
Microchip Technology - AT91RM3400-AU-002 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM7TDMI

Core Size 16/32-Bit

Speed 66MHz

Connectivity I²C, MMC, SPI, SSC, UART/USART, USB

Peripherals WDT

Number of I/O 63

Program Memory Size 256KB (256K x 8)

Program Memory Type ROM

EEPROM Size -

RAM Size 96K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91rm3400-au-002

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91rm3400-au-002-4427908
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

AT91RM3400
Peripheral
Identifiers

The AT91RM3400 embeds a wide range of peripherals. Table 5 defines the Peripherals Iden-
tifiers of the AT91RM3400. A peripheral identifier is required for the control of the peripheral
interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with
the Power Management Controller.

Table 5. Peripheral Identifiers

Peripheral ID
Peripheral
Mnemonic Peripheral Name External Interrupt

0 AIC Advanced Interrupt Controller FIQ

1 SYSIRQ System Interrupt

2 PIOA Parallel IO Controller A

3 PIOB Parallel IO Controller B

4 – Reserved

5 – Reserved

6 US0 USART 0

7 US1 USART 1

8 US2 USART 2

9 US3 USART 3

10 MCI Multimedia Card Interface

11 UDP USB Device Port

12 TWI Two-Wire Interface

13 SPI Serial Peripheral Interface

14 SSC0 Serial Synchronous Controller 0

15 SSC1 Serial Synchronous Controller 1

16 SSC2 Serial Synchronous Controller 2

17 TC0 Timer Counter 0

18 TC1 Timer Counter 1

19 TC2 Timer Counter 2

20 TC3 Timer Counter 3

21 TC4 Timer Counter 4

22 TC5 Timer Counter 5

23 – Reserved

24 – Reserved

25 AIC Advanced Interrupt Controller IRQ0

26 AIC Advanced Interrupt Controller IRQ1

27 AIC Advanced Interrupt Controller IRQ2

28 AIC Advanced Interrupt Controller IRQ3

29 AIC Advanced Interrupt Controller IRQ4

30 AIC Advanced Interrupt Controller IRQ5

31 AIC Advanced Interrupt Controller IRQ6
19
1790A–ATARM–11/03

AT91RM3400
PIO Controller B Multiplexing

Table 3. Multiplexing PIO controller B

PIO Controller B Application Usage

I/O Line Peripheral A Peripheral B Function Comments

PB0 TF0 TIOB3

PB1 TK0 TCLK3

PB2 TD0 RTS2

PB3 RD0 RTS3

PB4 RK0 PCK0

PB5 RF0 TIOA3

PB6 TF1 TIOB4

PB7 TK1 TCLK4

PB8 TD1 NPCS1

PB9 RD1 NPCS2

PB10 RK1 PCK1

PB11 RF1 TIOA4

PB12 TF2 TIOB5

PB13 TK2 TCLK5

PB14 TD2 NPCS3

PB15 RD2 PCK1

PB16 RK2 PCK2

PB17 RF2 TIOA5

PB18 RTS3 MCCDB

PB19 CTS3 MCDB0

PB20 TXD3 DTR1

PB21 RXD3

PB22 SCK3 PCK3

PB23 FIQ

PB24 IRQ0 TD0

PB25 IRQ1 TD1

PB26 IRQ2 TD2

PB27 IRQ3 DTXD

PB28 IRQ4 MCDB1

PB29 IRQ5 MCDB2

PB30 IRQ6 MCDB3
15
1790A–ATARM–11/03

AT91RM3400

me
ions
14)
Thumb Instruction
Set Overview

The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

• Branch instructions

• Data processing instructions

• Load and Store instructions

• Load and Store Multiple instructions

• Exception-generating instruction

In Thumb mode, eight general-purpose registers, R0 to R7, are available that are the sa
physical registers as R0 to R7 when executing ARM instructions. Some Thumb instruct
also access to the Program Counter (ARM Register 15), the Link Register (ARM Register

