

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	EBI/EMI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8623312pecr503x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z86233/243

CMOS Z8® 8K ROM CONSUMER CONTROLLER PROCESSOR

FEATURES

Part	ROM Kbytes	RAM bytes	1/0	Package Information
Z86233 Z86243	8	237 236	24 32	28-pinDIP,SOIC,PLCC 40-pin DIP, 44-pin PLCC, 44-pin LQFP

- 3.0-to 5.5-Volt Operating Range
- Low-Power Consumption: 40 mW (Typical @5.0V)
- 0°C to +70°C Temperature Range
 (−40°C to +105°C Temperature Range Available)
- Three Expanded Register File Control Registers
- Z86C33/C43 Pin and Package Compatible Version (With Addition of 4K ROM)

- 32 Input/Output Lines (Three with Comparator Inputs) (Z86243 Only)
- Vectored, Prioritized Interrupts with Programmable Polarity
- Two Comparators
- Two Programmable 8-Bit Counter/Timers, Each with a 6-Bit Programmable Prescaler
- Watch-Dog Timer (WDT)/Power-On Reset (POR)
- On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive
- RAM and ROM Protect
- Clock Free Watch-Dog Timer (WDT) Reset

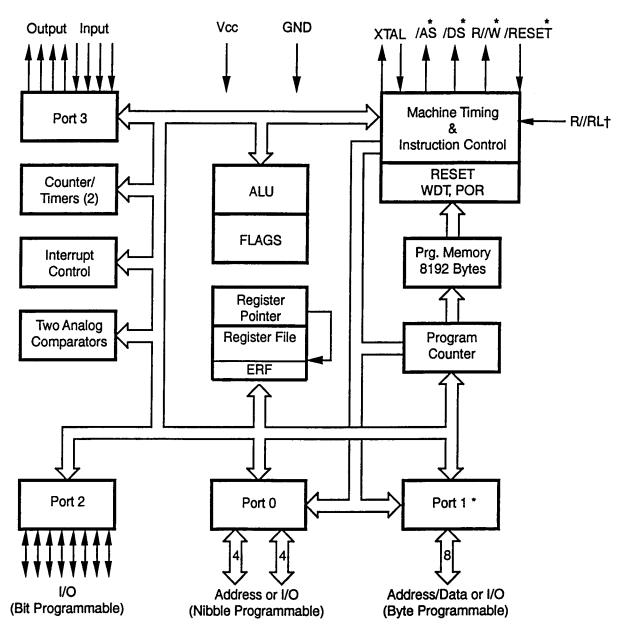
GENERAL DESCRIPTION

The Z86233/243 Consumer Controller Processor is a member of Zilog's Z8® single-chip microcontroller family featuring enhanced wake-up circuitry, programmable Watch-Dog timers and low-EMI options. The parts provide flexible and efficient growth paths for designers currently using the 4K ROM versions of the consumer controller devices (Z86C30/C40/C33/C43).

Four address spaces, the Program Memory, Register File, Data Memory and Expanded Register File (ERF), support a wide range of memory configurations. Through the ERF, the designer has access to two additional control registers which provide extra peripheral devices, I/O ports, and register addresses.

For applications demanding powerful I/O capabilities, the Z86243 provides 32 pins dedicated to input and output. The Z86233 provides 24 pins dedicated to input and output. These lines are grouped into four ports with eight lines each, and are configurable under software control to provide timing, status signals, or parallel I/O.

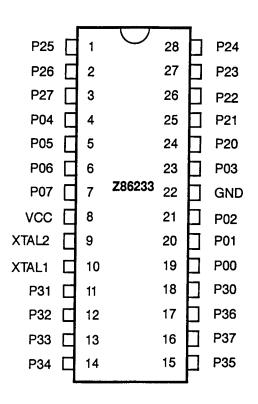
With ROM/ROMless selectivity, the Z86243 provides both external memory and pre-programmed ROM, which enables this Z8 microcontroller to be used in high-volume applications, or where code flexibility is required.


Note: All Signals with a preceding front slash, "/", are active Low, e.g., B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

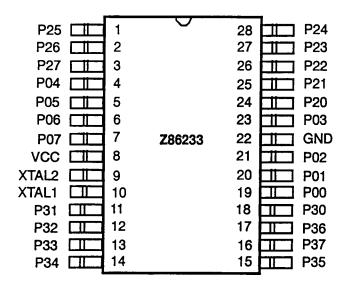
Connection	Circuit	Device
Power	٧~	V _{DO}
Ground	GND	Vss

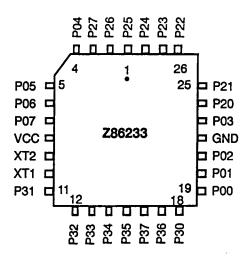
CP96DZ81201 (8/96)


GENERAL DESCRIPTION (Continued)

* Not available on Z86233. † Available on Z86243 44-Pin LOFP PLCC versions only.

