

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2510-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

D : 11	During Programming					
Pin Name	Pin Name	Pin Type	Pin Description			
MCLR/Vpp/RE3	Vpp	Р	Programming Enable			
VDD ⁽²⁾	Vdd	Р	Power Supply			
VSS ⁽²⁾	Vss	Р	Ground			
RB5	PGM	I	Low-Voltage ICSP [™] Input when LVP Configuration bit equals '1' ⁽¹⁾			
RB6	PGC	I	Serial Clock			
RB7	PGD	I/O	Serial Data			

Legend: I = Input, O = Output, P = Power

Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
-

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

• PIC18F2610

- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

MCLR/VPP/RE3	°	28 RB7/PGD
RAO	2	27 RB6/PGC
RA1	3	26 RB5/PGM
RA2	4	25 RB4
RA3	0 6 8 2 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	24 🗌 RB3
RA4	6 🎗	23 RB2
RA5	7 🖸	22 RB1
	8 8	21 RB0
OSC1	9 <u>0</u>	
OSC2	10 L	
RC0	11	18 RC7
RC1	12	17 🗌 RC6
RC2	13	16 RC5
RC3	14	15 RC4

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2221				
PIC18F4221	— 000000h-000FFFh (4K)			
PIC18F2321				
PIC18F4321	000000h-001FFFh (8K)			

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES

00000h Code Me	mory		8 Kbytes (PIC18FX321)	/ICE 4 Kbytes (PIC18FX221)		Ra	
IFFFFh							
		11/10	01	00	11/10/01	00	
Unimplem Read a		Boot Block*	Boot Block* 512 words	Boot Block* 256 words	Boot Block* 512 words	Boot Block* 256 words	000
Read as '0'	1K word			Block 0 0.5K words	Block 0 0.75K words	000	
200000h	Block 0 1K word	Block 0 1.5K words	Block 0 1.75K words	Block 1 1K word		000	
and I	Configuration and ID Space		Block 1 2K words			emented s all '0's	000
FFFFh			Unimplemented Reads all '0's				001 002 1FF

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

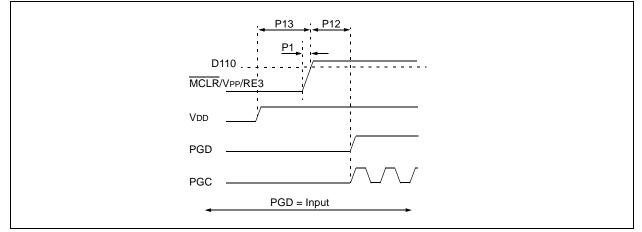
Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0** "Configuration Word". These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

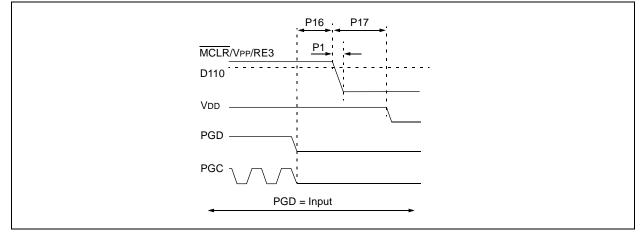
Memory in the address space, 0000000h to 3FFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

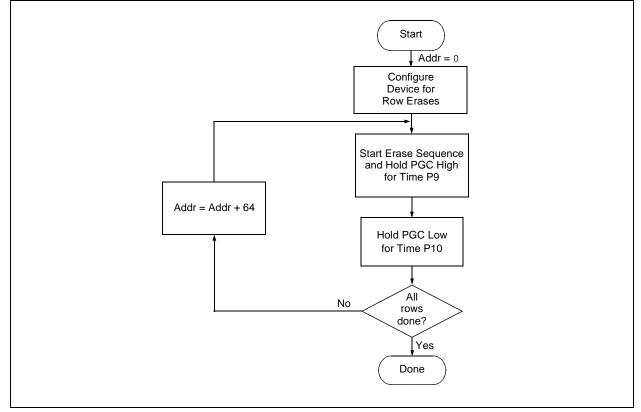

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE


FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	cess to code memory an	d enable writes.
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN
Step 2: Point to f	irst row in code memory.	·
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL
Step 3: Enable e	rase and erase single ro	W.
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.
Step 4: Repeat S	Step 3, with the Address I	Pointer incremented by 64 until all rows are erased.