Table 8. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation

MOV Move CDP Coprocessor Data Processing

ADD Add MVN Move Not

SUB Subtract ADC Add with Carry

RSB Reverse Subtract SBC Subtract with Carry

CMP Compare RSC Reverse Subtract with Carry

TST Test CMN Compare Negated

AND Logical AND TEQ Test Equivalence

EOR Logical Exclusive OR BIC Bit Clear

MUL Multiply ORR Logical (inclusive) OR

SMULL Sign Long Multiply MLA Multiply Accumulate

SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply

MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate

B Branch MRS Move From Status Register

BX Branch and Exchange BL Branch and Link

LDR Load Word SWI Software Interrupt

LDRSH Load Signed Halfword STR Store Word

LDRSB Load Signed Byte STRH Store Half Word

LDRH Load Half Word STRB Store Byte

LDRB Load Byte STRBT Store Register Byte with Translation

LDRBT Load Register Byte with Translation STRT Store Register with Translation

LDRT Load Register with Translation STM Store Multiple

LDM Load Multiple SWPB Swap Byte

SWP Swap Word MRC Move From Coprocessor

MCR Move To Coprocessor STC Store From Coprocessor

LDC Load To Coprocessor
29
1790A–ATARM–11/03

117

PA11/SCK0/TCLK0 IN/OUT

INPUT

116 OUTPUT

115 CONTROL

114

PA12/CTS0/TCLK1 IN/OUT

INPUT

113 OUTPUT

112 CONTROL

111

PA13/RTS0/TCLK2 IN/OUT

INPUT

110 OUTPUT

109 CONTROL

108

PA14/RXD1 IN/OUT

INPUT

107 OUTPUT

106 CONTROL

105

PA15/TXD1 IN/OUT

INPUT

104 OUTPUT

103 CONTROL

102

PA16/RTS1/TIOA0 IN/OUT

INPUT

101 OUTPUT

100 CONTROL

99

PA17/CTS1/TIOB0 IN/OUT

INPUT

98 OUTPUT

97 CONTROL

96

PA18/DTR1/TIOA1 IN/OUT

INPUT

95 OUTPUT

94 CONTROL

93

PA19/DSR1/TIOB1 IN/OUT

INPUT

92 OUTPUT

91 CONTROL

90

PA20/DCD1/TIOA2 IN/OUT

INPUT

89 OUTPUT

88 CONTROL

87

PA21/RI1/TIOB2 IN/OUT

INPUT

86 OUTPUT

85 CONTROL

Table 11. JTAG Boundary Scan Register (Continued)

Bit
Number Pin Name Pin Type

Associated BSR
Cells
38 AT91RM3400
1790A–ATARM–11/03

Using the Service The following steps show how to initialize and use the Xmodem Service in an application:
Variables definitions:

AT91S_RomBoot const *pAT91; // struct containing Openservice functions

AT91S_SBuffer sXmBuffer; // Xmodem Buffer allocation

AT91S_SvcXmodem svcXmodem; // Xmodem service structure allocation

AT91S_Pipe xmodemPipe;// xmodem pipe communication struct

AT91S_CtlTempo ctlTempo; // Tempo struct

AT91PS_Buffer pXmBuffer; // Pointer on a buffer structure

AT91PS_SvcComm pSvcXmodem; // Pointer on a Media Structure

Initialisations

// Call Open methods:

pAT91 = AT91C_ROM_BOOT_ADDRESS;

// OpenCtlTempo on the system timer

pAT91->OpenCtlTempo(&ctlTempo, (void *) &(pAT91->SYSTIMER_DESC));

ctlTempo.CtlTempoStart((void *) &(pAT91->SYSTIMER_DESC));

// Xmodem buffer initialisation

pXmBuffer = pAT91->OpenSBuffer(&sXmBuffer);

pSvcXmodem = pAT91->OpenSvcXmodem(&svcXmodem, AT91C_BASE_DBGU, &ctlTempo);

// Open communication pipe on the xmodem service

pAT91->OpenPipe(&xmodemPipe, pSvcXmodem, pXmBuffer);