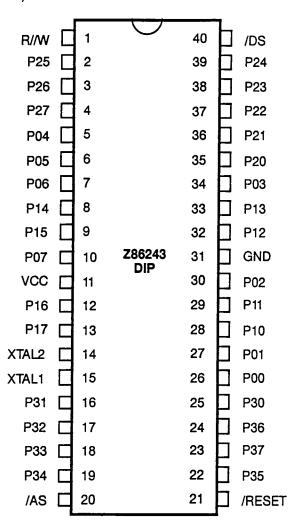
Functional Block Diagram


PIN DESCRIPTION


28-Pin DIP/SOIC/PLCC Pin Identification

Pin#	Symbol	Function	Direction
1-3	P25-P27	Port 2, Pins 5,6,7	In/Output
4-7	P07-P04	Port 0, Pins 4,5,6,7	In/Output
9	V _{cc} XTAL2	Power Supply Crystal Oscillator	Output
10	XTAL1	Crystal Oscillator	Input
11-13	P33-P31	Port 3, Pins 1,2,3	Fixed Input
14-15	P35-P34	Port 3, Pins 4,5	Fixed Output
16	P37	Port 3, Pin 7	Fixed Output
17	P36	Port 3, Pin 6	Fixed Output
18	P30	Port 3, Pin 0	Fixed Input
19-21	P02-P00	Port 0, Pins 0,1,2	In/Output
22	GND	Ground	
23	P03	Port 0, Pins 3	In/Output
24-28	P24-P20	Port 2, Pins 0,1,2,3,4	In/Output

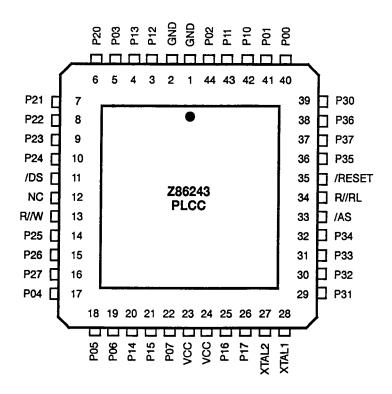
28-Pin DIP Pin Configuration



28-Pin SOIC Pin Configuration

28-Pin PLCC Pin Configuration

PIN DESCRIPTION (Continued)

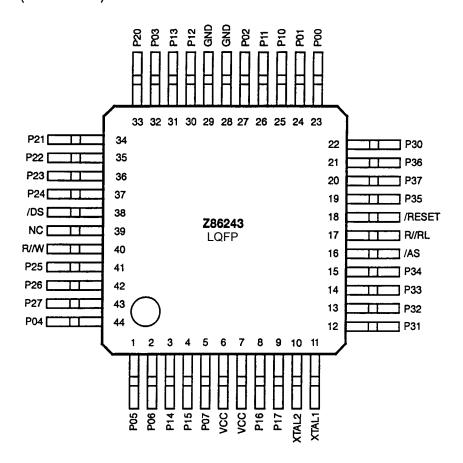


40-Pin DIP Pin Configuration

40-Pin DIP Pin Configuaration

Pin#	Symbol	Function	Direction
1	R//W	Read/Write	Output
2-4	P25-P27	Port 2, Pins 5, 6, 7	In/Output
5-7	P04-P06	Port 0, Pins 4, 5, 6	In/Output
8-9 10 11	P14-P15 P07 V _{cc}	Port 1, Pins 4, 5 Port 0, Pin 7 Power Supply	In/Output In/Output
12-13	P16-P17	Port 1, Pins 6, 7	In/Output
14	XTAL2	Crystal Oscillator	Output
15	XTAL1	Crystal Oscillator	Input
16-18	P31-P33	Port 3, Pins 1, 2, 3	Input
19	P34	Port 3, Pin 4	Output
20	/AS	Address Strobe	Output
21	/RESET	Reset	Input

Pin#	Symbol	Function	Direction
22	P35	Port 3, Pin 5	Output
23	P37	Port 3, Pin 7	Output
24	P36	Port 3, Pin 6	Output
25	P30	Port 3, Pin 0	Input
26-27	P00-P01	Port 0, Pins 0,1	In/Output
28-29	P10-P11	Port 1, Pins 0,1	In/Output
30	P02	Port 0, Pin 2	In/Output
31	GND	Ground	
32-33	P12-P13	Port 1, Pins 2, 3	In/Output
34	P03	Port 0, Pin 3	In/Output
35-39	P20-P24	Port 2, Pins 0,1,2,3,4	In/Output
40	/DS	Data Strobe	Output


44-Pin PLCC Pin Configuration

44-Pin PLCC Pin Identification

Pin#	Symbol	Function	Direction
1 2	GND GND	Ground Ground	
3-4 5 6-10	P12-P13 P03 P20-P24	Port 1, Pins 2,3 Port 0, Pin 3 Port 2, Pins 0,1,2,3,4	In/Output In/Output In/Output
11 12 13 14-16 17-19	/DS N/C R//W P25-P27 P04-P06	Data Strobe Not Connected Read/Write Port 2, Pins 5,6,7 Port 0, Pins 4,5,6	Output Output In/Output In/Output
20-21 22 23 24 25-26	P14-P15 P07 V _{cc} V _{cc} P16-P17	Port 1, Pins 4,5 Port 0, Pin 7 Power Supply Power Supply Port 1, Pins 6,7	In/Output In/Output

