

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	96MHz
Connectivity	1-Wire, I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	49
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-30°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-WFBGA, WLBGA
Supplier Device Package	81-WLP (3.95x4.11)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/max32621iwg-w

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Absolute Maximum Ratings

(All voltages with respect to V _{SS} , unles	s otherwise noted.)
V _{DD18}	0.3V to +1.89V
V _{DD12}	
V _{DDA} with respect to V _{SSA}	0.3V to +1.89V
V _{RTC}	0.3V to +1.89V
V _{DDB}	0.3V to +3.6V
V _{REF}	0.3V to +3.6V
32KIN, 32KOUT	0.3V to +3.6V
RSTN, SRSTN, GPIO, DP, DM, JTAG	0.3V to +3.6V
AIN[1:0]	0.3V to +5.5V
AIN[3:2]	0.3V to +3.6V
V _{DDIO}	0.3V to +3.6V

V_{DDIOH} Total current V_{DD18} , $V_{DDIO}(sink)$ Total current V_{SS} Output current (sink) by Any I/O pin Output current (source) by Any I/O pin Continuous Power Dissipation ($T_A = +70^{\circ}C$) TQFP (multilayer board)	100mA 100mA
(derate 45.5mW/°C above +70°C) Operating Temperature Range Storage Temperature Range Soldering Temperature (reflow)	30°C to +85°C -65°C to +150°C

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Package Thermal Characteristics (Note 1)

TQFP

Junction-to-Ambient Thermal Resistance (θ_{JA})22°C/W Junction-to-Case Thermal Resistance (θ_{JC})2°C/W

WLP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	V _{DD18}		1.71	1.8	1.89	
	V _{DD12}		1.14	1.2	1.26	
Supply Voltage	V _{DDA}		1.71	1.8	1.89	
	V _{RTC}		1.71	1.8	1.89	V
	V _{DDB}		3.04	3.3	3.60	
	V _{DDIO}		1.71	1.8	3.60	
	V _{DDIOH}	V _{DDIOH} must be ≥ V _{DDIO}	1.71	1.8	3.60	
Power-Fail Reset Voltage	V _{RST}	Monitors V _{DD18}	1.1		1.70	V
Power On Reset Voltage	V _{POR}	Monitors V _{DD18}		1.5		V
RAM Data Retention Voltage	V _{DRV}	V _{DD12} supply, retention in LP1		0.93		V
V _{DD12} Dynamic Current, LP3 Mode	IDD12_DLP3	Measured on the V_{DD12} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DDIO} , outputs do not source/sink any current, PMU disabled		102		μΑ/ MHz

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{DD12} Current,		96MHz oscillator selected as system clock, measured on the V_{DD12} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DDIO} , outputs do not source/sink any current		96		_ μΑ
LP3 Mode	IDD12_LP3	$\begin{array}{l} \mbox{4MHz oscillator selected as system clock} \\ \mbox{measured on the V_{DD12} pin and executing} \\ \mbox{code from cache memory, all inputs are tied to} \\ \mbox{V}_{SS} \mbox{ or V_{DD10}, outputs do not source/sink any} \\ \mbox{current} \end{array}$	tied to 49			- μ Λ
V _{DD18} Current,		96MHz oscillator selected as system clock, measured on the V_{DD18} pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DDIO} , outputs do not source/sink any current		366		- μΑ
LP3 Mode	IDD18_LP3	4MHz oscillator selected as system clock, measured on the VDD18 pin and executing code from cache memory, all inputs are tied to V_{SS} or V_{DDIO} , outputs do not source/sink any current.		33		μΑ
V _{RTC} Current,		RTC disabled		1.15		μA
LP3 Mode	IRTC_LP3	RTC enabled		1.55		μA
V _{DD12} Dynamic Current, LP2 Mode	IDD12_DLP2	Measured on the $V_{DD12}\text{pin},\text{ARM}$ in sleep mode, PMU with two channels active		23		μΑ/ MHz
V _{DD12} Current,		96MHz oscillator selected as system clock, measured on the V_{DD12} pin, ARM in sleep mode, system clock stopped		96		
LP2 Mode	IDD12_LP2	$\begin{array}{l} \mbox{4MHz oscillator selected as system clock,} \\ \mbox{measured on the V}_{DD12} \mbox{pin, ARM in sleep} \\ \mbox{mode, system clock stopped} \end{array}$		49		- μΑ
V _{DD18} Current, LP2 Mode	nt	96MHz oscillator selected as system clock, ARM in sleep mode, PMU with two channels active, all inputs are tied to V_{SS} or V_{DDIO} , outputs do not source/sink any current		366		
	IDD18_LP2	$\begin{array}{l} \mbox{4MHz oscillator selected as system clock,} \\ \mbox{ARM in sleep mode, PMU with two channels} \\ \mbox{active, all inputs are tied to } V_{SS} \mbox{ or } V_{DDIO}, \\ \mbox{outputs do not source/sink any current} \end{array}$		33		- μΑ
V _{RTC} Current,		RTC disabled		1.15		μA
LP2 Mode	IRTC_LP2	RTC enabled		1.55		μA

