

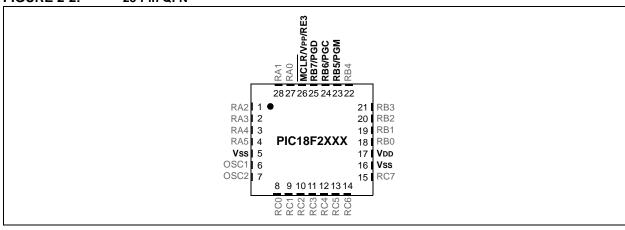
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2510-e-so


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

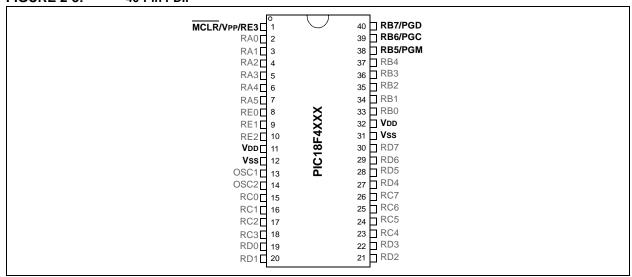
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620

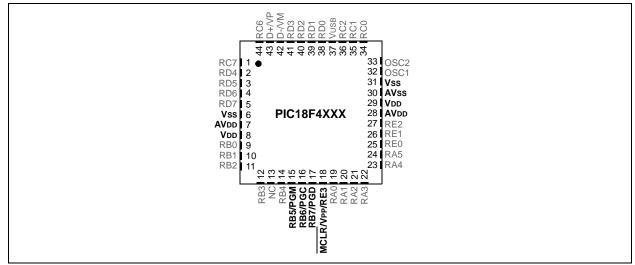

- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

FIGURE 2-3: 40-Pin PDIP



The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

FIGURE 2-5: 44-PIN QFN

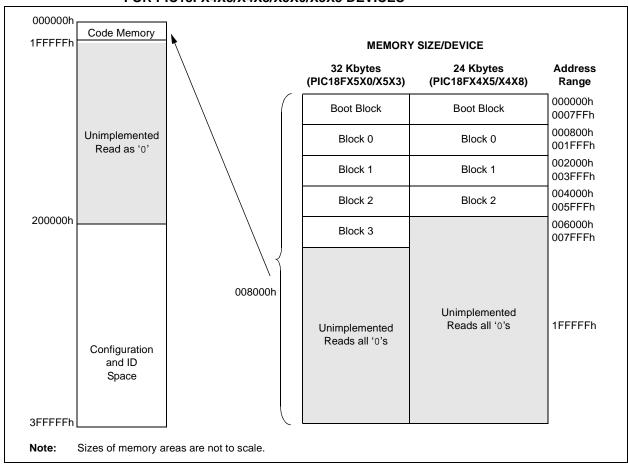
2.3 **Memory Maps**

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

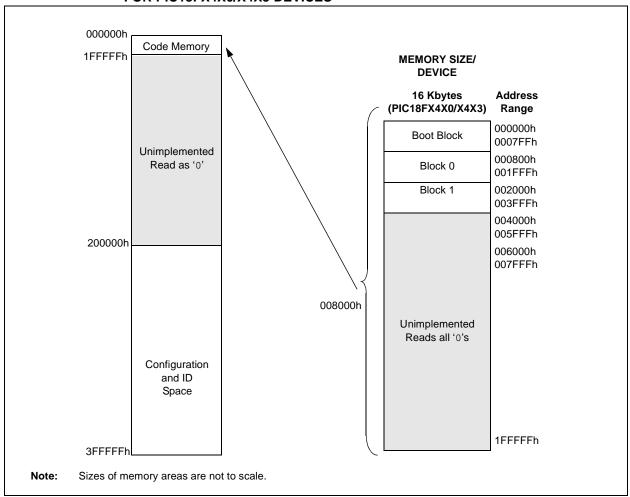

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2682	000000h-013FFFh (80K)			
PIC18F4682				
PIC18F2685	000000h 017EEEh (06K)			
PIC18F4685	000000h-017FFFh (96K)			