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

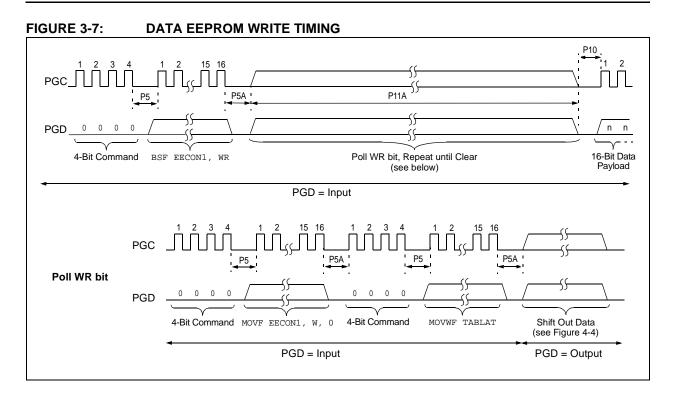
TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)	
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64	
PIC18F2450, PIC18F4450	16	64	
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510			
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520			
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	22	64	
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	- 32		
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550			
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553			
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610			
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64	
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64	
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685			

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	cess to code memory an	d enable writes.
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS
Step 2: Load write	e buffer.	
0000 0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVUW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
Step 4: Load write	e buffer for last two bytes	5.
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.
To continue writin	g data, repeat Steps 2 th	brough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

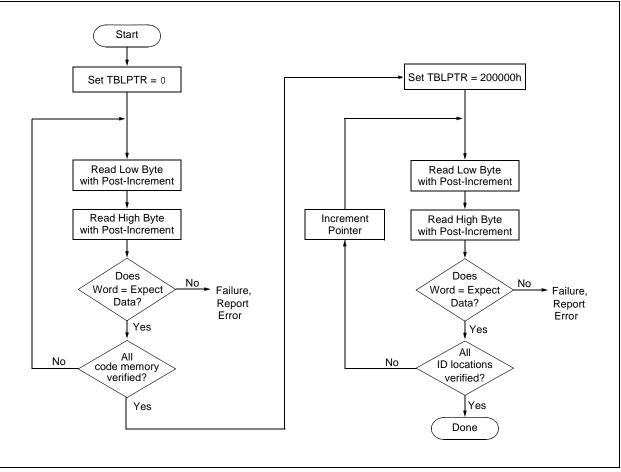
3.2.1 MODIFYING CODE MEMORY


The previous programming example assumed that the device had been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase**"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in Section 4.2 "Verify Code Memory and ID Locations") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	ccess to code memory.	
Step 2: Read an	d modify code memory (see S	ection 4.1 "Read Code Memory, ID Locations and Configuration Bits").
0000	8E A6	BSF EECON1, EEPGD
0000	9C A6	BCF EECON1, CFGS
Step 3: Set the T	Table Pointer for the block to b	e erased.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
Step 4: Enable r	nemory writes and set up an e	rase.
0000	84 A6	BSF EECON1, WREN
0000	88 A6	BSF EECON1, FREE
Step 5: Initiate e	rase.	
0000	82 A6	BSF EECON1, WR
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
Step 6: Load wri	te buffer. The correct bytes wi	Il be selected based on the Table Pointer.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
•		Repeat as many times as necessary to fill the write buffer
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
	at each iteration of the loop. T	bugh 6, where the Address Pointer is incremented by the appropriate number of byte he write cycle must be repeated enough times to completely rewrite the contents of
Step 7: Disable	writes.	
0000	94 A6	BCF EECON1, WREN