Pin#	Symbol	Function	Direction
27	XTAL2	Crystal Oscillator	Output
28	XTAL1	Crystal Oscillator	Input
29-31	P31-P33	Port 3, Pins 1,2,3	Input
32	P34	Port 3, Pin 4	Output
33	/AS	Address Strobe	Output
34	R//RL	ROM/ROMless select	Input
35	/RESET	Reset	Input
36	P35	Port 3, Pin 5	Output
37	P37	Port 3, Pin 7	Output
38	P36	Port 3, Pin 6	Output
39	P30	Port 3, Pin 0	Input
40-41	P00-P01	Port 0, Pins 0,1	In/Output
42-43	P10-P11	Port 1, Pins 0,1	In/Output
44	P02	Port 0, Pin 2	In/Output

PIN DESCRIPTION (Continued)

44- Pin LQFP Pin Configuration

44- Pin LQFP Pin Identification

Pin#	Symbol	Function	Direction	Pin#	Symbol	Function	Direction
1-2	P05-P06	Port 0, Pins 5,6	In/Output	21	P36	Port 3, Pin 6	Output
3-4	P14-P05	Port 1, Pins 4,5	In/Output	22	P30	Port 3, Pin 0	Input
5	P07	Port 0, Pin 7	In/Output	23-24	P00-P01	Port 0, Pin 0,1	In/Output
6-7	V_{cc}	Power Supply	·	25-26	P10-P11	Port 1, Pins 0,1	In/Output
8-9	PĬ6-P17	Port 1, Pins 6,7	In/Output	27	P02	Port 0, Pin 2	In/Output
10	XTAL2	Crystal Oscillator	Output	28	GND	Ground	
11	XTAL1	Crystal Oscillator	Input	29	GND	Ground	
12-14	P31-P33	Port 3, Pins 1,2,3	Input	30-31	P12-P13	Port 1, Pins 2,3	In/Output
15	P34	Port 3, Pin 4	Output	32	P03	Port 0, Pin 3	In/Output
16	/AS	Address Strobe	Output	33-37	P20-24	Port 2, Pins 0,1,2,3,4	In/Output
17	R//RL	ROM/ROMless select	Input	38	/DS	Data Strobe	Output
18	/RESET	Reset	Input	39	N/C	Not Connected	
19	P35	Port 3, Pin 5	Output	40	R/W	Read/Write	Output
20	P37	Port 3, Pin 7	Output	41-43	P25-P27	Port 2, Pins 5,6,7	In/Output
				44	P04	Port 0, Pin 4	In/Output

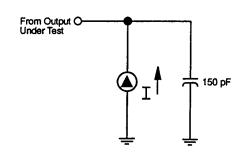
ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Units
Ambient Temperature under Bias	-40	+105	С
Storage Temperature	-65	+150	С
Voltage on any Pin with Respect to V _{ss} [Note 1]	-0.6	+7	V
Voltage on V _{DD} Pin with Respect to V _{ss}	-0.3	+7	٧
Voltage on XTAL1 and /RESET Pins with Respect to Ves [Note 2]	-0.6	V _{DD} +1	V
Total Power Dissipation		1.21	W
Maximum Allowable Current out of V _{ss}		220	mΑ
Maximum Allowable Current into Vpp		180	mΑ
Maximum Allowable Current into an Input Pin [Note 3]	-600	+600	μА
Maximum Allowable Current into an Open-Drain Pin [Note 4]	-600	+600	μΑ
Maximum Allowable Output Current Sinked by Any I/O Pin		25	mA
Maximum Allowable Output Current Sourced by Any I/O Pin		25	mA

Notes:

- [1] This applies to all pins except XTAL pins and where otherwise noted.
- [2] There is no input protection diode from pin to V_{po} .
- [3] This excludes XTAL pins.
- [4] Device pin is not at an output Low state.

Notice:


Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

Total power dissipation should not exceed 1.21 W for the package. Power dissipation is calculated as follows:

$$\begin{aligned} \text{Total Power Dissipation} &= V_{DD} \times [\ I_{DD} - (\text{sum of } I_{OH})\] \\ &+ \text{sum of } [\ (V_{DD} - V_{OH}) \times I_{OH}] \\ &+ \text{sum of } (V_{OL} \times I_{OL}) \end{aligned}$$

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Test Load).

Test Load Diagram

CAPACITANCE

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz; unmeasured pins returned to GND.