// Init the DBGU peripheral

// Open PIO for DBGU

AT91F_DBGU_CfgPIO();

// Configure DBGU

AT91F_US_Configure (

(AT91PS_USART) AT91C_BASE_DBGU, // DBGU base address

MCK, // Master Clock

AT91C_US_ASYNC_MODE, // mode Register to be programmed

BAUDRATE , // baudrate to be programmed

0); // timeguard to be programmed

// Enable Transmitter

AT91F_US_EnableTx((AT91PS_USART) AT91C_BASE_DBGU);

// Enable Receiver

AT91F_US_EnableRx((AT91PS_USART) AT91C_BASE_DBGU);

// Initialize the Interrupt for System Timer and DBGU (shared interrupt)

// Initialize the Interrupt Source 1 for SysTimer and DBGU

AT91F_AIC_ConfigureIt(AT91C_BASE_AIC,

 AT91C_ID_SYS,

 AT91C_AIC_PRIOR_HIGHEST,

 AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE,

 AT91F_ASM_ST_DBGU_Handler);

// Enable SysTimer and DBGU interrupt

AT91F_AIC_EnableIt(AT91C_BASE_AIC, AT91C_ID_SYS);

xmodemPipe.Read(&xmodemPipe, (char *) BASE_LOAD_ADDRESS, MEMORY_SIZE,
XmodemProtocol, (void *) BASE_LOAD_ADDRESS);
68 AT91RM3400
1790A–ATARM–11/03

AT91RM3400

one
to
eral
t

r

re

ter

red.
sas-

t is
nto
orts

nt of

Pro-

 to

1K
its

-
he

nst
er-
has
Abort Status There are three reasons for an abort to occur:

• access to an undefined address

• access to a protected area without the permitted state

• an access to a misaligned address.

When an abort occurs, a signal is sent back to all the masters, regardless of which
has generated the access. However, only the ARM7TDMI can take an abort signal in
account, and only under the condition that it was generating an access. The Periph
Data Controller does not handle the abort input signal. Note that the connection is no
represented in Figure 21.

To facilitate debug or for fault analysis by an operating system, the Memory Controlle
integrates an Abort Status register set.

The full 32-bit wide abort address is saved in MC_AASR. Parameters of the access a
saved in MC_ASR and include:

• the size of the request (field ABTSZ)

• the type of the access, whether it is a data read or write, or a code fetch (field
ABTTYP)

• whether the access is due to accessing an undefined address (bit UNDADD), a
misaligned address (bit MISADD) or a protection violation (bit MPU)

• the source of the access leading to the last abort (bits MST0 and MST1)

• whether or not an abort occurred for each master since the last read of the regis
(bit SVMST0 and SVMST1) unless this information is loaded in MST bits

In the case of a Data Abort from the processor, the address of the data access is sto
This is useful, as searching for which address generated the abort would require di
sembling the instructions and full knowledge of the processor context.

In the case of a Prefetch Abort, the address may have changed, as the prefetch abor
pipelined in the ARM processor. The ARM processor takes the prefetch abort i
account only if the read instruction is executed and it is probable that several ab
have occurred during this time. Thus, in this case, it is preferable to use the conte
the Abort Link register of the ARM processor.

Memory Protection Unit The Memory Protection Unit allows definition of up to 16 memory spaces within the
internal memories.

After reset, the Memory Protection Unit is disabled. Enabling it requires writing the
tection Unit Enable Register (MC_PUER) with the PUEB at 1.

Programmming of the 16 memory spaces is done in the registers MC_PUIA0
MC_PUIA15.

The size of each of the memory spaces is programmable by a power of 2 between
bytes and 4M bytes. The base address is also programmable on a number of b
according to the size.

The Memory Protection Unit also allows the protection of the peripherals by program
ming the Protection Unit Peripheral Register (MC_PUP) with the field PROT at t
appropriate value.