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Combined I _{OH} , All GPIO	IOH_TOTAL				48	mA
Input/Output Pin Capacitance for All Port Pins	C _{IO}			3		pF
		V_{DD18} = 1.89V V_{IN} = 0V, internal pullup disabled, legacy V_{DD18} I/O supply	-100		+100	
Input Leakage Current Low	Ι _Ι	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{DDIOH} selected as I/O supply, V_{IN} = 0V, internal pullup disabled	-100		+100	- nA
Input Leakage Current High		V_{DD18} = 1.89V, V_{IN} = 1.89V, internal pulldown disabled, legacy V_{DD18} I/O supply	-100		+100	
	Ін	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{IN} = 3.6V, internal pulldown disabled, V_{DDIOH} selected as I/O supply	-100		+100	nA
	I _{OFF}	V_{DD18} = 0V, V_{IN} < 1.89V, legacy V_{DD18} I/O supply	-1		+1	
		V_{DDIO} = 0V, V_{DDIOH} = 0V, V_{DDIO} selected as I/O supply, V_{IN} < 1.89V	-1		+1	μA
		V_{DD18} = 1.71V, V_{IN} = 3.60V, legacy V_{DD18} I/O supply	-2		+2	
		$V_{DDIO} = V_{DDIOH} = 1.71V$, V_{DDIO} selected as I/O supply, $V_{IN} = 3.6V$	-2		+2	μA
Input Pullup Resistor, SRSTN, TMS, TCK, TDI	R _{PU_VDDIO}	Pullup to V _{DDIO}		25		kΩ
Input Pullup Resistor RSTN	R _{PU_VRTC}	Pullup to V _{RTC}		25		kΩ
Input Pullup/Pulldown All	Paul anua	Normal resistance mode		25		kΩ
GPIO	R _{PU_GPIO}	Highest resistance mode		1		MΩ
FLASH MEMORY						
Page Size				8		kB
Flash Erase Time	t _{M_ERASE}	Mass erase		30		ms
	^t P_ERASE	Page erase		30		ms
Flash Programming Time Per Word	t _{PROG}			60		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +85°C	10			years

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

USB Electrical Characteristics

(Limits are tested at $T_A = +25^{\circ}C$ and $T_A = +85^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Single-Ended Input High Voltage DP, DM	V _{IHD}		2.0			V
Single-Ended Input Low Voltage DP, DM	V _{ILD}				0.8	V
Output Low Voltage DP, DM	V _{OLD}	$R_L = 1.5k\Omega$ from DP to 3.6V			0.3	V
Output High Voltage DP, DM	V _{OHD}	R_L = 15k Ω from DP and DM to V _{SS}	2.8			V
Differential Input Sensitivity DP, DM	V _{DI}	DP to DM	0.2			V
Common-Mode Voltage Range	V _{CM}	Includes V _{DI} range	0.8		2.5	V
Single-Ended Receiver Threshold	V _{SE}		0.8		2.0	V
Single-Ended Receiver Hysteresis	V _{SEH}			200		mV
Differential Output Signal Cross-Point Voltage	V _{CRS}	C _L = 50pF, GBD	1.3		2.0	V
DP, DM Off-State Input Impedance	R _{LZ}		300			kΩ
Driver Output Impedance	R _{DRV}	Steady-state drive	28		44	Ω
	P	Idle	0.9		1.575	kΩ
DP Pullup Resistor	R _{PU}	Receiving	1.425		3.090	K12
USB TIMING		·				
DP, DM Rise Time (Transmit)	t _R	C _L = 50pF, GBD	4		20	ns
DP, DM Fall Time (Transmit)	t _F	C _L = 50pF, GBD	4		20	ns
Rise/Fall Time Matching (Transmit)	t _R , t _F	C _L = 50pF, GBD	90		110	%

ADC Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution				10		bits
ADC Clock Rate	f ACLK		0.1		8	MHz
ADC Clock Period	t _{ACLK}			1/f _{ACLK}		μs
		AIN[3:0], ADC_CHSEL = 0–3, BUF_BYPASS = 1	V _{SSA}		V _{DDA}	
		AIN[1:0], ADC_CHSEL = 4–5, BUF_BYPASS = 1	V _{SSA}		5.5V	V
Input Voltage Range	V _{AIN}	AIN[3:0], ADC_CHSEL = 0-3, BUF_BYPASS = 0	50mV		V _{DDA -} 50mV	V
		AIN[1:0], ADC_CHSEL = 4-5, BUF_BYPASS = 0	50mV		5.5V	

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

ADC Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Impedance	R _{AIN}	AIN[1:0], ADC_HSEL = 4–5, ADC active		45		kΩ
Input Dynamic Current, Switched		ADC active, ADC buffer bypassed		4.5		μA
Capacitance	IAIN	ADC active, ADC buffer enabled		50		nA
		Fixed capacitance to ground		1		pF
Analog Input Capacitance	C _{AIN}	Dynamically switched capacitance		250		nF
Integral Nonlinearity	INL				±2	LSb
Differential Nonlinearity	DNL				±1	LSb
Offset Error	V _{OS}			±1		LSb
Gain Error	GE			±2		LSb
ADC Active Current	I _{ADC}	ADC active, reference buffer enabled, input buffer disabled		240		μA
Input Buffer Active Current	I _{INBUF}			53		μA
ADC Setup Time	t _{ADC_SU}	Any power-up of: ADC clock, ADC bias, reference buffer, or input buffer to CpuAdcStart			10	μs
		Any power-up of: ADC clock or ADC bias to CpuAdcStart			48	^t ACLK
ADC Output Latency	t _{ADC}			1025		t _{ACLK}
ADC Sample Rate	f _{ADC}				7.80	ksps
		AIN0 or AIN1, ADC inactive or channel not selected		0.12	4	nA
ADC Input Leakage	IADC_LEAK	AIN2 or AIN3, ADC inactive or channel not selected		0.02	1.0	nA
AIN0/AIN1 Resistor Divider Error		ADC_CHSEL = 4 or 5, not including ADC offset/gain error		±2		LSb
Full-Scale Voltage	V _{FS}	ADC code = 0x3FF		1.20		V
Signal to Noise Ratio	SNR			58.5		dB
Signal to Noise and Distortion	SINAD			58.5		dB
Total Harmonic Distortion	THD			-68.5		dB
Spurious Free Dynamic Range	SFDR			74		dB
Bandgap Temperature Coefficient	V _{TEMPCO}	Box method		30		ppm/°C
Reference Input Capacitance	C _{REF_IN}	Dynamically switched capacitance, ADC_ XREF=1, ADC active		250		fF
External Reference Voltage	V _{REF_EXT}	ADC_XREF = 1	1.17	1.23	1.29	V
Reference Dynamic Current	IREF_EXT	ADC_XREF=1, ADC active		4.1		μA

