

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	90
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 42x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LFBGA
Supplier Device Package	121-MAPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dn512zvmc10r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MK10DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

General

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have C_L =30pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
VIL	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				1
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current —				3
	single pin			mA	
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-5	_		
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 		+5		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	—	+25		
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	4
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	—	V	

 All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.

2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.

3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX} , a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R=(V_{AIO_MIN}-V_{IN})/|I_{ICAIO}|$. The positive injection current limiting resistor is calculated as $R=(V_{AIO_MIN}-V_{IN})/|I_{ICAIO}|$. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.

4. Open drain outputs must be pulled to VDD.

General

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
I _{IND}	Input leakage current, digital pins					4, 5
	• V _{DD} < V _{IN} < 5.5 V	—	1	50	μA	
Z _{IND}	Input impedance examples, digital pins					4, 7
	• V _{DD} = 3.6 V	—	—	48	kΩ	
	• V _{DD} = 3.0 V	—	—	55	kΩ	
	• V _{DD} = 2.5 V	—	—	57	kΩ	
	• V _{DD} = 1.7 V	_	_	85	kΩ	
R _{PU}	Internal pullup resistors	20	35	50	kΩ	8
R _{PD}	Internal pulldown resistors	20	35	50	kΩ	9

Table 4. Voltage and current operating behaviors (continued)

- 1. Typical values characterized at 25° C and VDD = 3.6 V unless otherwise noted.
- 2. Open drain outputs must be pulled to V_{DD} .
- 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
- 5. Internal pull-up/pull-down resistors disabled.
- 6. Characterized, not tested in production.
- 7. Examples calculated using V_{IL} relation, V_{DD} , and max I_{IND} : $Z_{IND}=V_{IL}/I_{IND}$. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when $V_{IL} < V_{IN} < V_{DD}$. These examples assume signal source low = 0 V.
- 8. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 9. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

Symbol	Description	Min.	Max.	Unit
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	—	ns
J11	TCLK low to TDO data valid	—	22.1	ns
J12	TCLK low to TDO high-Z	_	22.1	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

Table 14. JTAG full voltage range electricals (continued)

Figure 5. Test clock input timing

Figure 6. Boundary scan (JTAG) timing

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

 $Writes_subsystem = \frac{EEPROM - 2 \times EEESPLIT \times EEESIZE}{EEESPLIT \times EEESIZE} \times Write_efficiency \times n_{nvmcycd}$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	—	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}_{-}\text{TA}}.$

Peripheral operating requirements and behaviors

Figure 12. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes	18.484	—	450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037	_	250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 29. 16-bit ADC with PGA operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics Table 30. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$		A	3	
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	_	1.54	_	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V		0.57		μΑ	

Table continues on the next page ...

6.8.1 CAN switching specifications

See General switching specifications.

6.8.2 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 38.
 Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Num	Description	Min.	Max.	Unit	Notes
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

 Table 40.
 Master mode DSPI timing (full voltage range) (continued)

- 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 22. DSPI classic SPI timing — master mode

Table 41.	Slave mode	DSPI timing	g (full	voltage	range)
-----------	------------	-------------	---------	---------	--------

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	_	6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0		ns
DS13	DSPI_SIN to DSPI_SCK input setup	2		ns
DS14	DSPI_SCK to DSPI_SIN input hold	7		ns
DS15	DSPI_SS active to DSPI_SOUT driven		19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	19	ns

Peripheral operating requirements and behaviors

Figure 27. I²S timing — slave modes

Table 46.	I ² S master	mode timing	(full	voltage range))
-----------	-------------------------	-------------	-------	----------------	---

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}	—	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid		15	ns
S6	I2S_BCLK to I2S_FS output invalid	-4.3	—	ns
S7	I2S_BCLK to I2S_TXD valid		15	ns
S8	I2S_BCLK to I2S_TXD invalid	-4.6		ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	23.9	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0		ns

 Table 47.
 I²S slave mode timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_BCLK cycle time (input)	8 x t _{SYS}		ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10		ns
S14	I2S_FS input hold after I2S_BCLK	3.5		ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid		28.6	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0		ns
S17	I2S_RXD setup before I2S_BCLK	10		ns
S18	I2S_RXD hold after I2S_BCLK	2		ns