The peripheral address space and each internal memory area can be protected agai
write and non-privileged access of one of the masters. When one of the masters p
forms a forbidden access, an Abort is generated and the Abort Status traces what
happened.
83
1790A–ATARM–11/03

PDC Receive Next Pointer Register
Register Name: PERIPH_RNPR

Access Type: Read/Write

� RXNPTR: Receive Next Pointer Address
RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

PDC Receive Next Counter Register
Register Name: PERIPH_RNCR

Access Type: Read/Write

� RXNCR: Receive Next Counter Value
·RXNCR is the size of the next buffer to receive.

PDC Transmit Next Pointer Register
Register Name: PERIPH_TNPR

Access Type: Read/Write

� TXNPTR: Transmit Next Pointer Address
TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXNCR

7 6 5 4 3 2 1 0

RXNCR

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8

TXNPTR

7 6 5 4 3 2 1 0

TXNPTR
98 AT91RM3400
1790A–ATARM–11/03

Block Diagram Figure 25. Block Diagram

Application
Block Diagram

Figure 26. Description of the Application Block

AIC Detailed
Block Diagram

Figure 27. AIC Detailed Block Diagram

AIC

APB

ARM
Processor

FIQ

IRQ0-IRQn

Embedded
PeripheralEE

PeripheralEmbedded
Peripheral

Embedded

Up to
Thirty-two
Sources

nFIQ

nIRQ

Advanced Interrupt Controller

Embedded Peripherals
External Peripherals
(External Interrupts)

Standalone
Applications RTOS Drivers

Hard Real Time Tasks

OS-based Applications

OS Drivers

General OS Interrupt Handler

FIQ

PIO
Controller

Advanced Interrupt Controller

IRQ0-IRQn
PIOIRQ

Embedded
Peripherals

External
Source
Input
Stage

Internal
Source
Input
Stage

Fast
Forcing

Interrupt
Priority

Controller

Fast
Interrupt

Controller

ARM
Processor

nFIQ

nIRQ

Power
Management

Controller

Wake UpUser Interface

APB

Processor
Clock
102 AT91RM3400
1790A–ATARM–11/03

tion
SB

i-

n in
g an
.

) in
r of
e

d 4

K-
hen
 the

 in

he
ble
s
ter

. On

as-

ny
h is
 the
prevents using the USB ports. Selecting the PLLB Clock saves the power consump
of the PLLA by running the processor and the peripheral at 48 MHz required by the U
ports. Selecting the PLLA Clock runs the processor and the peripherals at their max
mum speed while running the USB ports at 48 MHz.

The Master Clock Controller is made up of a clock selector and a prescaler, as show
Figure 42. It also contains an optional Master Clock divider in products integratin
ARM9 processor. This allows the processor clock to be faster than the Master Clock

The Master Clock selection is made by writing the CSS field (Clock Source Selection
PMC_MCKR (Master Clock Register). The prescaler supports the division by a powe
2 of the selected clock between 1 and 64. The PRES field in PMC_MCKR programs th
prescaler.

When the Master Clock divider is implemented, it can be programmed between 1 an
through the MDIV field in PMC_MCKR.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is
cleared in PMC_SR. It reads 0 until the Master Clock is established. Then, the MC
RDY bit is set and can trigger an interrupt to the processor. This feature is useful w
switching from a high-speed clock to a lower one to inform the software when
change is actually done.
Note: A new value to be written in PMC_MCKR must not be the same as the current value

PMC_MCKR.

Figure 42. Master Clock Controller

Processor Clock Controller The PMC features a Processor Clock Controller that implements the Idle Mode. T
Processor Clock can be enabled and disabled by writing the System Clock Ena
(PMC_SCER) and System Clock Disable Registers (PMC_SCDR). The status of thi
clock (at least for debug purpose) can be read in the System Clock Status Regis
(PMC_SCSR).

Processor Clock Source The clock provided to the processor is determined by the Master Clock controller
ARM7-based systems, the Processor Clock source is directly the Master Clock.

