

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Obsolete	
Core Processor	PIC	
Core Size	8-Bit	
Speed	25MHz	
Connectivity	I ² C, SPI, UART/USART	
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT	
Number of I/O	25	
Program Memory Size	48KB (24K x 16)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	3.8K x 8	
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V	
Data Converters	A/D 10x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 125°C (TA)	
Mounting Type	Surface Mount	
Package / Case	28-SOIC (0.295", 7.50mm Width)	
Supplier Device Package	28-SOIC	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2515-e-so	

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

- N	During Programming		
Pin Name	Pin Name	Pin Type	Pin Description
MCLR/VPP/RE3	VPP	Р	Programming Enable
VDD(2)	VDD	Р	Power Supply
VSS ⁽²⁾	Vss	Р	Ground
RB5	PGM	I	Low-Voltage ICSP™ Input when LVP Configuration bit equals '1'(1)
RB6	PGC	Ţ	Serial Clock
RB7	PGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power **Note 1:** See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

• PIC18F2221

• PIC18F2480

• PIC18F2580

• PIC18F2321

• PIC18F2510

• PIC18F2585

• PIC18F2410

• PIC18F2515

• PIC18F2610

PIC18F2420

• PIC18F2520

• PIC18F2620

PIC18F2423

• PIC18F2523

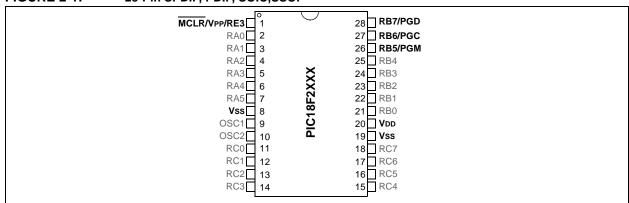
• PIC18F2680

• PIC18F2450

• PIC18F2525

• PIC18F2682

PIC18F2455PIC18F2458


PIC18F2550PIC18F2553

PIC18F2685

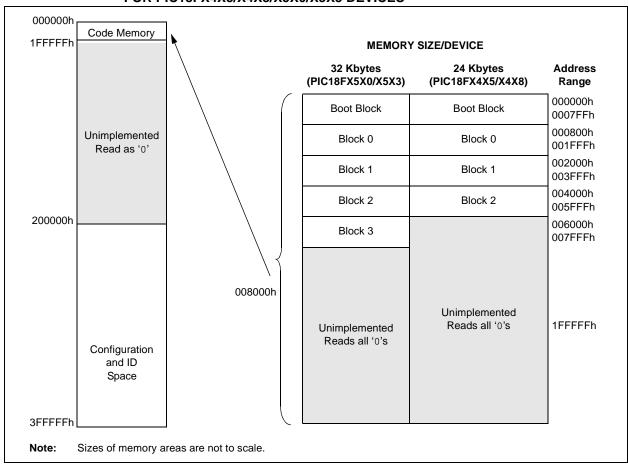
The following devices are included in 28-pin SSOP parts:

PIC18F2221
 PIC18F2321

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

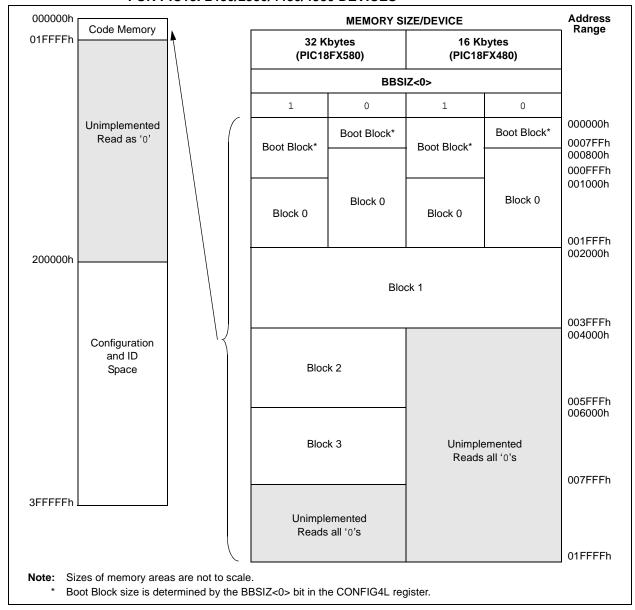

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2682	000000h 012EEEh (90K)
PIC18F4682	000000h-013FFFh (80K)
PIC18F2685	000000h 017EEEh (06K)
PIC18F4685	000000h-017FFFh (96K)