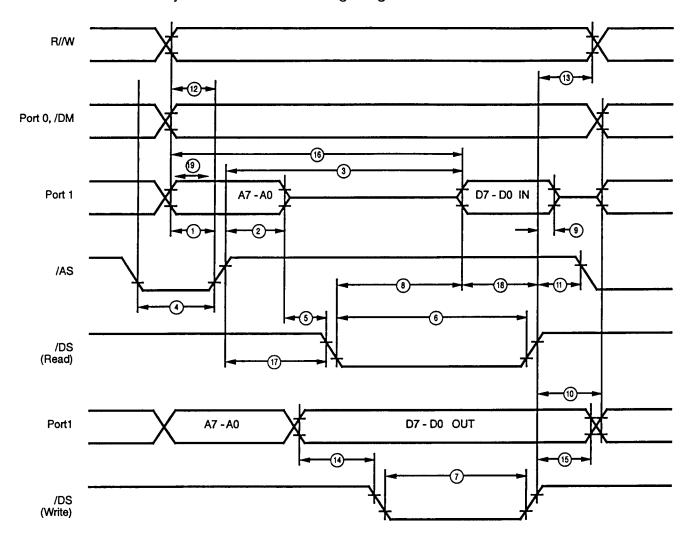
Parameter	Min			
Input capacitance	0	12 pF		
Output capacitance	0	12 pF		
I/O capacitance	0	12 pF		

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	V _{cc} Note [3]		T _A = 0° C to +70°C Min Max		40°C 05°C Max	Typical (@ 25°C		Conditions	Notes
V _{CH}	Clock Input High Voltage	·····	0.7 V _{cc} 0.7 V _{cc}	V _{cc} +0.3 V _{cc} +0.3	0.7 V _{cc} 0.7 V _{cc}	V _{cc} +0.3 V _{cc} +0.3	1.8 2.6	V	Driven by External Clock Generator Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage Input High Voltage	3.0V 5.5V 3.0V	GND-0.3 GND-0.3 0.7 V _{cc}	0.2 V _{cc} 0.2 V _{cc} V _{cc} +0.3	GND-0.3 GND-0.3 0.7 V _{cc}	0.2 V _{cc} 0.2 V _{cc} V _{cc} +0.3	2.1 1.8	V V V	Driven by External Clock Generator Driven by External Clock Generator	
	Input Low Voltage	5.5V 3.0V	0.7 V _{cc}	V _{cc} +0.3 0.2 V _{cc}	0.7 V _{cc} GND-0.3	V _{cc} +0.3	2.6	V V		
V _{IL} V _{OH1}	Output High Voltage	5.5V 3.0V 5.5V	GND-0.3 V _{cc} -0.4 V _{cc} -0.4	0.2 V _{CC}	GND-0.3 V _{cc} -0.4 V _{cc} -0.4	0.2 V _{cc}	1.6 3.1 4.8	V V V	I _{OH} = -2.0 mA I _{OH} = -2.0 mA	[8] [8]
V _{OL1}	Output Low Voltage Output Low Voltage	3.0V 5.5V 3.0V 5.5V		0.6 0.4 1.2 1.2		0.6 0.4 1.2 1.2	0.2 0.1 0.3 0.4	V V V	$i_{0L} = +4.0 \text{ mA}$ $i_{0L} = +4.0 \text{ mA}$ $i_{0L} = +6 \text{ mA}$ $i_{0L} = +12 \text{ mA}$	[8] [8] [8]
V _{RH}	Reset Input High Voltage	3.0V 5.5V	.8 V _{cc}	V _{CC}	.8 V _{cc}	V _{cc}	1.8 2.6	V V		[13] [13]
V_{RI}	Reset Input Low Voltage	3.0V 5.5V	GND-0.3	V _{cc} 0.2 V _{cc} 0.2 V _{cc}	GND-0.3 GND-0.3	$0.2\mathrm{V}_{\mathrm{cc}}$ $0.2\mathrm{V}_{\mathrm{cc}}$	1.1 1.6	V V		[13] [13]
V_{OLR}	Reset Output Low Voltage			0.6 0.6		0.6 0.6	0.3 0.2	V V	$I_{0L} = +1.0 \text{ mA}$ $I_{0L} = +1.0 \text{ mA}$	[13] [13]
V _{OFFSET}	Comparator Input Offset Voltage Input Leakage	3.0V 5.5V 3.0V 5.5V	-1 -1	25 25 1 1	-1 -1	25 25 2 2	10 10 0.004 0.004	mV mV Ац	$V_{IN} = OV, V_{CC}$ $V_{IN} = OV, V_{CC}$	[10] [10]
I _{OL}	Output Leakage	3.0V 5.5V	-1 -1	1	-1 -1	2 2	0.004 0.004	μΑ μΑ	$V_{IN} = OV, V_{CC}$ $V_{IN} = OV, V_{CC}$	
I _{IR}	Reset Input Current	3.0V 5.5V	-20 -20	-130 -180	-18 -18	-130 -180	-60 -85	μΑ μΑ μΑ	V _{IN} = SV, V _{CC}	
I _{cc}	Supply Current	3.0V 5.5V 3.0V 5.5V		20 25 15 20		20 25 15 20	7 20 5 15	mA mA mA mA	@ 16 MHz @ 16 MHz @ 12 MHz @ 12 MHz	[4] [4] [4]
I _{CC1}	Standby Current (Halt Mode)	3.0V 5.5V 3.0V 5.5V		4.5 8 3.4 7.0		4.5 8 3.4 7.0	2.0 3.7 1.5 2.9	mA mA mA mA	$V_{IN} = 0V$, V_{CC} @ 16 MHz $V_{IN} = 0V$, V_{CC} @ 16 MHz Clock Divide-by-16 @ 16 MHz Clock Divide-by-16 @ 16 MHz	[4] [4] [4] [4]
I _{CC2}	Standby Current (Stop Mode)	3.0V 5.5V 3.0V 5.5V		8 10 500 800		8 10 600 1000	2 4 310 600	Ац Ац Ац Ац		[6,11] [6,11] [6,11,14] [6,11,14]