On ARM9-based systems, the Processor Clock source might be 2, 3 or 4 times the M
ter Clock. This ratio value is determined by programming the field MDIV of the Master
Clock Register (PMC_MCKR).

Idle Mode The Processor Clock is enabled after a reset and is automatically re-enabled by a
enabled interrupt. The Idle Mode is achieved by disabling the Processor Clock, whic
automatically re-enabled by any enabled fast or normal interrupt, or by the reset of
product.

SLCK

Master Clock
Prescaler

MCK
PRESCD

Master
Clock
Divider

To the Processor
Clock Controller

Main Clock

PLLA Clock

PLLB Clock

MDIV

To the Processor
Clock Controller

MCK

ARM9 Products

ARM7 Products
134 AT91RM3400
1790A–ATARM–11/03

AT91RM3400

bug

-
nitor
 per-

 by
e the
sor,

ters
ded

ide
on of
Debug Unit (DBGU)

Overview The Debug Unit provides a single entry point from the processor for access to all the de
capabilities of Atmel’s ARM-based systems.

The Debug Unit features a two-pin UART that can be used for several debug and trace pur
poses and offers an ideal medium for in-situ programming solutions and debug mo
communications. Moreover, the association with two peripheral data controller channels
mits packet handling for these tasks with processor time reduced to a minimum.

The Debug Unit also makes the Debug Communication Channel (DCC) signals provided
the In-circuit Emulator of the ARM processor visible to the software. These signals indicat
status of the DCC read and write registers and generate an interrupt to the ARM proces
making possible the handling of the DCC under interrupt control.

Chip Identifier registers permit recognition of the device and its revision. These regis
inform as to the sizes and types of the on-chip memories, as well as the set of embed
peripherals.

Finally, the Debug Unit features a Force NTRST capability that enables the software to dec
whether to prevent access to the system via the In-circuit Emulator. This permits protecti
the code, stored in ROM.

Important features of the Debug Unit are:

• System Peripheral to Facilitate Debug of Atmel’s ARM-based Systems

• Composed of Four Functions

– Two-pin UART

– Debug Communication Channel (DCC) Support

– Chip ID Registers

– ICE Access Prevention

• Two-pin UART

– Implemented Features are 100% Compatible with the Standard Atmel USART

– Independent Receiver and Transmitter with a Common Programmable Baud Rate
Generator

– Even, Odd, Mark or Space Parity Generation

– Parity, Framing and Overrun Error Detection

– Automatic Echo, Local Loopback and Remote Loopback Channel Modes

– Interrupt Generation

– Support for Two PDC Channels with Connection to Receiver and Transmitter

• Debug Communication Channel Support

– Offers Visibility of COMMRX and COMMTX Signals from the ARM Processor

– Interrupt Generation

• Chip ID Registers

– Identification of the Device Revision, Sizes of the Embedded Memories, Set of
Peripherals

• ICE Access Prevention

– Enables Software to Prevent System Access Through the ARM Processor’s ICE

– Prevention is Made by Asserting the NTRST Line of the ARM Processor’s ICE
181
1790A–ATARM–11/03

l is

ad
Mode Fault Detection A mode fault is detected when the SPI is programmed in Master Mode and a low leve
driven by an external master on the NPCS0/NSS signal.

When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is re
and the SPI is disabled until re-enabled by bit SPIEN in the SPI_CR (Control Register).

By default, Mode Fault Detection is enabled. It is disabled by setting the MODFDIS bit in the
SPI Mode Register.
234 AT91RM3400
1790A–ATARM–11/03

AT91RM3400

ive
n be
ister
Figure 87. Internal Address Usage

Read/Write
Flowcharts

The following flowcharts shown in Figure 88 on page 256 and in Figure 89 on page 257 g
examples for read and write operations in Master Mode. A polling or interrupt method ca
used to check the status bits. The interrupt method requires that the interrupt enable reg
(TWI_IER) be configured first.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

255
1790A–ATARM–11/03

AT91RM3400

ing
816

he
l T

s
era-

ec-
in
when

he
-
it

om-
ode
 the

ble

cter
this
ans-
Figure 107. Transmitter Behavior when Operating with Hardware Handshaking

ISO7816 Mode The USART features an ISO7816-compatible operating mode. This mode permits interfac
with smart cards and Security Access Modules (SAM) communicating through an ISO7
link. Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in t
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protoco
= 1.