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2455	
PIC18F2458	000000h 005FFFh (24K)
PIC18F4455	000000h-005FFFh (24K)
PIC18F4458	
PIC18F2510	
PIC18F2520	
PIC18F2523	
PIC18F2550	
PIC18F2553	000000h 007FFFh (20K)
PIC18F4510	000000h-007FFFh (32K)
PIC18F4520	
PIC18F4523	
PIC18F4550	
PIC18F4553	

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES

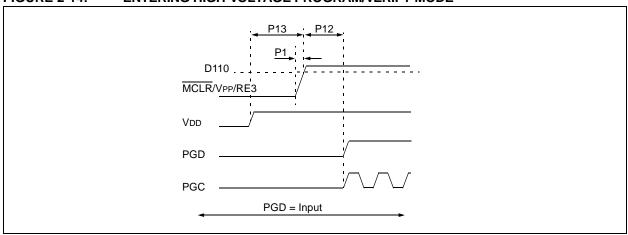


For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

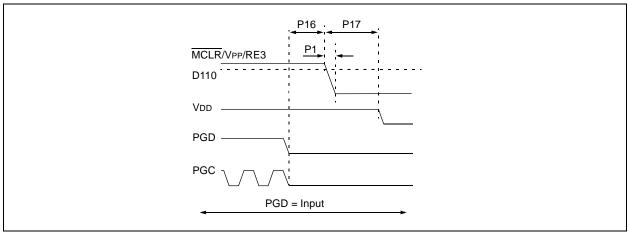
TABLE 2-6: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	000000h 003EEEh (16K)
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES


For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in Figure 2-14, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-9: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write,
		post-increment by 2

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see Section 3.1.1 "High-Voltage ICSP Bulk Erase"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations"**) and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY

TABLE 3-6:	MODIFYING CODE MEMORY		
4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	Step 1: Direct access to code memory.		
Step 2: Read and	modify code memory (see S	Section 4.1 "Read Code Memory, ID Locations and Configuration Bits").	
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS	
Step 3: Set the Ta	ble Pointer for the block to b	e erased.	
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>	
Step 4: Enable me	emory writes and set up an e	erase.	
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE	
Step 5: Initiate era	ase.		
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.	
Step 6: Load write	buffer. The correct bytes wi	Il be selected based on the Table Pointer.	
0000 0000 0000 0000 0000 0000 1101	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6 <msb><lsb></lsb></msb></addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.</addr[7:0]></addr[8:15]></addr[21:16]>	
	•	Repeat as many times as necessary to fill the write buffer	
1111 0000	- <msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.	
	To continue modifying data, repeat Steps 2 through 6, where the Address Pointer is incremented by the appropriate number of bytes (see Table 3-4) at each iteration of the loop. The write cycle must be repeated enough times to completely rewrite the contents of the erase buffer.		
Step 7: Disable wi	rites.		
0000	94 A6	BCF EECON1, WREN	

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available on the following devices:		
PIC18F2410	PIC18F4410	
PIC18F2450	PIC18F4450	
PIC18F2510	PIC18F4510	
PIC18F2515	PIC18F4515	
PIC18F2610	PIC18F4610	

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

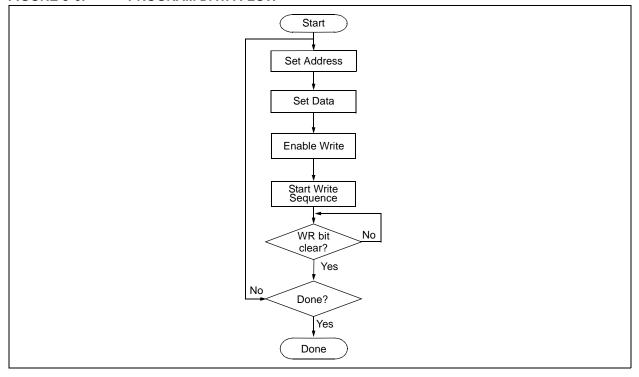


TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to data EEPROM.		
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Set the da	ata EEPROM Address Pointe	er.	
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>	
Step 3: Load the	data to be written.		
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>	
Step 4: Enable me	emory writes.		
0000	84 A6	BSF EECON1, WREN	
Step 5: Initiate wri	ite.		
0000	82 A6	BSF EECON1, WR	
Step 6: Poll WR b	it, repeat until the bit is clear	1	
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)	
Step 7: Hold PGC	low for time P10.		
Step 8: Disable w	rites.		
0000	94 A6	BCF EECON1, WREN	
Repeat Steps 2 th	Repeat Steps 2 through 8 to write more data.		