DC ELECTRICAL CHARACTERISTICS (Continued)

Sym	Parameter	V _{cc} Note [3]		: 0° C :70°C Max		-40°C 05°C Max	Typical [1] @ 25°C	Units	Conditions	Notes
VICR	Input Common Mode Voltage Range	3.0 5.5	GND-0.3 GND-0.3	V _{cc} -1.0V V _{cc} -1.0V	GND-0.3 GND-0.3	V _{cc} -1.5V V _{cc} -1.5V		V V		[10] [10]
IALL	Auto Latch Low Current	3.0V 5.5V		8 15		10 20	3 5	μA μA	$ \begin{array}{l} OV < V_{IN} < V_{CC} \\ OV < V_{IN} < V_{CC} \end{array} $	[9] [9]
l _{ach}	Auto Latch High Current	3.0V 5.5V		-5 -8		-7 -10	-3 -6	μΑ μΑ	$ \begin{array}{ll} OV < V_{\text{IN}}^{\text{IN}} < V_{\text{CC}}^{\text{CC}} \\ OV < V_{\text{IN}} < V_{\text{CC}} \end{array} $	[9] [9]
V _{LV}	V _{cc} Low Voltage Protection Voltage		2.4	3.1	2.1	3.3	2.8 2.8	V	4 MHz max Int. CLK Freq. 6 MHz max Int. CLK Freq.	[7,15] [7,14]
V _{OH}	Output High Voltage (Low EMI Mode)	3.3V 5.0V	V _{cc} -0.4 V _{cc} -0.4		V _{cc} -0.4 V _{cc} -0.4		3.1 4.8	V V	I _{OH} = -0.5 mA I _{OH} = -0.5 mA	
V _{OL}	Output Low Voltage (Low EMI Mode)	3.3V 5.0V		0.6 0.4		0.6 0.4	0.2 0.1	V V	I _{ot} = 1.0 mA I _{ot} = 1.0 mA	


Notes:

- [1] Typicals are at $V_{cc} = 5.0V$ and 3.3V.
- [2] GND = 0V.
- [3] The V_{DD} voltage specification of 3.0V guarantees 3.3V \pm 0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V ±0.5V.
- [4] All outputs unloaded, I/O pins floating, inputs at rail.

- [5] CL1 = CL2 = 100 pF.
 [6] Same as note [4] except inputs at V_{cc}.
 [7] The V_{LV} increases as the temperature decreases.
- [8] Standard Mode (not Low EMI).
- [9] Auto Latch (Mask Option) selected.
- [10] For analog comparator, inputs when analog comparators are enabled.
- [11] Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.
- [12] Excludes clock pins.
- [13] Z86243 Only.
- [14] 0°C to 70°C (standard temperature).
- [14] -40°C to 105°C (extended temperature).

AC CHARACTERISTICSExternal I/O or Memory Read and Write Timing Diagram

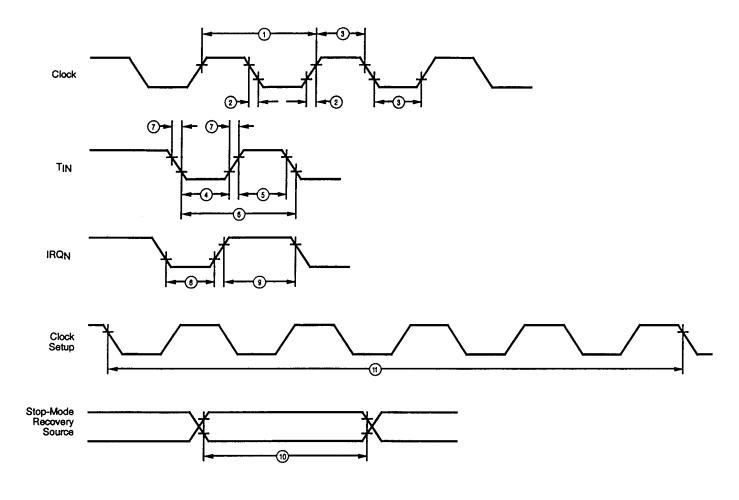
External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