TABLE 3-6: MODIFYING CODE MEMORY

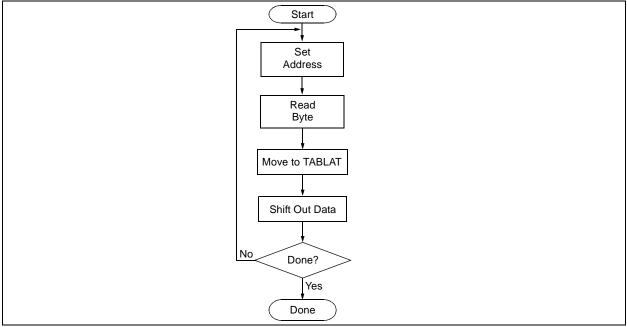
4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits


A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

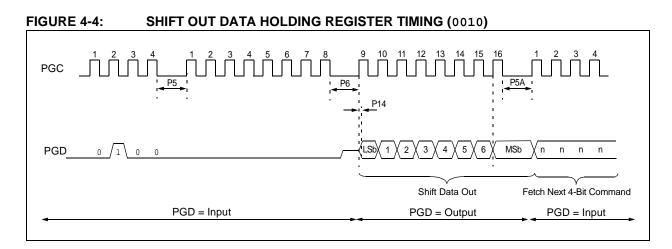

FIGURE 4-3: READ DATA EEPROM FLOW

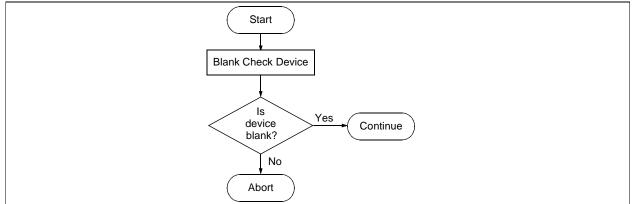
TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction						
Step 1: Direct acc	Step 1: Direct access to data EEPROM.							
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS						
Step 2: Set the da	ata EEPROM Address Pointe	er.						
0000 0000 0000 0000 Step 3: Initiate a	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>						
0000	80 A6	BSF EECON1, RD						
Step 4: Load data	a into the Serial Data Holding	J register.						
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, O MOVWF TABLAT NOP Shift Out Data ⁽¹⁾						

Note 1: The <LSB> is undefined. The <MSB> is the data.

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4** "**Read Data EEPROM Memory**" for implementation details of reading data EEPROM.


4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File 1	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value																			
300000h ^(1,8)	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000																			
300001h	CONFIG1H	IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0	00 0111																			
30000111	CONTONT	1200	TOWEN			10000	10002	10001	10000	00 0101 ^(1,8)																			
300002h	CONFIG2L			_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111																			
30000211				VREGEN ^(1,8)	BORVI	BORVU	BORLINI	BORLINU	FWINILIN	01 1111 (1,8)																			
300003h	CONFIG2H	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111																			
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX ⁽⁷⁾	1011 (7)																			
00000011		MOEINE					LI IIOOO	TBREEN	—	101-																			
				ICPRT ⁽¹⁾	—	-				1001-1 ⁽¹⁾																			
		NFIG4L DEBUG		BBSIZ1	BBSIZ0	_				1000 -1-1																			
300006h	CONFIG4L		DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	3 XINST	_	BBSIZ ⁽³⁾	_	LVP	—	STVREN
					ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾																		
				BBSIZ1 ⁽²⁾	BBSIZ2(2)	-				1000 -1-1 (2)																			
300008h	CONFIG5L	_	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111																			
300009h	CONFIG5H	CPD	CPB	_	—	-	—	-	—	11																			
30000Ah	CONFIG6L	_	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111																			
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	—		_		—	111																			
30000Ch	CONFIG7L		_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111																			
30000Dh	CONFIG7H		EBTRB		_		_		_	-1																			
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2																			
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2																			