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 48. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	—	5.5	12.7	MHz	2
f _{ELEmax}	Electrode oscillator frequency	_	0.5	4.0	MHz	3
C _{REF}	Internal reference capacitor	0.5	1	1.2	pF	
V _{DELTA}	Oscillator delta voltage	100	600	760	mV	4
I _{REF}	Reference oscillator current source base current • 1uA setting (REFCHRG=0)	_	1.133	1.5	μΑ	3,5
	32uA setting (REFCHRG=31)	—	36	50		
I _{ELE}	Electrode oscillator current source base current • 1uA setting (EXTCHRG=0)	_	1.133	1.5	μΑ	3,6
	32uA setting (EXTCHRG=31)	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	7
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres100	Electrode capacitance measurement precision	—	8.3333	38400	fF/count	9
MaxSens	Maximum sensitivity	0.003	12.5	—	fF/count	10
Res	Resolution	_	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	11
I _{TSI_RUN}	Current added in run mode	—	55	—	μA	
I _{TSI_LP}	Low power mode current adder	_	1.3	2.5	μΑ	12

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
- 3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
- 4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
- 5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, I_{ref} = 16 μA, REFCHRG = 15, C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, I_{ref} = 32 μA, REFCHRG = 31, C_{ref} = 0.5 pF
- 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
- 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

K10 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

Pinout

121 Map	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA											
G1	PTE18	ADC0_SE6a	ADC0_SE6a	PTE18	SPI0_SOUT	UART2_CTS_b	I2CO_SDA				
G2	PIE19	ADC0_SE/a	ADC0_SE/a	PIE19	SPI0_SIN	UARI2_RIS_D	12C0_SCL				
L6	VSS	VSS	VSS								
H1	ADC0_DP1	ADC0_DP1	ADC0_DP1								
H2	ADC0_DM1	ADC0_DM1	ADC0_DM1								
J1	ADC1_DP1	ADC1_DP1	ADC1_DP1								
J2	ADC1_DM1	ADC1_DM1	ADC1_DM1								
K1	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
K2	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
L1	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
L2	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
F5	VDDA	VDDA	VDDA								
G5	VREFH	VREFH	VREFH								
G6	VREFL	VREFL	VREFL								
F6	VSSA	VSSA	VSSA								
J3	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	ADC1_SE16/ CMP2_IN2/ ADC0_SE22								
H3	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	ADC0_SE16/ CMP1_IN2/ ADC0_SE21								
L3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
K5	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
K4	DAC1_OUT/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP2_IN3/ ADC1_SE23	DAC1_OUT/ CMP2_IN3/ ADC1_SE23								
L4	XTAL32	XTAL32	XTAL32								
L5	EXTAL32	EXTAL32	EXTAL32								
K6	VBAT	VBAT	VBAT								
H5	PTE24	ADC0_SE17	ADC0_SE17	PTE24	CAN1_TX	UART4_TX			EWM_OUT_b		
J5	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX			EWM_IN		
H6	PTE26	DISABLED		PTE26		UART4_CTS_b			RTC_CLKOUT		

Pinout

121 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
J6	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_CTS_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
H8	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
J7	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
H9	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
J8	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
K7	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT	I2S0_RX_BCLK	JTAG_TRST	
E5	VDD	VDD	VDD								
G3	VSS	VSS	VSS								
J9	PTA10	DISABLED		PTA10		FTM2_CH0			FTM2_QD_ PHA	TRACE_D0	
J4	PTA11	DISABLED		PTA11		FTM2_CH1			FTM2_QD_ PHB		
K8	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD	FTM1_QD_ PHA	
L8	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			12S0_TX_FS	FTM1_QD_ PHB	
K9	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_TX_BCLK		
L9	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD		
J10	PTA16	DISABLED		PTA16	SPI0_SOUT	UART0_CTS_b			I2S0_RX_FS		
H10	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UART0_RTS_b			I2S0_MCLK	I2S0_CLKIN	
L10	VDD	VDD	VDD								
K10	VSS	VSS	VSS								
L11	PTA18	EXTAL	EXTAL	PTA18		FTM0_FLT2	FTM_CLKIN0				
K11	PTA19	XTAL	XTAL	PTA19		FTM1_FLT0	FTM_CLKIN1		LPT0_ALT1		
J11	RESET_b	RESET_b	RESET_b								
H11	PTA29	DISABLED		PTA29					FB_A24		
G11	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ PHA		
G10	PTB1	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB		
G9	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UART0_RTS_b			FTM0_FLT3		
G8	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_CTS_b			FTM0_FLT0		
F11	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
E11	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			