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Electrical Characteristics—SPI Master/SPIX Master

(Timing specifications are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Master Operating Frequency	fмск				48	MHz
Master SCLK Period	t _{MCK}			1/f _{MCK}		ns
SCLK Output Pulse-Width High	t _{MCH}		t _{MCK} /2			ns
SCLK Output Pulse-Width Low	t _{MCL}		(t _{MCK} /2) - 4			ns
MOSI Output Hold Time After SCLK Sample Edge	t _{МОН}		(t _{MCK} /2) - 4			ns
MOSI Output Valid to Sample Edge	t _{MOV}		(t _{MCK} /2) - 4			ns
MISO Input Valid to SCLK Sample Edge Setup	t _{MIS}		1			ns
MISO Input to SCLK Sample Edge	t _{MIH}				1	ns

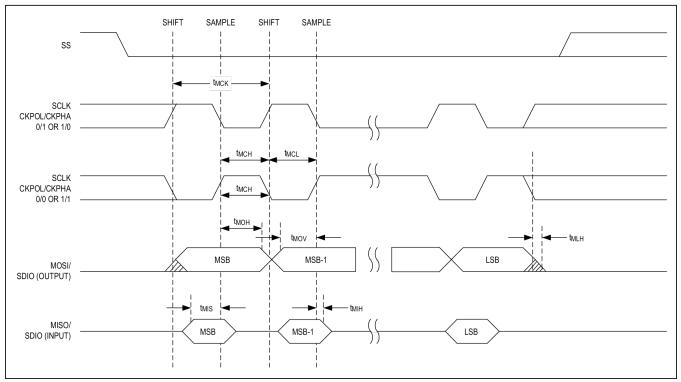


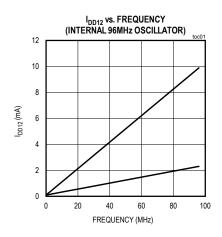
Figure 1. SPI Master and SPI XIP Master Timing

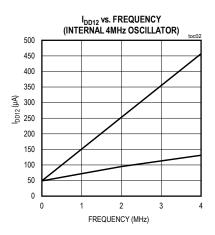
High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

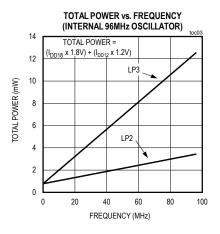
Electrical Characteristics—SPI Slave

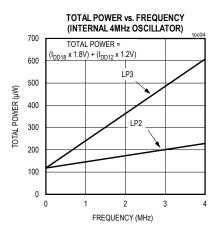
(Timing specifications are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Slave Operating Frequency, Write ^f SCK_W	f	Standard SPI mode			48	MHz
	Fast SPI mode			48	IVITIZ	
Slave Operating	f	Standard SPI mode			22.7	
Frequency	^t SCK_R	Fast SPI mode			45.5	MHz
SCLK Period	tscк			1/f _{SCK}		ns