External I/O or Memory Read and Write Timing Table (SCLK/TCLK = XTAL/2)

			Note [3	T _A = 0°C to +70°C B) 12 MHz 16 MI				T _A = -40°C to +105°C 12 MHz 16 MHz					
No	Symbol	Parameter	V_{cc}	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	TdA(AS)	Address Valid to /AS Rise Delay	3.0 5.5	35 35		25 25		35 35		25 25		ns	[2]
2	TdAS(A)	/AS Rise to Address Float Delay	3.0 5.5	45 45		35 35		45 45		35 35		ns ns	[2]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid	3.0		250		180		250		180	ns	[1,2]
4	TwAS	/AS Low Width	5.5 3.0 5.5	55 55	250	40 40	180	55 55	250	40 40	180	ns ns ns	[2]
5	Td	Address Float to /DS Fall	3.0 5.5	0		0		0		0		ns ns	
6	TwDSR	/DS (Read) Low Width	3.0 5.5	200 200		135 135		200 200		135 135		ns ns	[1,2]
7	TwDSW	/DS (Write) Low Width	3.0 5.5	110 110		80 80		110 110		80 80		ns ns	[1,2]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid	3.0 5.5	110	150 150	00	75 75	110	150 150	00	75 75	ns ns	[1,2]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	3.0	0		0		0	<u> </u>	0		ns	[2]
10	TdDS(A)	/DS Rise to Address Active Delay	5.5 3.0 5.5	0 45 55		0 50 50		0 45 55		0 50 50		ns ns ns	[2]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	3.0 5.5	30 45		35 35		30 45		35 55		ns ns	[2]
12	TdR/W(AS)	R//W Valid to /AS Rise Delay	3.0 5.5	45 45		25 25		45 45		25 25		ns ns	[2]
13	TdDS(R/W)	/DS Rise to R//W Not Valid	3.0 5.5	45		35		45		35		ns	[2]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	3.0 5.5	45 55 55		35 25 25		45 55 55		35 25 25		ns ns ns	[2]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	3.0 5.5	45 55		35 35		45 55		35 35	72	ns ns	[2]
16	TdA(DR)	Address Valid to Read Data Req'd Valid	3.0 5.5	55	310 310	55	230 230	JJ	310 310	33	230 230	ns ns	[1,2]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	3.0	65	9	45		65		45		ns	[2]
18	TdDI(DS)	Data Input Setup to /DS Rise	5.5 3.0 5.5	65 115 75		45 60 60		65 115 75		45 60 60		ns ns ns	[1,2]
19	TdDM(AS)	/DM Valid to /AS Rise Delay	3.0 5.5	35 35		30 30		35 35		30 30		ns ns	[2]

[1] When using extended memory timing add 2 TpC.


Standard Test Load

All timing references use 0.7 $\rm V_{\infty}$ for a logic 1 and 0.2 $\rm V_{\infty}$ for a logic 0.

 ^[2] Timing numbers given are for minimum TpC.
 [3] The V_{DD} voltage specification of 3.0V guarantees 3.3V ±0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.0V ±0.5V.

AC ELECTRICAL CHARACTERISTICS Additional Timing Diagram

Additional Timing

AC ELECTRICAL CHARACTERISTICS
Additional Timing Table (SCLK/TCLK = XTAL/2)

		T _A = 0°C to +70°C						T _A = -40°C to +105°C					
No	Symbol	Parameter	V _{cc} Note[6]	12 Min	MHz Max	16 Min	MHz Max	12 Min	MHz Max	16 Min	MHz Max	Unit	s Notes
1	ТрС	Input Clock Period	3.0V	83	DC	62.5	DC	83	DC	62.5	DC	ns	[1]
_	T 0 T/0	A	5.5V	83	DC	62.5	DC	83	DC	62.5	DC	ns	[1]
2	TrC,TfC	Clock Input Rise & Fall Times	3.0V		15		15		15		15	ns	[1]
			5.5V		15		15		15		15	ns	[1]
3	TwC	Input Clock Width	3.0V	41		31		41		31		пѕ	[1]
			5.5V	41		31		41		31		ns	[1]
4	TwTinL	Timer Input Low Width	3.0V	100		100		100		100		ns	[1]
			5.5V	70		70		70		70		ns	[1]
5	TwTinH	Timer Input High Width	3.0V	5TpC		5TpC	-	5TpC		5TpC			[1]
			5.5V	5TpC		5TpC		5TpC		5TpC			[1]
6	TpTin	Timer Input Period	3.0V	8TpC		8TpC		8TpC		8TpC			[1]
			5.5V	8TpC		8TpC		8TpC		8TpC			[1]
7	TrTin,	Timer Input Rise & Fall Timer	3.0V		100		100		100		100	ns	[1]
	TfTin		5.5V		100		100		100		100	ns	[1]
8A	TwlL	Int. Request Low Time	3.0V	100		100		100		100		ns	[1,2]
			5.5V	70		70		70		70		ПS	[1,2]
8B	TwlL	Int. Request Low Time	3.0V	5TpC		5TpC		5TpC		5TpC	-		[1,3]
_			5.5V	5TpC		5TpC		5TpC		5TpC			[1,3]
9	TwlH	Int. Request Input High Time	3.0V	5TpC		5TpC		5TpC		5TpC			[1,2]
			5.5V	5TpC		5TpC		5TpC		5TpC			[1,2]
10	Twsm	STOP-Mode Recovery Width Spec	3.0V	12		12		12		12		ns	
			5.5V	12		12		12		12		ns	
11	Tost	Oscillator Startup Time	3.0V		5TpC		5TpC		5TpC		5TpC		[4]
			5.5V		5TpC		5TpC		5TpC		5TpC		[4]
12	Twdt	Watch-Dog Timer Delay Time	· · · · · · · · · · · · · · · · · · ·									·····	D1 D0
		Before Time-Out	3.0V	10		10		10		10		ms	0 0 [
			5.5V	5		5		5		5		ms	0 0 [
			3.0V	20		20		20		20		ms	0 1 [
			5.5V	10		10		10		10		ms	0 1 [
			3.0V	40		40		40		40		ms	1 0 [
			5.5V	20		20		20		20		ms	1 0 [
			3.0V	160		160		160		160		ms	1 1 [
			5.5V	80		80		80		80		ms	1 1 [
13	T _{POR}	Power On Reset Delay	3. 0V	7	24	7	24	7	25	7	25	ms	
			5.5V	3	13	3	13	3	14	3	14	ms	