K10 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

121 MAP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA											
C4	PTC17			PTC17	CAN1_TX	UART3_TX		FB_CS4_b/ FB_TSIZ0/ FB_BE31_24_b			
B4	PTC18			PTC18		UART3_RTS_b		FB_TBST_b/ FB_CS2_b/ FB_BE15_8_b			
A4	PTC19			PTC19		UART3_CTS_b		FB_CS3_b/ FB_BE7_0_b	FB_TA_b		
D4	PTD0/ LLWU_P12			PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_b		FB_ALE/ FB_CS1_b/ FB_TS_b			
D3	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_b		FB_CS0_b			
C3	PTD2/ LLWU_P13			PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX		FB_AD4			
B3	PTD3			PTD3	SPI0_SIN	UART2_TX		FB_AD3			
A3	PTD4/ LLWU_P14			PTD4/ LLWU_P14	SPI0_PCS1	UARTO_RTS_b	FTM0_CH4	FB_AD2	EWM_IN		
A2	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_b	FTM0_CH5	FB_AD1	EWM_OUT_b		
B2	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
A1	PTD7			PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
A10	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16		
A9	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17		
B1	PTD10	DISABLED		PTD10		UART5_RTS_b			FB_A18		
C2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_CTS_b	SDHC0_CLKIN		FB_A19		
C1	PTD12	DISABLED		PTD12	SPI2_SCK		SDHC0_D4		FB_A20		
D2	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
D1	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
E1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		
L7	RESERVED	RESERVED	RESERVED								
A11	NC	NC	NC								
B11	NC	NC	NC								
C11	NC	NC	NC								
K3	NC	NC	NC								
H4	NC	NC	NC								

8.2 K10 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Revision History

	1	2	3	4	5	6	7	8	9	10	11	
A	PTD7	PTD5	PTD4	PTC19	PTC14	PTC13	PTC8	PTC4	PTD9	PTD8	NC	A
в	PTD10	PTD6	PTD3	PTC18	PTC15	PTC12	PTC7	PTC3	PTC0	PTB16	NC	в
с	PTD12	PTD11	PTD2	PTC17	PTC11	PTC10	PTC6	PTC2	PTB19	PTB11	NC	с
D	PTD14	PTD13	PTD1	PTD0	PTC16	PTC9	PTC5	PTC1	PTB18	PTB10	PTB8	D
E	PTD15	PTE2	PTE1	PTE0	VDD	VDD	VDD	PTB23	PTB17	PTB9	PTB7	Е
F	PTE16	PTE17	PTE6	PTE3	VDDA	VSSA	VSS	PTB22	PTB21	PTB20	PTB6	F
G	PTE18	PTE19	VSS	PTE5	VREFH	VREFL	VSS	PTB3	PTB2	PTB1	PTB0	G
н	ADC0_DP1	ADC0_DM1	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	NC	PTE24	PTE26	PTE4	PTA1	PTA3	PTA17	PTA29	н
J	ADC1_DP1	ADC1_DM1	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	PTA11	PTE25	PTA0	PTA2	PTA4	PTA10	PTA16	RESET_b	J
к	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	NC	DAC1_OUT/ CMP2_IN3/ ADC1_SE23/	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	VBAT	PTA5	PTA12	PTA14	VSS	PTA19	к
L	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	XTAL32	EXTAL32	VSS	RESERVED	PTA13	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	

Figure 28. K10 121 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

Table 49.	Revision	History
-----------	----------	---------

Rev. No.	Date	Substantial Changes
1	11/2010	Initial public revision
2	3/2011	Many updates throughout
3	3/2011	Added sections that were inadvertently removed in previous revision

Table continues on the next page...

Rev. No.	Date	Substantial Changes
4	3/2011	Reworded IIC footnote in "Voltage and Current Operating Requirements" table.
		Added paragraph to "Peripheral operating requirements and behaviors" section.
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5	6/2011	 Changed DC injection current specs in "Voltage and current operating requirements" table Changed DC injection current and internal pullup/pulldown resistor specs in "Voltage and current operating behaviors" table Split Low power stop mode current specs by temperature range in "Power consumption operating behaviors" table Changed Minimum external reset pulse width in "General switching specifications" table Changed Minimum external reset pulse width in "General switching specifications" table Changed Minimum external reset pulse width in "General switching specifications" table Changed PLL operating current in "MCG specifications" table Changed Supply current in "Oscillator DC electrical specifications" table Changed Supply current in "Oscillator DC electrical specifications" table Changed Operating voltage in "EzPort switching specifications" table Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table Changed Ande 'FlexBus full range switching specifications" table Changed ADC asynchronous clock source specs in "16-bit ADC characteristics" table Changed Ande typical Input DC current to "16-bit ADC with PGA characteristics" table Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" table Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" Changed Analog comparator initialization delay in "Comparator and 6-bit DAC electrical specifications" Changed Analog comparator initialization delay in "Comparator and 6-bit DAC ele
6	01/2012	 Added AC electrical specifications. Replaced TBDs with silicon data throughout. In "Power mode transition operating behaviors" table, removed entry times. Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP. Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram". Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures. Updated I_{DD_RUN} numbers in 'Power consumption operating behaviors' section. Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure. In 'Voltage reference electrical specifications' section, updated C_L, V_{tdrift}, and V_{vdrift} values.

Table 49. Revision History (continued)

Table continues on the next page...