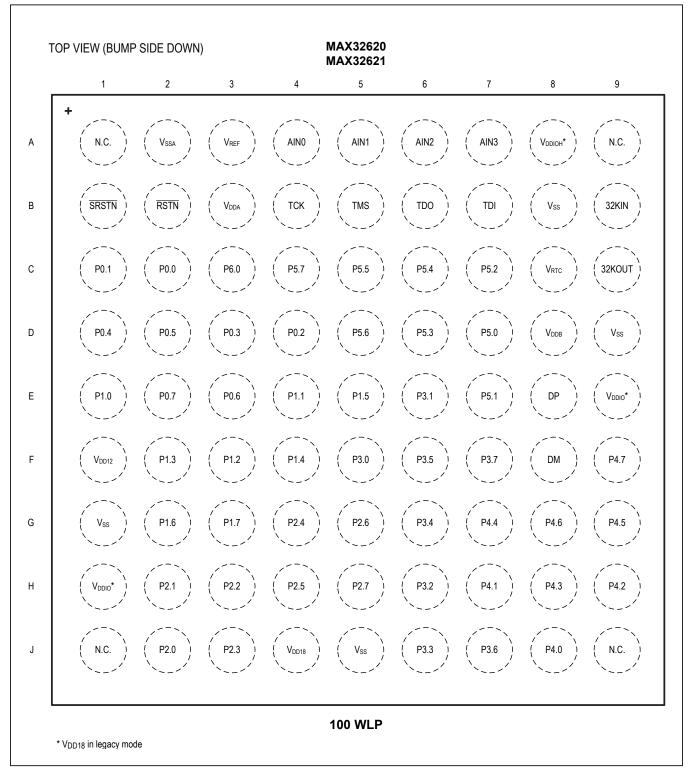

Electrical Characteristics—I²C Bus


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS	
I ² C BUS		·				
			Standard mode, V _{DDIO} selected as I/O supply	0.7 × V _{DDIO}		
		Standard mode, V _{DDIOH} selected as I/O supply	0.7 × V _{DDIOH}			
Input High Voltage	VIH_I2C	Fast mode, V _{DDIO} selected as I/O supply	0.7 × V _{DDIO}	V _{DDIO} + 0.5	V	
		Fast mode, V _{DDIOH} selected as I/O supply	0.7 × V _{DDIOH}	V _{DDIOH} + 0.5		
Input Low Voltage V _I		Standard mode, V _{DDIO} selected as I/O supply	-0.5	0.3 × V _{DDIO}		
	V _{IL_I2C}	Standard mode, V _{DDIOH} selected as I/O supply	-0.5	0.3 × V _{DDIOH}	V	
		Fast mode, V _{DDIO} selected as I/O supply	-0.5	0.3 × V _{DDIO}	v	
		Fast mode, $V_{\mbox{\rm DDIOH}}$ selected as I/O supply	-0.5	0.3 × V _{DDIOH}		
Input Hysteresis		Fast mode, $V_{\mbox{\rm DDIO}}$ selected as I/O supply	0.05 x V _{DDIO}		V	
(Schmitt)	VIHYS_I2C	Fast mode, $V_{\mbox{\rm DDIOH}}$ selected as I/O supply	0.05 x V _{DDIOH}		v	
		Standard mode, I _{IL} = 3mA	0	0.4		
		Fast mode, I _{IL} = 3mA	0	0.4		
Output Logic-Low (Open Drain or Open V _{OL_} Collector)	V _{OL_I2C}	Fast mode, I_{IL} = 2mA, V_{DDIO} selected as I/O supply	0	0.2 x V _{DDIO}	V	
		Fast mode, I _{IL} = 2mA, V _{DDIOH} selected as I/O supply	0	0.2 x V _{DDIOH}		
I ² C TIMING						
SCI Clock Frequency	fare	Standard mode	0	100		
SCL Clock Frequency	fSCL	Fast mode	0	400	kHz	


High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices


Typical Operating Characteristics

(VDD18 = 1.8V, VDD18 = 1.8V.)



High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Pin Configuration (continued)

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Pin Description

PIN			FUNCTION			
TQFP	WLP	NAME	FUNCTION			
POWER						
61	D8	V _{DDB}	USB Transceiver Supply Voltage. This pin must be bypassed to $V_{\mbox{SS}}$ with a $1.0\mu\mbox{F}$ capacitor as close as possible to this pin.			
8	F1	V _{DD12}	1.2V Supply Voltage. This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to this pin.			
59	C8	V _{RTC}	RTC Supply Voltage. This pin must be bypassed to V_{SS} with a 1.0µF capacitor as close as possible to this pin.			
29	B3	V _{DDA}	Analog Supply Voltage. This pin must be bypassed to $V_{\mbox{SSA}}$ with a $1.0\mu\mbox{F}$ capacitor as close as possible to this pin.			
91	J4	V _{DD18}	1.8V Supply Voltage. This pin must be bypassed to $V_{\mbox{SS}}$ with a 1.0 $\mu\mbox{F}$ capacitor as close as possible to this pin.			
2, 63	E9, H1	V _{DDIO}	I/O Supply Voltage. 1.8V \leq V _{DDIO} \leq 3.6V. See EC table for V _{DDIO} specification. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close as possible to the package. This pin can be connected to V _{DD18} for legacy I/O support.			
46	A8	V _{DDIOH}	I/O Supply Voltage, High. 1.8V \leq V _{DDIOH} \leq 3.6V, always with V _{DDIO} \leq V _{DDIOH} . See EC tables for V _{DDIOH} specification. This pin must be bypassed to V _{SS} with a 1.0µF capacitor as close possible to the package. This pin can be connected to V _{DD18} for legacy I/O support.			
34	A3	V _{REF}	ADC Reference. This pin should be left unconnected if an external reference is not used.			
3, 7, 42, 58, 60, 62, 90	B8, D9, G1, J5	V _{SS}	Digital Ground.			
33	A2	V _{SSA}	Analog Ground. This pin must be connected to V _{SS.}			
EP	_	EP	Exposed Pad (TQFP Only). This pad must be connected to V_{SS} . Refer to Application Note 3273: Exposed Pads: A Brief Introduction for additional information.			
CLOCKS						
55	B9	32KIN	32kHz Crystal Oscillator Input/Output. Connect a 6pF 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, an external clock source can be driven on 32KIN if			
56	C9	32KOUT	the 32KOUT pin is left unconnected. A 32kHz crystal or external clock source is required for proper USB operation.			
USB						
64	E8	DP	USB D+ Signal. This bidirectional pin carries the positive differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.			
65	F8	DM	USB D- Signal. This bidirectional pin carries the negative differential data or single-ended data. This pin is weakly pulled high internally when the USB is disabled.			
JTAG						
31	B4	тск	JTAG Clock Serial Wire Debug Clock This pin has an internal $25k\Omega$ pullup to V _{DDIO} .			

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Pin Description (continued)

PIN			FUNCTION				
TQFP	WLP	NAME	FUNCTION				
36	B5	TMS	JTAG Test Mode Select Serial Wire Debug I/O This pin has an internal $25k\Omega$ pullup to V _{DDIO} .				
38	B6	TDO	JTAG Test Data Output				
40	B7	TDI	JTAG Test Data Input. This pin has an internal $25k\Omega$ pullup to V _{DDIO} .				
RESET	-						
22	B2	RSTN	Hardware Reset, Active-Low Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal $25k\Omega$ pullup to the V _{RTC} supply. This pin should be left unconnected if the system design does not provide a reset signal to the device.				
23	B1	SRSTN	Software Reset, Active-Low Input/Output. The device remains in software reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a reset to the ARM core, digital registers and peripherals (resetting most of the core logic on the V _{DD12} supply). This reset does not affect the POR only registers, RTC logic, ARM debug engine or JTAG debugger allowing for a soft reset without having to reconfiguring registers. After the device senses $\overline{\text{SRSTN}}$ as a logic 0, the pin automatically reconfigures as an output sourcing a logic 0. The device continues to output for 6 system clock cycles and then repeats the input sensing/output driving until $\overline{\text{SRSTN}}$ is sensed inactive. This pin is internally connected with an internal 25k Ω pullup to the V _{RTC} supply. This pin should be l unconnected if the system design does not provide a reset signal to the device.				
GENERAL-	PURPOSE I	O AND SPE	CIAL FUNCTIONS				
21	C2	P0.0					
20	C1	P0.1					
19	D4	P0.2					
18	D3	P0.3	General-Purpose I/O, Port 0. Most port pins have multiple special functions. See Table 1 for				
17	D1	P0.4	details.				
16	D2	P0.5					
15	E3	P0.6					
14	E2	P0.7					
12	E1	P1.0					
11	E4	P1.1					
10	F3	P1.2					
9	F2	P1.3	General-Purpose I/O, Port 1. Most port pins have multiple special functions. See Table 1 for				
6	F4	P1.4	details.				
5	E5	P1.5					
4	G2	P1.6					
	G3	P1.7	1				