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)				
PIC18F2455					
PIC18F2458	000000h 005FFFh (24K)				
PIC18F4455	000000h-005FFFh (24K)				
PIC18F4458					
PIC18F2510					
PIC18F2520					
PIC18F2523					
PIC18F2550					
PIC18F2553	000000h 007FFFh (20K)				
PIC18F4510	000000h-007FFFh (32K)				
PIC18F4520					
PIC18F4523					
PIC18F4550					
PIC18F4553					

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES



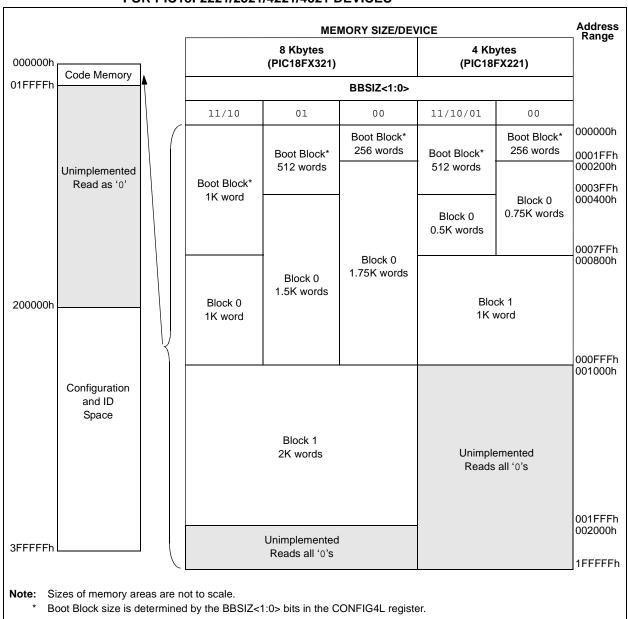
For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420]
PIC18F4450	

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.


The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2221	000000h-000FFFh (4K)			
PIC18F4221	00000011-000FFF11 (4K)			
PIC18F2321	000000h 001EEEh (9K)			
PIC18F4321	000000h-001FFFh (8K)			

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

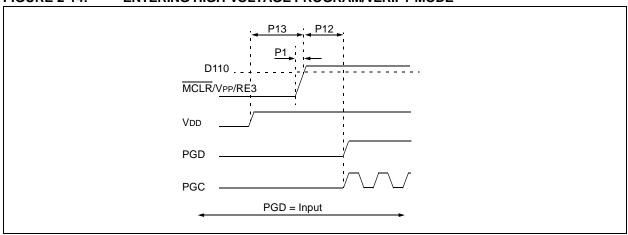
Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

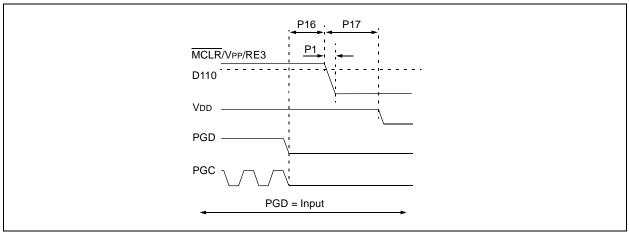
Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL		
Addr[21:16]	Addr[15:8]	Addr[7:0]		


The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in Figure 2-14, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

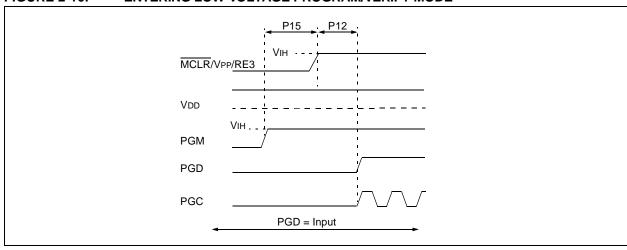


FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

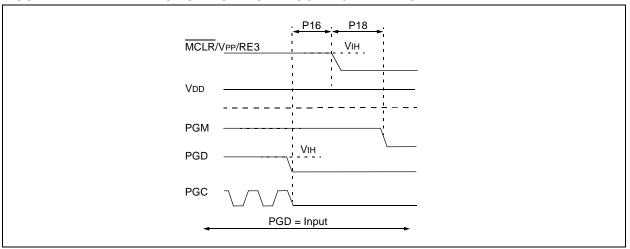
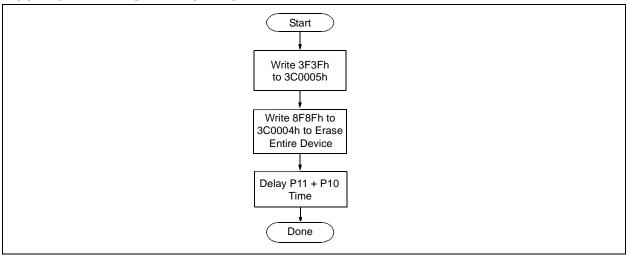



TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

FIGURE 3-1: BULK ERASE FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

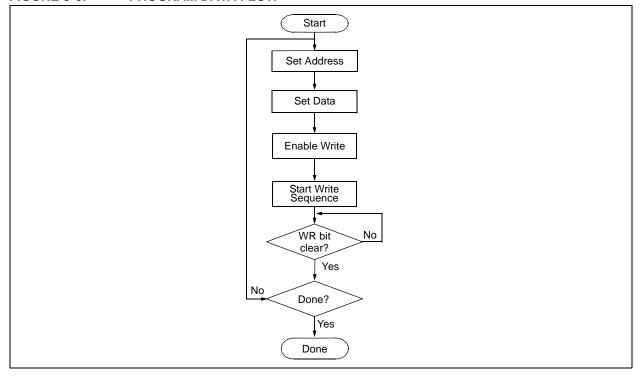
Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

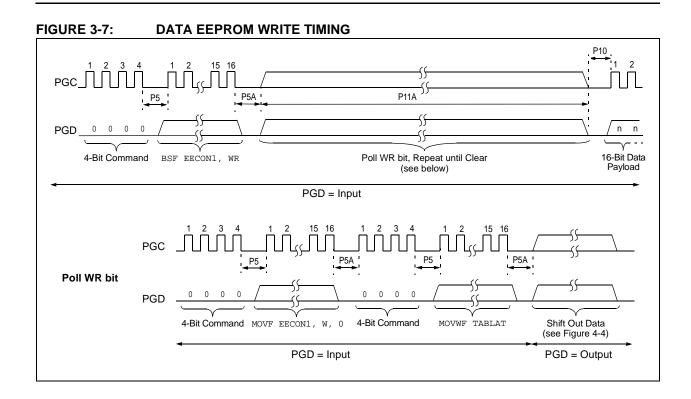
TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)	
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64	
PIC18F2450, PIC18F4450	16	64	
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510			
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520			
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	00	64	
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	- 32	04	
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550			
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553			
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610			
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64	
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64		
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685			

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	Data EEPROM programming is not available on the following devices:				
PIC18F2410	PIC18F4410				
PIC18F2450	PIC18F4450				
PIC18F2510	PIC18F4510				
PIC18F2515	PIC18F4515				
PIC18F2610	PIC18F4610				


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).


When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses, 200000h through 200007h. These locations read out normally even after code protection.

Note: The user only needs to fill the first 8 bytes of the write buffer in order to write the ID locations.

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1 "Modifying Code Memory"**. As with code memory, the ID locations must be erased before being modified.

TABLE 3-8: WRITE ID SEQUENCE

4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	Step 1: Direct access to code memory and enable writes.						
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Load write	buffer with 8 bytes and writ	te.					
0000 0000 0000 0000 0000 0000 1101	0E 20 6E F8 0E 00 6E F7 0E 00 6E F6 <msb><lsb></lsb></msb>	MOVLW 20h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPTRH MOVLW 00h MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.					
1101 1101 1111 0000	<msb><lsb> <msb><lsb> <msb><lsb> 00 00</lsb></msb></lsb></msb></lsb></msb>	Write 2 bytes and post-increment address by 2. Write 2 bytes and post-increment address by 2. Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only eight bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9.

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.