^[1] Timing Reference uses 0.7 V_{∞} for a logic 1 and 0.2 V_{∞} for a logic 0. [2] Interrupt request via Port 3 (P31-P33).

^[3] Interrupt request via Port 3 (P30).
[4] SMR-D5 = 0.

^[5] Reg. WDTMR, internal RC used.

^[6] The V_{00} voltage specification of 3.0V guarantees 3.3V \pm 0.3V, and the V_{00} voltage specification of 5.5V guarantees 5.0V \pm 0.5V.

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table (Divide-By-One Mode, SCLK/TCLK = XTAL)

			V _∞ Note [6]	T _A = 0°C to +70°C 4 MHz		T _A = -40°(4 M	Hz		
No	Symbol	Parameter	Note [6]	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	250	DC	250	DC	ns	[1,7,8]
			5.5V	250	DC	250	DC	ns	[1,7,8]
2	TrC,TfC	Clock Input Rise & Fall Times	3.0V		25		25	ns	[1,7,8]
			5.5V		25		25	ns	[1,7,8]
3	TwC	Input Clock Width	3.0V	125	****	125		ns	[1,7,8]
			5.5V	125		125		ns	[1,7,8]
4	TwTinL	Timer Input Low Width	3.0V	100		100		ns	[1,7,8]
			5.5V	70		70		ns	[1,7,8]
5	TwTinH	Timer Input High Width	3.0V	ЗТрС		ЗТрС			[1,7,8]
			5.5V	3TpC		3TpC			[1,7,8]
6	TpTin	Timer Input Period	3.0V	4TpC		4TpC			[1,7,8]
			5.5V	4TpC		4TpC			[1,7,8]
7	TrTin,	Timer Input Rise & Fall Timer	3.0V		100		100	ns	[1,7,8]
	TfTin		5.5V		100		100	пѕ	[1,7,8]
8A	TwlL	Int. Request Low Time	3.0V	100		100		ns	[1,2,7,8]
			5.5V	70		70		ns	[1,2,7,8]
8B	TwlL	Int. Request Low Time	3.0V	3TpC		ЗТрС	<u> </u>	,	[1,3,7,8]
			5.5V	3TpC		3TpC			[1,3,7,8]
9	TwiH	Int. Request Input High Time	3.0V	3TpC		3TpC			[1,2,7,8]
			5.5V	3TpC		2TpC			[1,2,7,8]
10	Twsm	STOP-Mode Recovery Width Spec	3.0V	12		12		ns	[4,8]
		·	5.5V	12		12		ns	[4,8]
11	Tost	Oscillator Startup Time	3.0V		5TpC		5TpC		[4,8,9]
			5.5V		5TpC		5TpC		[4,8,9]

Notes:

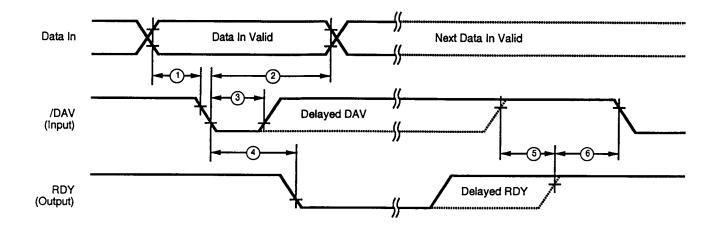
^[1] Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0. [2] Interrupt request via Port 3 (P33-P31).

^[3] Interrupt request via Port 3 (P30).