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Pin Description (continued)

P	PIN						
TQFP	WLP	NAME	FUNCTION				
97	J2	P2.0					
96	H2	P2.1	General-Purpose I/O, Port 2. Most port pins have multiple special functions. See Table 1 for details.				
95	H3	P2.2					
94	J3	P2.3					
93	G4	P2.4					
92	H4	P2.5					
89	G5	P2.6					
88	H5	P2.7					
86	F5	P3.0					
85	E6	P3.1					
84	H6	P3.2					
83	J6	P3.3	General-Purpose I/O, Port 3. Most port pins have multiple special functions. See Table 1 for				
82	G6	P3.4	details.				
81	F6	P3.5					
80	J7	P3.6					
79	F7	P3.7					
74	J8	P4.0					
73	H7	P4.1					
72	H9	P4.2					
71	H8	P4.3	General-Purpose I/O, Port 4. Most port pins have multiple special functions. See Table 1 for				
70	G7	P4.4	details.				
69	G9	P4.5					
68	G8	P4.6					
67	F9	P4.7					
49	D7	P5.0					
48	E7	P5.1					
47	C7	P5.2					
45	D6	P5.3	General-Purpose I/O, Port 5. Most port pins have multiple special functions. See Table 1 for				
44	C6	P5.4	details.				
30	C5	P5.5					
28	D5	P5.6					
27	C4	P5.7					
24	C3	P6.0	General-Purpose I/O, Port 6.0. Most port pins have multiple special functions. See Table 1 for details.				

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Pin Description (continued)

PIN			FUNCTION			
TQFP	WLP	NAME	FUNCTION			
ANALOG IN	IPUT PINS					
35	A4	AIN0	ADC Input 0. 5V-tolerant input.			
37	A5	AIN1	ADC Input 1. 5V-tolerant input.			
39	A6	AIN2	ADC Input 2			
41	A7	AIN3	ADC Input 3			
NO CONNE	стѕ					
1, 13, 25, 26, 32, 43, 50–54, 57, 66, 75–78, 87, 98, 100	A1, A9, J1, J9	N.C.	No Connection			

Table 1. MAX32620/MAX32621 GPIO Special Function Cross Reference

GPIO	PRIMARY FUNCTION	SECONDARY FUNCTION	PULSE TRAIN OUTPUT	TIMER INPUT	GPIO OUTPUT	TERTIARY FUNCTION	QUATERNARY FUNCTION
P0.0	UART0A_RX	UART0B_TX	PT_PT0	TIMER_TMR0	GPIO_INT(P0)		
P0.1	UART0A_TX	UART0B_RX	PT_PT1	TIMER_TMR1	GPIO_INT(P0)		
P0.2	UART0A_CTS	UART0B_RTS	PT_PT2	TIMER_TMR2	GPIO_INT(P0)		
P0.3	UART0A_RTS	UART0B_CTS	PT_PT3	TIMER_TMR3	GPIO_INT(P0)		
P0.4	SPIM0_SCK		PT_PT4	TIMER_TMR4	GPIO_INT(P0)		
P0.5	SPIM0_MOSI/ SDIO0		PT_PT5	TIMER_TMR5	GPIO_INT(P0)		
P0.6	SPIM0_MISO/ SDIO1		PT_PT6	TIMER_TMR0	GPIO_INT(P0)		
P0.7	SPIM0_SS0		PT_PT7	TIMER_TMR1	GPIO_INT(P0)		
P1.0	SPIM1_SCK	SPIX_SCK	PT_PT8	TIMER_TMR2	GPIO_INT(P1)		
P1.1	SPIM1_MOSI/ SDIO0	SPIX_SDIO0	PT_PT9	TIMER_TMR3	GPIO_INT(P1)		
P1.2	SPIM1_MISO/ SDIO1	SPIX_SDIO1	PT_PT10	TIMER_TMR4	GPIO_INT(P1)		
P1.3	SPIM1_SS0	SPIX_SS	PT_PT11	TIMER_TMR5	GPIO_INT(P1)		
P1.4	SPIM1_SDIO2	SPIX_SDIO2	PT_PT12	TIMER_TMR0	GPIO_INT(P1)		
P1.5	SPIM1_SDIO3	SPIX_SDIO3	PT_PT13	TIMER_TMR1	GPIO_INT(P1)		
P1.6	I2CM0/SA_SDA		PT_PT14	TIMER_TMR2	GPIO_INT(P1)		
P1.7	I2CM0/SA_SCL		PT_PT15	TIMER_TMR3	GPIO_INT(P1)		
P2.0	UART1A_RX	UART1B_TX	PT_PT0	TIMER_TMR4	GPIO_INT(P2)		
P2.1	UART1A_TX	UART1B_RX	PT_PT1	TIMER_TMR5	GPIO_INT(P2)		

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Table 1. MAX32620/MAX32621 GPIO Special Function Cross Reference (continued)