The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction			
Step 1: Set Table	Pointer.				
0000	OE <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]			
0000	6E F8	MOVWF TBLPTRU			
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>			
0000	6E F7	MOVWF TBLPTRH			
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>			
0000	6E F6	MOVWF TBLPTRL			
Step 2: Read memory and then shift out on PGD, LSb to MSb.					
1001	00 00	TBLRD *+			

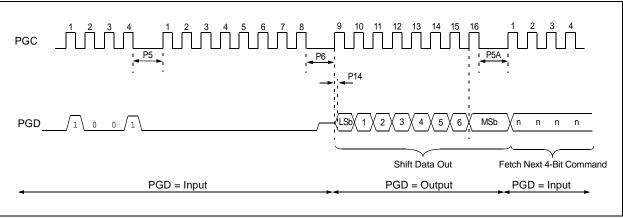


TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File N	lame	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h ^(1,8)	CONFIG1L	_	-	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
										00 0101 ^(1,8)
300002h	CONFIG2L	_	_	VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)
300003h	CONFIG2H			- VREGEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
-									CCP2MX ⁽⁷⁾	1011(7)
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	_	101-
		FIG4L DEBUG		ICPRT ⁽¹⁾	_	_	LVP —		- STVREN	1001-1(1)
				BBSIZ1	BBSIZ0	-				1000 -1-1
300006h	CONFIG4L		XINST	_	BBSIZ ⁽³⁾	_		_		10-0 -1-1(3)
				ICPRT ⁽⁸⁾	_	BBSIZ ⁽⁸⁾				100- 01-1(8)
				BBSIZ1 ⁽²⁾	BBSIZ2 ⁽²⁾	ı				1000 -1-1 (2)
300008h	CONFIG5L	_	-	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111
300009h	CONFIG5H	CPD	СРВ	l	_	I	-	I		11
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_		111
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111
30000Dh	CONFIG7H	_	EBTRB	-	_	-		_	_	-1
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
 - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
 - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
 - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
 - **6:** DEVID registers are read-only and cannot be programmed by the user.
 - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
 - 8: Implemented on PIC18F2450/4450 devices only.
 - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description			
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)			
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks 			
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)			
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks 			
DEV<10:3>	DEVID2	Device ID bits			
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.			
DEV<2:0>	DEVID1	Device ID bits			
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.			
REV<4:0>	DEVID1	Revision ID bits			
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.			

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

	Memory		Ending Address						Size (Bytes)				
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F2221	4K	28	0001FF	0007FF	000FFF	_		_	_	512	1536	2048	4096
	411		0003FF							1024	1024		
PIC18F2321		28	0001FF		001FFF			-	_	512	3584	4096	8192
	8K		0003FF	000FFF						1024	3072		
			0007FF							2048	2048		
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC 10F2450	ION	20	000FFF	001777	003FFF			_		4096	4096		10304
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
DIO4050400	4016	-00	0007FF	004555	000555					2048	6144	0400	40004
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096	4096	8192	16384
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2580	32K	28	0007FF		003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
			000FFF	001FFF						4096	4096		
	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2585			000FFF							4096	12288		
			001FFF							8192	8192		
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
	64K	28	0007FF		007FFF		00FFFF	_	_	2048	14336	49152	65536
PIC18F2680			000FFF	003FFF						4096	12288		
F 10 101 2000			001FFF							8192	8192		
			0007FF							2048	14336		
PIC18F2682	80K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	_	4096	12288	65536	81920
			001FFF							8192	8192		
	96K	28	0007FF		007FFF	00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304
PIC18F2685			000FFF	003FFF						4096	12288		
1 10 101 2000			001FFF	000111	007111		001111			8192	8192		
	4K	40	0001FF	0007FF						512	1536	2048	4096
PIC18F4221			0003FF		000FFF	—	_	_	-	1024	1024		
	8K	40	0000FF		001FFF				_	512	3584	4096	8192
PIC18F4321			0003FF	000FFF						1024	3072		
			0000FF	000111	001111					2048	2048		
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4423	16K	40	0007FF	001FFF	003FFF				_	2048	6144	8192	16384
1 10 101 4423	101	40	0007FF	JUIL ET	0001 FF	_		_		2048	6144	0132	10004
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	_	_	4096	4096	8192	16384
Legend: -										4090	4090		

Legend:

— = unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i		
Param No.	Sym	Characteristic	Min	Max	Units	Conditions		
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)		
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)		
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes		
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)		
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)		
D113	IDDP	Supply Current During Programming	_	10	mA			
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V			
D041	VIH	Input High Voltage	0.8 VDD	VDD	V			
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V		
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V		
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications		
	•							
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)		
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V		
		1	_	μS	VDD = 2.0V			
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns			
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns			
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns			
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns			
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns			
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed		
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS			
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms			

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-856-7

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.