ISO7816 Mode
overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate i
determined by a division of the clock provided to the remote device (see “Baud Rate Gen
tor” on page 271).

The USART connects to a smart card. as shown in Figure 108. The TXD line becomes bidir
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD p
becomes bidirectional, its output remains driven by the output of the transmitter but only
the transmitter is active while its input is directed to the input of the receiver. The USART is
considered as the master of the communication as it generates the clock.

Figure 108. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. T
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transm
LSB or MSB first.

The USART cannot operate concurrently in both receiver and transmitter modes as the c
munication is unidirectional at a time. It has to be configured according to the required m
by enabling or disabling either the receiver or the transmitter as desired. Enabling both
receiver and the transmitter at the same time in ISO7816 mode may lead to unpredicta
results.

The ISO7816 specification defines an inverse transmission format. Data bits of the chara
must be transmitted on the I/O line at their negative value. The USART does not support
format and the user has to perform an exclusive OR on the data before writing it in the Tr
mit Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

CTS

TXD

Smart
Card

SCK
CLK

TXD
I/O

USART
285
1790A–ATARM–11/03

AT91RM3400
Figure 131. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Note: 1. Input on falling edge on TF/RF example.

Table 57. Data Frame Registers

Transmitter Receiver Field Length Comment

SSC_TFMR SSC_RFMR DATLEN Up to 32 Size of word

SSC_TFMR SSC_RFMR DATNB Up to 16 Number Word transmitter in frame

SSC_TFMR SSC_RFMR MSBF 1 most significant bit in first

SSC_TFMR SSC_RFMR FSLEN Up to 16 Size of Synchro data register

SSC_TFMR DATDEF 0 or 1 Data default value ended

SSC_TFMR FSDEN Enable send SSC_TSHR

SSC_TCMR SSC_RCMR PERIOD up to 512 Frame size

SSC_TCMR SSC_RCMR STTDLY up to 255 Size of transmit start delay

Sync Data Default

STTDLY

Sync Data IgnoredRD

Default

Data

DATLEN

Data

Data

Data

DATLEN

Data

Data Default

Default

Ignored

Sync Data

Sync Data

FSLEN

TF/RF(1)

StartStart

From SSC_TSHR From SSC_THR

From SSC_THR

From SSC_THR

From SSC_THR

To SSC_RHR To SSC_RHRTo SSC_RSHR

TD
(If FSDEN = 0)

TD
(If FSDEN = 1)

DATNB

PERIOD

FromDATDEF FromDATDEF

From DATDEF From DATDEF
321
1790A–ATARM–11/03

332 AT91RM3400
1790A–ATARM–11/03

SSC Transmit Clock Mode Register
Name: SSC_TCMR

Access Type: Read/Write

� CKS: Transmit Clock Selection

� CKO: Transmit Clock Output Mode Selection

� CKI: Transmit Clock Inversion
0: The data and the Frame Sync signal are shifted out on Transmit Clock falling edge.

1: The data and the Frame Sync signal are shifted out on Transmit Clock rising edge.

CKI affects only the Transmit Clock and not the output clock signal.

� START: Transmit Start Selection

31 30 29 28 27 26 25 24
PERIOD

23 22 21 20 19 18 17 16
STTDLY

15 14 13 12 11 10 9 8
– – – – START
7 6 5 4 3 2 1 0
– – CKI CKO CKS

CKS Selected Transmit Clock

0x0 Divided Clock

0x1 RK Clock signal

0x2 TK Pin

0x3 Reserved

CKO Transmit Clock Output Mode TK pin

0x0 None Input-only

0x1 Continuous Transmit Clock Output

0x2-0x7 Reserved

START Transmit Start

0x0 Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled) and
immediately after the end of transfer of the previous data.