GPIO	SPECIAL FUNCTIONS						
P2.2	UART1A_CTS	UART1B_RTS	PT_PT2	TIMER_TMR0	GPIO_INT(P2)		
P2.3		UART1B_CTS					
	UART1A_RTS	UARTIB_CIS	PT_PT3	TIMER_TMR1	GPIO_INT(P2)		
P2.4	SPIM2A_SCK		PT_PT4	TIMER_TMR2	GPIO_INT(P2)		
P2.5	SPIM2A_MOSI/ SDIO0		PT_PT5	TIMER_TMR3	GPIO_INT(P2)		
P2.6	SPIM2A_MISO/ SDIO1		PT_PT6	TIMER_TMR4	GPIO_INT(P2)		
P2.7	SPIM2A_SS0		PT_PT7	TIMER_TMR5	GPIO_INT(P2)		
P3.0	UART2A_RX	UART2B_TX	PT_PT8	TIMER_TMR0	GPIO_INT(P3)		
P3.1	UART2A_TX	UART2B_RX	PT_PT9	TIMER_TMR1	GPIO_INT(P3)		
P3.2	UART2A_CTS	UART2B_RTS	PT_PT10	TIMER_TMR2	GPIO_INT(P3)		
P3.3	UART2A_RTS	UART2B_CTS	PT_PT11	TIMER_TMR3	GPIO_INT(P3)		
P3.4	I2CM1/SB_SDA	SPIM2A_SS1	PT_PT12	TIMER_TMR4	GPIO_INT(P3)		
P3.5	I2CM1/SB_SCL	SPIM2A_SS2	PT_PT13	TIMER_TMR5	GPIO_INT(P3)		
P3.6	SPIM1_SS1	SPIX_SS1	PT_PT14	TIMER_TMR0	GPIO_INT(P3)		
P3.7	SPIM1_SS2	SPIX_SS2	PT_PT15	TIMER_TMR1	GPIO_INT(P3)		
P4.0	OWM_I/O	SPIM2A_SR0	PT_PT0	TIMER_TMR2	GPIO_INT(P4)		
P4.1	OWM_PUPEN	SPIM2A_SR1	PT_PT1	TIMER_TMR3	GPIO_INT(P4)		
P4.2	SPIM0_SDIO2		PT_PT2	TIMER_TMR4	GPIO_INT(P4)		
P4.3	SPIM0_SDIO3		PT_PT3	TIMER_TMR5	GPIO_INT(P4)		
P4.4	SPIM0_SS1		PT_PT4	TIMER_TMR0	GPIO_INT(P4)		
P4.5	SPIM0_SS2		PT_PT5	TIMER_TMR1	GPIO_INT(P4)		
P4.6	SPIM0_SS3		PT_PT6	TIMER_TMR2	GPIO_INT(P4)		
P4.7	SPIM0_SS4		PT_PT7	TIMER_TMR3	GPIO_INT(P4)		
P5.0	Reserved	SPIM2B_SCK	PT_PT8	TIMER_TMR4	GPIO_INT(P5)		
P5.1	Reserved	SPIM2B_ MOSI/SDIO0	PT_PT9	TIMER_TMR5	GPIO_INT(P5)		
P5.2	Reserved	SPIM2B_ MISO/SDIO1	PT_PT10	TIMER_TMR0	GPIO_INT(P5)		
P5.3	Reserved	SPIM2B_SS0	PT_PT11	TIMER_TMR1	GPIO_INT(P5)	UART3A_RX	UART3B_TX
P5.4	Reserved	SPIM2B_ SDIO2	PT_PT12	TIMER_TMR2		UART3A_TX	UART3B_RX
P5.5	Reserved	SPIM2B_ SDIO3	PT_PT13	TIMER_TMR3	GPIO_INT(P5)	UART3A_CTS	UART3B_RTS
P5.6	Reserved	SPIM2B_SR	PT_PT14	TIMER_TMR4	GPIO_INT(P5)	UART3A_RTS	UART3B_CTS
P5.7	I2CM2/SC_SDA	SPIM2B_SS1	PT_PT15	TIMER_TMR5	GPIO_INT(P5)		
P6.0	I2CM2/SC_SCL	SPIM2B_SS2	PT_PT0	TIMER_TMR0	GPIO_INT(P5)		

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Analog to Digital Converter (ADC)

The 10-bit sigma-delta ADC provides 4 external inputs and can also be configured to measure all internal power supplies. It operates at a maximum of 7.8ksps. AIN0 and AIN1 are 5.5V tolerant, making them suitable for monitoring batteries.

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a low power sleep mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the main CPU is suspended in a low-power mode.

The ADC reference can be the internal 1.2V bandgap or an external reference.

The ADC measures:

- AIN[3:2] (up to 3.3V)
- AIN[1:0] (up to 5.5V)
- V_{DD12}
- V_{DD18}
- V_{DDB}
- V_{RTC}
- V_{DDIO}
- VDDIOH

Pulse Train Engine

Sixteen independent pulse train generators provide either a square wave or a repeating pattern from 2 bits to 32 bits in length.

Each pulse train generator is independently configurable. The pulse train generators provide the following:

- Independently enabled
- Multiple pin configurations allow for flexible layout
- Pulse trains can be started/synchronized independently or as a group
- Frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide by 4, divide by 8, and so on) of the input pulse train module clock
- Multiple repetition options for pulse train mode
 - Single shot (nonrepeating pattern of 2-32 bits)
 - Pattern repeats user-configurable number of times or indefinitely
 - End of one pulse train's loop count can restart one or more other pulse trains

Clocking Scheme

The high-frequency internal relaxation oscillator operates at a nominal frequency of 96MHz. It is the primary clock source for the digital logic and peripherals. The 4MHz internal oscillator can be selected to optimize active power consumption. Wakeup is possible from either the 4MHz or the 96MHz internal oscillator.

An external 32.768kHz timebase is required when using the RTC or USB features of the device. The time base can be generated by attaching a 32kHz crystal. An external clock source can also be applied to the 32KIN pin. The external clock source must meet the electrical/timing requirements in the EC table.