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

Bit Name	Configuration Words	Description							
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled							
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled							
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6 1000 = Internal RC oscillator, port function on RA6, port function on RA7 1010 = Internal RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0010 = XT oscillator 0000 = LP oscillator							
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1010 = Internal oscillator, port function on RA6, EC is used by USB 1011 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USE 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0110 = EC oscillator, CLKO function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0101 = EC oscillator, port function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, XT is used by USB 0102 = XT oscillator, PLL is enabled, XT is used by USB							
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide							
CPUDIV<1:0> Note 1: The BE	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide :0> and BBSIZ<2:1> bits, cannot be changed once any of the following							

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description							
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)							
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide – oscillator used directly (4 MHz input)							
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled							
BORV<1:0>	CONFIG2L	0 = USB voltage regulator is disabled Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V							
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software 							
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled							
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2							
		0000 = 1:1 000 = 1:1							

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description							
WRT5	CONFIG6L	Write Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)							
		1 = Block 5 is not write-protected0 = Block 5 is write-protected							
WRT4	CONFIG6L	Write Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)							
		1 = Block 4 is not write-protected0 = Block 4 is write-protected							
WRT3	CONFIG6L	Write Protection bit (Block 3 code memory area)							
		1 = Block 3 is not write-protected							
		0 = Block 3 is write-protected							
WRT2	CONFIG6L	Write Protection bit (Block 2 code memory area)							
		1 = Block 2 is not write-protected0 = Block 2 is write-protected							
WRT1	CONFIG6L	Write Protection bit (Block 1 code memory area)							
		1 = Block 1 is not write-protected0 = Block 1 is write-protected							
WRT0	CONFIG6L	Write Protection bit (Block 0 code memory area)							
		1 = Block 0 is not write-protected							
		0 = Block 0 is write-protected							
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)							
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected 							
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)							
		1 = Boot Block is not write-protected							
		0 = Boot Block is write-protected							
WRTC	CONFIG6H	Write Protection bit (Configuration registers)							
		1 = Configuration registers are not write-protected							
		0 = Configuration registers are write-protected							
EBTR5	CONFIG7L	Table Read Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)							
		 1 = Block 5 is not protected from Table Reads executed in other blocks 0 = Block 5 is protected from Table Reads executed in other blocks 							
EBTR4	CONFIG7L	Table Read Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)							
		 1 = Block 4 is not protected from Table Reads executed in other blocks 0 = Block 4 is protected from Table Reads executed in other blocks 							
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)							
		 1 = Block 3 is not protected from Table Reads executed in other blocks 0 = Block 3 is protected from Table Reads executed in other blocks 							
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)							
		1 = Block 2 is not protected from Table Reads executed in other blocks							
		0 = Block 2 is protected from Table Reads executed in other blocks							
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)							
		 1 = Block 1 is not protected from Table Reads executed in other blocks 0 = Block 1 is protected from Table Reads executed in other blocks 							

TABLE 5-3:	PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS ((CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- The contents of all code memory locations
- The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB[®] IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