0x1 Receive Start

0x2 Detection of a low level on TF signal

0x3 Detection of a high level on TF signal

0x4 Detection of a falling edge on TF signal

0x5 Detection of a rising edge on TF signal

0x6 Detection of any level change on TF signal

0x7 Detection of any edge on TF signal

0x8-0xF Reserved

F
he

t to

ame
he
WAVSEL = 00 When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFF
has been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and t
cycle continues. See Figure 143.

An external event trigger or a software trigger can reset the value of TC_CV. It is importan
note that the trigger may occur at any time. See Figure 144.

RC Compare cannot be programmed to generate a trigger in this configuration. At the s
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable t
counter clock (CPCDIS = 1 in TC_CMR).

Figure 143. WAVSEL= 00 without trigger

Figure 144. WAVSEL= 00 with trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger
352 AT91RM3400
1790A–ATARM–11/03

AT91RM3400

con-
Timer Counter (TC) User Interface

TC_BCR (Block Control Register) and TC_BMR (Block Mode Register) control the whole TC block. TC channels are
trolled by the registers listed in Table 62. The offset of each of the channel registers in Table 62 is in relation to the offset of
the corresponding channel as mentioned in Table 62.

Notes: 1. Read only if WAVE = 0

Table 61. Timer Counter Global Memory Map

Offset Channel/Register Name Access Reset Value

0x00 TC Channel 0 See Table 62
See Table 62
See Table 62

0x40 TC Channel 1

0x80 TC Channel 2

0xC0 TC Block Control Register TC_BCR Write-only –

0xC4 TC Block Mode Register TC_BMR Read/Write 0

Table 62. Timer Counter Channel Memory Map

Offset Register Name Access Reset Value

0x00 Channel Control Register TC_CCR Write-only –

0x04 Channel Mode Register TC_CMR Read/Write 0

0x08 Reserved –

0x0C Reserved –

0x10 Counter Value TC_CV Read-only 0

0x14 Register A TC_RA Read/Write(1) 0

0x18 Register B TC_RB Read/Write(1) 0

0x1C Register C TC_RC Read/Write 0

0x20 Status Register TC_SR Read-only 0

0x24 Interrupt Enable Register TC_IER Write-only –

0x28 Interrupt Disable Register TC_IDR Write-only –

0x2C Interrupt Mask Register TC_IMR Read-only 0
357
1790A–ATARM–11/03

AT91RM3400
0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.

� LDRBS: RB Loading Status
0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.

� ETRGS: External Trigger Status
0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

� CLKSTA: Clock Enabling Status
0 = Clock is disabled.

1 = Clock is enabled.

� MTIOA: TIOA Mirror
0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.

1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.

� MTIOB: TIOB Mirror
0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.

1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.
367
1790A–ATARM–11/03

TC Interrupt Enable Register
Register Name: TC_IER

Access Type: Write-only

� COVFS: Counter Overflow
0 = No effect.

1 = Enables the Counter Overflow Interrupt.

� LOVRS: Load Overrun
0 = No effect.

1 = Enables the Load Overrun Interrupt.

� CPAS: RA Compare
0 = No effect.

1 = Enables the RA Compare Interrupt.

� CPBS: RB Compare
0 = No effect.

1 = Enables the RB Compare Interrupt.

� CPCS: RC Compare
0 = No effect.

1 = Enables the RC Compare Interrupt.

� LDRAS: RA Loading
0 = No effect.

1 = Enables the RA Load Interrupt.

� LDRBS: RB Loading
0 = No effect.

1 = Enables the RB Load Interrupt.

� ETRGS: External Trigger
0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS
368 AT91RM3400
1790A–ATARM–11/03

AT91RM3400
MCI SD Receive Data Register
Name: MCI_RDR

Access Type: Read-only

� DATA: Data to Read

MCI SD Transmit Data Register
Name: MCI_TDR

Access Type: Write-only

� DATA: Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA
389
1790A–ATARM–11/03