Interrupt Sources

The ARM nested vector interrupt controller (NVIC) provides high speed, deterministic interrupt response, interrupt masking, and multiple interrupt sources. Each peripheral is connected to the NVIC and can have multiple interrupt flags to indicate the specific source of the interrupt within the peripheral.

The NVIC provides:

- Up to 52 distinct interrupt sources (including internal and external interrupts)
- Eight priority levels
- A dedicated interrupt for each port

Real-Time Clock

A real-time clock (RTC) keeps the time of day in absolute seconds. The time base can be generated by connecting a 32kHz crystal between 32KIN and 32KOUT or an external clock source can be applied to the 32KIN pin. The external clock source must meet the electrical/timing requirements in the EC table. The 32kHz output can be directed to a GPIO for observation and use.

The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software. A time-of-day alarm and independent subsecond alarm can cause an interrupt or wake the device from stop mode.

The wake-up timer allows the device to remain in low power mode for extended periods of time. The minimum wake-up interval is 244µs.

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

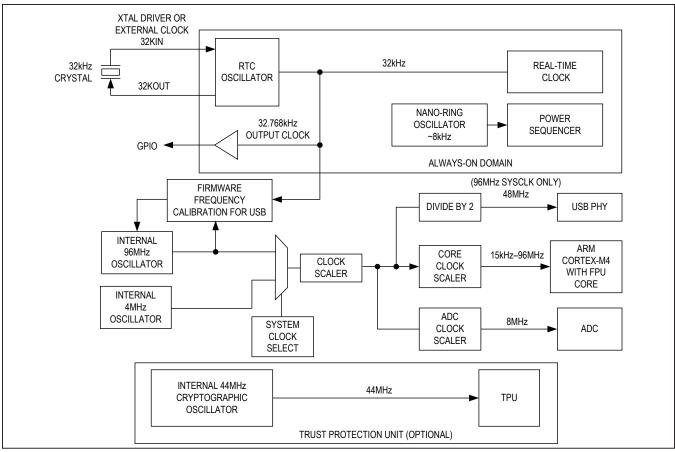


Figure 2. MAX32620/MAX32621 Clock Scheme (TPU on MAX32621 Only)

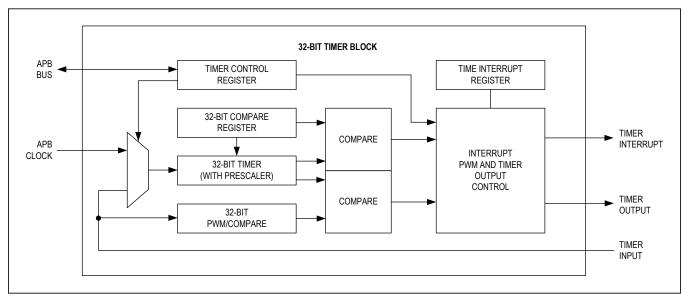


Figure 3. Timer Block Diagram, 32-Bit Mode

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

An external 32kHz crystal or clock source is required for USB operation, even if the RTC function is not used. Although the USB timing is derived from the internal 96MHz oscillator, the default accuracy is not sufficient for USB operation. Firmware trimming of the 96MHz oscillator using the 32kHz timebase as a reference is necessary to comply with USB timing requirements.

I²C Master and Slave Ports

The I²C interface is a bidirectional, 2-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many or many-to-many communications medium.

Three I²C interfaces allow for up to three I²C master engines and one I²C-selectable slave engine which interface to a wide variety of I²C-compatible peripherals. These engines support both Standard-mode and Fastmode I²C standards. The slave engine shares the same I/O port as the master engines and is selectable through the I/O configuration settings. It provides the following features:

- Master or slave mode operation
- Supports standard (7-bit) or expanded (10-bit) addressing
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates: Standard-mode: 100kbps Fast-mode: 400kbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 16 bytes
- Transmitter FIFO depth of 16 bytes

Serial Peripheral Interface—Master

The SPI master-mode-only (SPIM) interface operates independently in a single or multiple slave system and is fully accessible to the user application.

The SPI ports provide a highly configurable, flexible and efficient interface to communicate with a wide variety of SPI slave devices. The three SPI master ports (SPI0, SPI1, SPI2) support the following features:

- Supports all four SPI modes (0,1,2,3) for single-bit communication
- 3 or 4 wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Dual and quad I/O supported
- Up to 5 slave select lines per port

- Up to 2 slave ready lines
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- Programmable SCK alternate timing
- SS (slave select) assertion and deassertion timing with respect to leading/trailing SCK edge

Serial Peripheral Interface—Execute in Place (SPIX) Master

The SPIX allows the CPU to transparently execute instructions stored in an external SPI flash. Instructions fetched through the SPIX master are cached just like instructions fetched from internal program memory. The SPIX master can also be used to access large amounts of external static data that would otherwise reside in internal data memory.

Serial Peripheral Interface—Slave

The SPI slave (SPIS) port provides a highly configurable, flexible, and efficient interface to communicate with a wide variety of SPI master devices. The SPI slave interface provides the following features:

- Supports SPI modes 0 and 3
- Full-duplex operation in single-bit, 4-wire mode
- Slave select polarity fixed (active low)
- Dual and Quad I/O supported
- High-speed AHB access to transmit and receive using 32-byte FIFOs
- · Four interrupts to monitor FIFO levels

UART

All four universal asynchronous receiver-transmitter (UART) interfaces support full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request to send (RTS) and clear to send (CTS) methodology. Each UART is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 2x 32-byte send/receive FIFOs, one for transmit and receive
- Full-duplex operation for asynchronous data transfers
- Programmable interrupt for receive and transmit
- Independent baud-rate generator
- Programmable 9th bit parity support
- Start/stop bit support
- Hardware flow control using RTS/CTS
- Maximum baud rate 1843.2kB

