data output. Chip select output. SPI/SPIm mode chip select. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O		
D0/MOSI/IO0	I/O	Parallel configuration I/O. Open drain during configuration. When in SPI modes, it is an output in Master mode, and input in Slave mode. This is a shared I/O pin. When not in configuration, it can be used as general purpose I/O pin.		

^{© 2014-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5.2. Ordering Part Numbers

5.2.1. Commercial

Part number	Grade	Package	Pins	Temp.	LUTs (K)	SERDES
LFE5U-12F-6BG256C	-6	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-7BG256C	-7	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-8BG256C	-8	Lead free caBGA	256	Commercial	12	No
LFE5U-12F-6MG285C	-6	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-7MG285C	-7	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-8MG285C	-8	Lead free csfBGA	285	Commercial	12	No
LFE5U-12F-6BG381C	-6	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-7BG381C	-7	Lead free caBGA	381	Commercial	12	No
LFE5U-12F-8BG381C	-8	Lead free caBGA	381	Commercial	12	No
LFE5U-25F-6BG256C	-6	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-7BG256C	-7	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-8BG256C	-8	Lead free caBGA	256	Commercial	24	No
LFE5U-25F-6MG285C	-6	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-7MG285C	-7	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-8MG285C	-8	Lead free csfBGA	285	Commercial	24	No
LFE5U-25F-6BG381C	-6	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-7BG381C	-7	Lead free caBGA	381	Commercial	24	No
LFE5U-25F-8BG381C	-8	Lead free caBGA	381	Commercial	24	No
LFE5U-45F-6BG256C	-6	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-7BG256C	-7	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-8BG256C	-8	Lead free caBGA	256	Commercial	44	No
LFE5U-45F-6MG285C	-6	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-7MG285C	-7	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-8MG285C	-8	Lead free csfBGA	285	Commercial	44	No
LFE5U-45F-6BG381C	-6	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-7BG381C	-7	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-8BG381C	-8	Lead free caBGA	381	Commercial	44	No
LFE5U-45F-6BG554C	-6	Lead free caBGA	554	Commercial	44	No
LFE5U-45F-7BG554C	-7	Lead free caBGA	554	Commercial	44	No

© 2014-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Supplemental Information

For Further Information

A variety of technical notes for the ECP5/ECP5-5G family are available.

- High-Speed PCB Design Considerations (TN1033)
- Transmission of High-Speed Serial Signals Over Common Cable Media (TN1066)
- PCB Layout Recommendations for BGA Packages (TN1074)
- Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)
- Electrical Recommendations for Lattice SERDES (FPGA-TN-02077)
- LatticeECP3, ECP-5 and ECP5-5G Soft Error Detection (SED)/Correction (SEC) Usage Guide (TN1184)
- Using TraceID (TN1207)
- Sub-LVDS Signaling Using Lattice Devices (TN1210)
- Advanced Security Encryption Key Programming Guide for ECP5, ECP5-5G, LatticeECP3, and LatticeECP2/MS Devices (TN1215)
- LatticeECP3, LatticeECP2/M, ECP5 and ECP5-5G Dual Boot and Multiple Boot Feature (TN1216)
- ECP5 and ECP5-5G sysCONFIG Usage Guide (TN1260)
- ECP5 and ECP5-5G SERDES/PCS Usage Guide (TN1261)
- ECP5 and ECP5-5G sysIO Usage Guide (TN1262)
- ECP5 and ECP5-5G sysClock PLL/DLL Design and Usage Guide (TN1263)
- ECP5 and ECP5-5G Memory Usage Guide (TN1264)
- ECP5 and ECP5-5G High-Speed I/O Interface (TN1265)
- Power Consumption and Management for ECP5 and ECP5-5G Devices (TN1266)
- ECP5 and ECP5-5G sysDSP Usage Guide (TN1267)
- ECP5 and ECP5-5G Hardware Checklist (FPGA-TN-02038)
- Solder Reflow Guide for Surface Mount Devices (FPGA-TN-02041)
- ECP5 and ECP5-5G PCI Express Soft IP Ease of Use Guidelines (FPGA-TN-02045)
- Programming External SPI Flash through JTAG for ECP5/ECP5-5G (FPGA-TN-02050)
- Adding Scalable Power and Thermal Management to ECP5 Using L-ASC10 (AN6095)

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL): www.jedec.org
- PCI: www.pcisig.com

(Continued)

Date	Version	Section	Change Summary
August 2014	1.2	DC and Switching Characteristics	SERDES High-Speed Data Receiver section. Updated Table 3.26. Serial Input Data Specifications, Table 3.28. Receiver Total Jitter Tolerance Specification, and Table 3.29. External Reference Clock Specification (refclkp/refclkn).
			Modified section heading to XXAUI/CPRI LV E.30 Electrical and Timing Characteristics. Updated Table 3.33 Transmit and Table 3.34. Receive and Jitter Tolerance.
			Modified section heading to CPRI LV E.24 Electrical and Timing Characteristics. Updated Table 3.35. Transmit and Table 3.36. Receive and Jitter Tolerance.
			Modified section heading to Gigabit Ethernet/SGMII/CPRI LV E.12 Electrical and Timing Characteristics. Updated Table 3.37. Transmit and Table 3.38. Receive and Jitter Tolerance.
June 2014	1.1	Ordering Information	Updated ECP5/ECP5-5G Part Number Description and Ordering Part Numbers sections.
March 2014	1.0	All	Initial release.