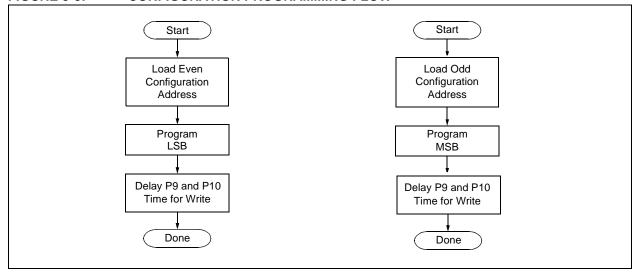

Note 1: See Figure 4-4 for details on shift out data timing.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction	
Step 1: Enable wr	Step 1: Enable writes and direct access to configuration memory.		
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS	
		e to be written. Write even/odd addresses. ⁽¹⁾	
0000	0E 30	MOVLW 30h	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPRTH	
0000	0E 00	MOVLW 00h	
0000	6E F6	MOVWF TBLPTRL	
1111	<msb ignored=""><lsb></lsb></msb>	Load 2 bytes and start programming.	
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.	
0000	0E 01	MOVLW 01h	
0000	6E F6	MOVWF TBLPTRL	
1111	<msb><lsb ignored=""></lsb></msb>	Load 2 bytes and start programming.	
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.	

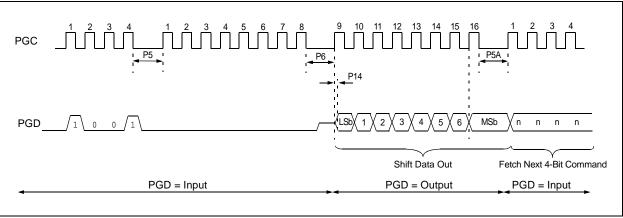
Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

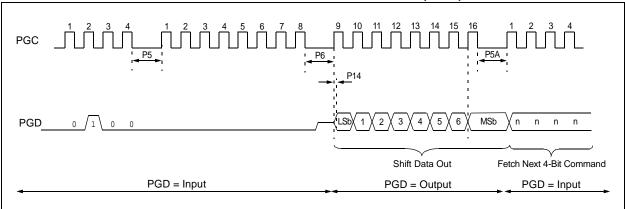
4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.


TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Set Table	Pointer.	
0000	OE <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
Step 2: Read memory and then shift out on PGD, LSb to MSb.		
1001	00 00	TBLRD *+

FIGURE 4-4: SHIFT OUT DATA HOLDING REGISTER TIMING (0010)

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4 "Read Data EEPROM Memory"** for implementation details of reading data EEPROM.

4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

FIGURE 4-5: BLANK CHECK FLOW

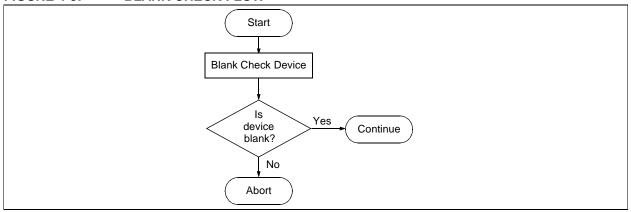


TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h ^(1,8)	CONFIG1L	_	-	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
										00 0101 ^(1,8)
300002h	CONFIG2L	_	_	VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)
300003h	CONFIG2H			- VREGEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
-	0011110211								CCP2MX ⁽⁷⁾	1011(7)
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	_	101-
	CONFIG4L	DEBUG	XINST	ICPRT ⁽¹⁾	_	_	LVP	_	STVREN	1001-1(1)
				BBSIZ1	BBSIZ0	-				1000 -1-1
300006h				_	BBSIZ ⁽³⁾	_				10-0 -1-1(3)
				ICPRT ⁽⁸⁾	_	BBSIZ ⁽⁸⁾				100- 01-1(8)
				BBSIZ1 ⁽²⁾	BBSIZ2 ⁽²⁾	ı				1000 -1-1 (2)
300008h	CONFIG5L	_	-	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111
300009h	CONFIG5H	CPD	СРВ	l	_	I	-	I		11
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_		111
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111
30000Dh	CONFIG7H	_	EBTRB	-	_	-		_	_	-1
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
 - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
 - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
 - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
 - **6:** DEVID registers are read-only and cannot be programmed by the user.
 - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
 - 8: Implemented on PIC18F2450/4450 devices only.
 - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES

Device -	Device	D Value		
Device	DEVID2	DEVID1		
PIC18F2221	21h	011x xxxx		
PIC18F2321	21h	001x xxxx		
PIC18F2410	11h	011x xxxx		
PIC18F2420	11h	010x xxxx ⁽¹⁾		
PIC18F2423	11h	010x xxxx ⁽²⁾		
PIC18F2450	24h	001x xxxx		
PIC18F2455	12h	011x xxxx		
PIC18F2458	2Ah	011x xxxx		
PIC18F2480	1Ah	111x xxxx		
PIC18F2510	11h	001x xxxx		
PIC18F2515	0Ch	111x xxxx		
PIC18F2520	11h	000x xxxx(1)		
PIC18F2523	11h	000x xxxx ⁽²⁾		
PIC18F2525	0Ch	110x xxxx		
PIC18F2550	12h	010x xxxx		
PIC18F2553	2Ah	010x xxxx		
PIC18F2580	1Ah	110x xxxx		
PIC18F2585	0Eh	111x xxxx		
PIC18F2610	0Ch	101x xxxx		
PIC18F2620	0Ch	100x xxxx		
PIC18F2680	0Eh	110x xxxx		
PIC18F2682	27h	000x xxxx		
PIC18F2685	27h	001x xxxx		
PIC18F4221	21h	010x xxxx		
PIC18F4321	21h	000x xxxx		
PIC18F4410	10h	111x xxxx		
PIC18F4420	10h	110x xxxx(1)		
PIC18F4423	10h	110x xxxx ⁽²⁾		
PIC18F4450	24h	000x xxxx		
PIC18F4455	12h	001x xxxx		
PIC18F4458	2Ah	001x xxxx		
PIC18F4480	1Ah	101x xxxx		
PIC18F4510	10h	101x xxxx		
PIC18F4515	0Ch	011x xxxx		
PIC18F4520	10h	100x xxxx ⁽¹⁾		
PIC18F4523	10h	100x xxxx(2)		
PIC18F4525	0Ch	010x xxxx		
PIC18F4550	12h	000x xxxx		
PIC18F4553	2Ah	000x xxxx		
PIC18F4580	1Ah	100x xxxx		

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value						
Device	DEVID2	DEVID1					
PIC18F4585	0Eh	101x xxxx					
PIC18F4610	0Ch	001x xxxx					
PIC18F4620	0Ch	000x xxxx					
PIC18F4680	0Eh	100x xxxx					
PIC18F4682	27h	010x xxxx					
PIC18F4685	27h	011x xxxx					

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0 CONFIG7L		Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

- **Note 1:** The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.
 - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- · The contents of all code memory locations
- · The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

	Memory		Ending Address						Size (Bytes)				
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F2221	4K	28	0001FF	0007FF	000FFF			_		512	1536	2048	4096
FIC 10F2221			0003FF	0007FF	UUUFFF	_			_	1024	1024	2040	
			0001FF			_	_	1	_	512	3584		
PIC18F2321	8K	28	0003FF	000FFF	001FFF					1024	3072	4096	8192
			0007FF							2048	2048		
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	9102	16384
PIC 10F2450	ION	20	000FFF	001777	003FFF	_		_		4096	4096	8192	10304
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
DIO4050400	4016	-00	0007FF	004555	000555					2048	6144	0400	40004
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096	4096	8192	16384
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
	32K	28	0007FF					_	_	2048	6144	24576	32768
PIC18F2580			000FFF	001FFF	003FFF	005FFF	007FFF			4096	4096		
	48K	28	0007FF			00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2585			000FFF	003FFF	007FFF					4096	12288		
			001FFF							8192 8192	02.00		
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
			0007FF							2048	14336		
PIC18F2680	64K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	_	_	4096	12288	49152	65536
			001FFF							8192	8192		
			0007FF							2048	14336		
PIC18F2682	80K	80K 28		003FFF	007FFF	00BFFF	00FFFF	013FFF	_	4096	12288	65536	81920
	00.1		001FFF			002				8192	8192		
	96K		0007FF		007FFF	OORFFF	OOFFFF	013FFF	017FFF	2048	14336	81920	98304
PIC18F2685		K 28		000FFF 003FFF 007FFF 00BFFF 00FFFF						4096	12288		
1 10 101 2000			001FFF		013111	017111	8192	8192	01320	90 3 U4			
			0001FF							512	1536	2048	4096
PIC18F4221	4K	40	0003FF	0007FF	000FFF	-	_	_		1024	1024		
			0000FF							512	3584		
PIC18F4321	8K	40	0003FF	000FFF	001FFF	_	_	_	_	1024	3072	4096	8192
	OIX	1 70	0000FF	000111	001111					2048	2048		
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4423	16K	40	0007FF	001FFF	003FFF				_	2048	6144	8192	16384
1 10 101 4423	101	40		JUILER	0001 FF	_		_		2048	6144	0132	10004
PIC18F4450	16K		0007FF 000FFF	003FFF	_	_	_	_	4096	4096	8192	16384	
Legend:	unimr									4090	4090		

Legend:

— = unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	VIH	Input High Voltage	0.8 VDD	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
	•					
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1	_	μS	VDD = 2.0V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italia Manta

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15