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

1-Wire Master

Maxim's DeepCover® 1-Wire security solutions provide a cost-effective solution to authenticate medical sensors and peripherals, preventing counterfeit products. The integrated 1-Wire master communicates with slave devices via the bidirectional, multidrop 1-Wire bus. All of the devices on the 1-Wire bus share one signal which carries data communication and also supplies power to the slave devices. The single contact serial interface is ideal for communication networks requiring minimal interconnect. Features of the 1-Wire bus include:

- Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- Power is distributed to all slave device (parasitic power)
- Multiple device capability on a single line
- Supports 1-Wire standard (15.6kbps) and overdrive (110 kbps) speeds

The incorporation of the 1-Wire master enables the creation of 1-Wire enhanced of consumable and reusable accessories. The following benefits can be added to products by the addition of only one contact:

- OEM authenticity is verifiable with SHA-256 and ECDSA
- External tracking is eliminated because calibration data can be securely stored within accessory
- Reuse of single-use accessories can be prevented
- Counterfeit products can be identified and use denied using the unique, factory identifier
- Environmental temperature and humidity sensing

Trust Protection Unit (TPU) (MAX32621 Only)

The TPU enhances cryptographic data security for valuable intellectual property (IP) and data. A high-speed, dedicated, hardware-based math accelerator (MAA) performs mathematical computations that support strong cryptographic algorithms including:

- AES-128
- AES-192
- AES-256
- 1024-bit DSA
- 2048-bit (CRT)

The device provides a pseudo-random number generator which can be used to create cryptographic keys for any application. A user-selectable entropy source further increases the randomness and key strength.

The secure bootloader protects against unauthorized access to program memory.

DeepCover is a registered trademark of Maixm Integrated Products, Inc.

Peripheral Management Unit (PMU)

The PMU is a DMA-based link list processing engine that performs operations and data transfers involving memory and/or peripherals in the advanced peripheral bus (APB) and advanced high-performance bus (AHB) peripheral memory space while the main CPU is in a sleep state. This allows low-overhead peripheral operations to be performed without the CPU, significantly reducing overall power consumption. Using the PMU with the CPU in a sleep state provides a lower-noise environment critical for obtaining optimum ADC performance.

Key features of the PMU engine include:

- Six independent channels with round-robin scheduling allows for multiple parallel operations
- Programmed using SRAM-based PMU opcodes
- PMU action can be initiated from interrupt conditions from peripherals without CPU
- Integrated AHB bus master
- Coprocessor-like state machine

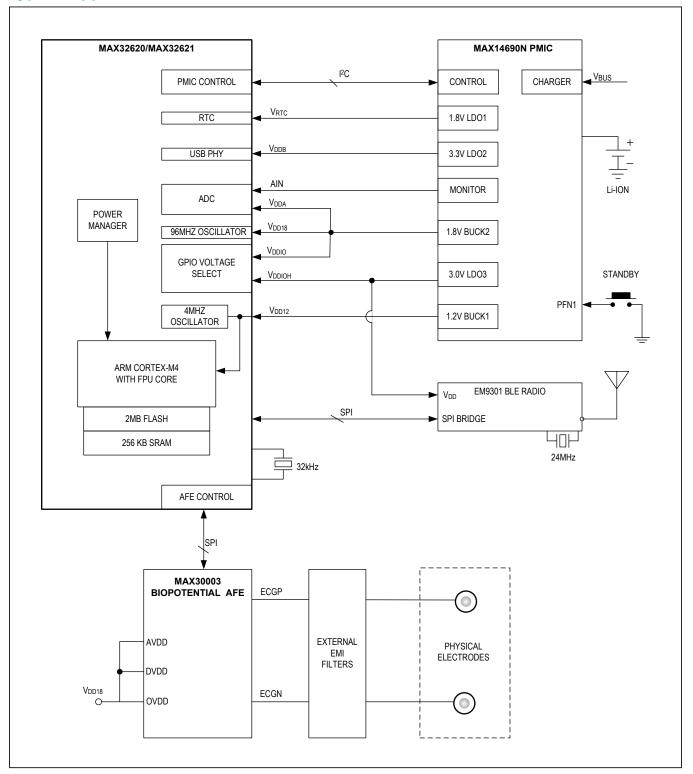
Additional Documentation

Engineers must have the following documents to fully use this device:

- This data sheet, containing pin descriptions, feature overviews, and electrical specifications
- The device-appropriate user guide, containing detailed information and programming guidelines for core features and peripherals
- Errata sheets for specific revisions noting deviations from published specifications.

For information regarding these documents, visit Technical Support at **support.maximintegrated.com/micro**.

Development and Technical Support


Contact technical support for information about highly versatile, affordable development tools, available from Maxim Integrated and third-party vendors.

- Evaluation kits
- Software development kit
- Compilers
- Integrated development environments (IDEs)
- USB interface modules for programming and debugging

For technical support, go to <u>support.maximintegrated.</u> <u>com/micro</u>.

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Typical Application Circuit—Wearable Cardiac Monitor

High-Performance, Ultra-Low Power ARM Cortex-M4 with FPU-Based Microcontroller for Rechargeable Devices

Ordering Information

PART	FLASH (MB)	SRAM (KB)	TRUST PROTECTION UNIT	PIN-PACKAGE
MAX32620ICQ+	2	256	No	100 TQFP
MAX32620IWG+	2	256	No	81 WLP
MAX32620IWG+T	2	256	No	81 WLP
MAX32620IWGL+*	1	256	No	81 WLP
MAX32620IWGL+T*	1	256	No	81 WLP
MAX32621ICQ+	2	256	Yes	100 TQFP
MAX32621IWG+	2	256	Yes	81 WLP
MAX32621IWG+T	2	256	Yes	81 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.	
81 WLP	W813D3+1	<u>21-0776</u>	Refer to Application Note 1891	
100 TQFP-EP	C100E+3	<u>21-0116</u>	<u>90-0154</u>	