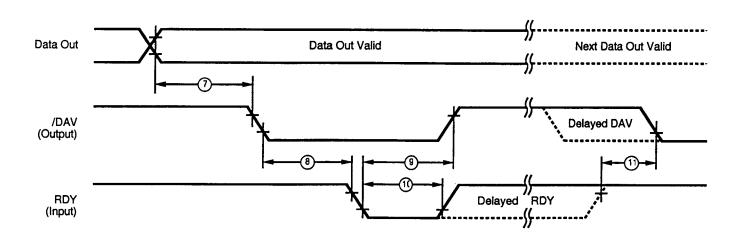
SMR-D5 = 1, POR STOP mode delay is on. [4]

^[5] Reg. WDTMR.

 ^[6] The V_{DD} voltage specification of 3.0V guarantees 3.3V ±0.3V, and the V_{DD} voltage specification of 5.5V guarantees 5.5V ±0.5V.
 [7] SMR D1 = 0.


^[8] Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode.

^[9] For RC and LC oscillator, and for oscillator driven by clock driver.



AC ELECTRICAL CHARACTERISTICS

Handshake Timing Diagrams

Input Handshake Timing

Output Handshake Timing

AC ELECTRICAL CHARACTERISTICS

Handshake Timing Table

	Symbol	Parameter		T _A = 0°C to +70°C				T,				
No			V _{cc} Note[1,2]	12 I Min	ЙHz Мах	16 I Min	MHz Max	12 l Min	MHz Max	16 N Min	/IHz Max	Data Direction
1	TsDI(DAV)	Data In Setup Time	3.0V	0	·	0		0		0		IN
			5.5V	0		0		0		0		IN
2	ThDI(DAV)	Data In Hold Time	3.0V	160		160		160		160		IN
			5.5V	115		115		115		115		IN
3	TwDAV	Data Available Width	3.0V	155		155		155		155		IN
			5.5V	110		110		110		110		IN
4	TdDAVI(RDY)	DAV Fall to RDY Fall Delay	3. 0V		160		160		160		160	IN
		·	5.5V		115		115		115		115	IN
5	TdDAVId(RDY)	DAV Rise to RDY Rise Delay	3.0V		120		120		120		120	IN
		•	5.5V		80		80		80		80	IN
6	TdRDY0(DAV)	RDY Rise to DAV Fall Delay	3.0V	0		0		0		0		IN
			5.5V	0		0		0		0		IN
7	TdD0(DAV)	Data Out to DAV Fall Delay	3.0V	42		31		42		31		OUT
		·	5.5V	42		31		42		31		OUT
8	TdDAV0(RDY)	DAV Fall to RDY Fall Delay	3.0V	0		0		0		0		OUT
		-	5.5V	0		0		0		0		OUT
9	TdRDY0(DAV)	RDY Fall to DAV Rise Delay	3.0V		160	· · ·	160		160		160	OUT
		ŕ	5.5V		115		115		115		115	OUT
10	TwRDY	RDY Width	3.0V	110		110		110		110		OUT
			5.5V	80		80		80		80		OUT
11	TdRDY0d(DAV)	RDY Rise to DAV Fall Delay	3.0V		110		110		110		110	OUT
		•	5.5V		80		80		80		80	OUT

Notes:

Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0.
 The V_{DD} voltage specification of 3.0V guarantees 3.3V±0.3V and the V_{DD} voltage specification of 5.5V guarantees 5.0V±0.5V.

PRECAUTIONS

- When in ROM Protect Mode, and executing out of *External Program Memory*, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Memory.
 - When in ROM Protect Mode, and executing out of *Internal Program Memory*, instructions LDC, LDCI, LDE, and LDEI *can* read Internal Program Memory.
- (2) The device has an oscillator-free reset for the device pins. When the device is reset from a WDT timeout, POR, or V_{BO}, the reset will force the device pins to their reset default state even if the oscillator is not running.
- (3) The Port 3 outputs are reset to High State after Reset, except after Stop-Mode Recovery, at which the outputs remain in the last state.
- (4) Extended timing is operable.
- (5) P0/P1/P2/P3 is Low-EMI software programmable.
- (6) P0/P1/P2 is software programmable for open-drain.

- (7) Expanded register PCON is Write Only.
- (8) WDTMR is writeable only within the first 60 internal system clocks after Reset. Afterward, the WDTMR is write protected.
- (9) Device functions down to the V_{LV} threshold. At temperatures less than 25°C, the V_{LV} threshold will rise to a maximum V_{DD} of 3.6V.
- (10) Low EMI is 25 percent of standard pull-down output driver and 25 percent of standard pull-up output driver.
- (11) There is no clock filter on Reset pin.
- (12) Registers FE Hex (SPH) and FF Hex (SPL) are set to 00Hex after any reset.
- (13) When Low EMI OSC is selscted (PCONReg Bit D7=0), the output drive of /DS, /AS, and R//W will also be in low emi mode.
- (14) P01M Reg Bit D4,D3 must be set to 00Hex for Z86233.

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at http://support.zilog.com.