Device	Memory Size (Bytes)	Pins	Ending Address								Size (Bytes)				
			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total		
PIC18F2221	4K	28	0001FF 0003FF	0007FF	000FFF	_	_	_	_	512 1024	1536 1024	2048	4096		
			0001FF							512	3584				
PIC18F2321	8K	28	0003FF		001FFF	ĺ			_	1024	3072	4096	8192		
1 10 101 2021	OIX	20	0007FF	000111	001111					2048	2048	4030			
PIC18F2410	16K	28	0007FF	001FFF	003FFF			_	_	2048	6144	8192	16384		
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384		
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384		
1101012120	TOIL	20	0007FF		000111					2048	6144	0102	10001		
PIC18F2450	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384		
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF		_		2048	6144	16384	24576		
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576		
1101012400	241	20	0007FF	001111	005111	005111				2040	6144	10304	24070		
PIC18F2480	16K	28	000FFF	001FFF	003FFF	_	_	_	—	4096	4096	8192	16384		
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_		2048	6144	24576	32768		
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	007111			2040	14336	32768	49152		
PIC18F2520	32K	28	0007FF	003FFF	003FFF	005FFF	 007FFF		_	2040	14336	16384	32768		
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	14336	16384	32768		
		28 28	0007FF	003FFF	003FFF	005FFF	007FFF				14336		49152		
PIC18F2525	48K	28								2048		32768			
PIC18F2550	32K	28 28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768		
PIC18F2553 PIC18F2580	32K 32K		0007FF	F 001FFF	003FFF 003FFF	005FFF 005FFF	007FFF 007FFF			2048	6144	24576 24576	32768 32768		
			0007FF 000FFF							2048	6144				
				<u> </u>						4096	4096				
	4016	28	0007FF	_	007555	F 00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2585	48K			003FFF	007FFF					4096	12288				
	0.414		001FFF	000555	007555	000555	005555			8192	8192	40450	05500		
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536		
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536		
	64K	64K 28		0007FF 000FFF 003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
PIC18F2680										4096	12288				
			001FFF							8192	8192				
DIO 40 D 0000	0.01/				007FFF			013FFF	_	2048	14336	65536	81920		
PIC18F2682	80K	28				00BFFF	006666			4096	12288				
				001FFF							8192	8192	+		
			0007FF		007555				FF 017FFF	2048	14336	81920			
PIC18F2685	96K	96K 28	000FFF		007666	00BFFF	006666	013FFF		4096	12288		98304		
			001FFF							8192	8192		 		
PIC18F4221	4K	40	0001FF	0007FF	000FFF	_	—	—	—	512	1536	2048	4096		
			0003FF						1024	1024		-			
PIC18F4321	8K	10	0001FF		004555					512	3584	1000	• • • • •		
		8K 40	0003FF	000FFF	001FFF	—	—	—	—	1024	3072	4096	8192		
	4014	4.5	0007FF	004555	000777					2048	2048	0400	1000		
PIC18F4410	16K	40	0007FF	001FFF			—			2048	6144	8192	16384		
PIC18F4420	16K	40	0007FF	001FFF				—	—	2048	6144	8192	16384		
PIC18F4423	16K	40	0007FF	001FFF	003FFF			—	—	2048	6144	8192	16384		
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	—	_	2048	6144	8192	16384		
			000FFF							4096	4096				

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

Device	Memory Size (Bytes)	Pins	Ending Address								Size (Bytes)			
			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
	16K	40	0007FF	001FFF	000555					2048	6144	8192	40004	
PIC18F4480	ION	40	000FFF	UUIFFF	003FFF		_	_	_	4096	4096	0192	16384	
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	—	—	2048	6144	24576	32768	
PIC18F4580	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC 10F4000			000FFF	UUIFFF	003FFF					4096	4096			
	48K	3K 40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152	
PIC18F4585			000FFF							4096	12288			
			001FFF							8192	8192			
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	_	2048	14336	49152	65536	
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	—	2048	14336	49152	65536	
	64K		0007FF		007FFF	00BFFF	00FFFF	_		2048	14336	49152	65536	
PIC18F4680		64K 40	000FFF	003FFF						4096	12288			
			001FFF							8192	8192			
	80K		0007FF		007FFF	00BFFF			-	2048	14336	65536	81920	
PIC18F4682		K 40	000FFF	003FFF			00FFFF	013FFF		4096	12288			
			001FFF							8192	8192			
PIC18F4685	96K	96K 44	0007FF		FFF 007FFF	00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304	
			000FFF	003FFF						4096	12288			
			001FFF							8192	8192			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Legend: — = unimplemented.