

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2515-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The following devices are included in 44-pin TQFP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

PIC18F4523

- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

PIC18F4553
 PIC18F4580
 PIC18F4585
 PIC18F4610
 PIC18F4620
 PIC18F4680

• PIC18F4523

PIC18F4525

PIC18F4550

- PIC18F4682
- PIC18F4685

FIGURE 2-5: 44-PIN QFN RD2 RD1 VUSB VUSB RC1 RC1 RC1 RC1 33 OSC2 32 OSC1 RD4 2 RD5 3 RD6 4 31 Vss 30 AVss RD7 5 29 VDD PIC18F4XXX 28 AVDD Vss 6 AVDD 7 27 RE2 **VDD** 8 RB0 9 26 RE1 25 RE0 24 RA5 RB1 10 RB2 RA4 23 11 ទទ RA3 S S G^RB4 RA2 ш RB5/P RB6/P RB7/P MCLR/VPP/R

2.3 Memory Maps

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-2: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2515	
PIC18F2525	
PIC18F2585	
PIC18F4515	00000011-00BFFF11 (40K)
PIC18F4525	
PIC18F4585	
PIC18F2610	
PIC18F2620	
PIC18F2680	
PIC18F4610	0000001-00FFF11(04K)
PIC18F4620	
PIC18F4680	

FIGURE 2-6: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5X5/X6X0 DEVICES

FFh Code Memory		(PI	96 Kbytes C18F2685/46	85)	(80 Kbytes PIC18F2682/4	s 4682)
				BBSIZ1	SIZ1:BBSIZ2		
	$\left(\right]$	11/10	01	00	11/10	01	00
		Boot Block*	Boot Block*	Boot Block*		Boot	Boot Block*
Read as '0'					Boot Block* Block 0	Block*	
				Block 0			Block 0
		Block 0	Block 0	: 0		Block 0	
000h							
			Block 1			Block 1	
			Block 2			Block 2	
Configuration							
and ID Space	and ID Space		Block 3		Block 3		
		Block 4		Block 4			
			2.00.0		Unimplemented		d
FFh		ι	Inimplemented Reads all '0's	d			

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0** "Configuration Word". These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see Section 3.3 "Data EEPROM Programming"). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory an	d enable writes.	
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN	
Step 2: Point to fir	Step 2: Point to first row in code memory.		
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL	
Step 3: Enable erase and erase single row.			
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.	
Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.			

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	Step 1: Direct access to code memory and enable writes.		
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Load write	buffer.		
0000 0000 0000 0000 0000 0000	<pre>0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]></pre>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>	
Step 3: Repeat fo	Step 3: Repeat for all but the last two bytes.		
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
Step 4: Load write	Step 4: Load write buffer for last two bytes.		
1111 0000	<msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.	
To continue writin	To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.		

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase**"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in Section 4.2 "Verify Code Memory and ID Locations") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	Step 1: Direct access to code memory.				
Step 2: Read and	modify code memory (see	Section 4.1 "Read Code Memory, ID Locations and Configuration Bits").			
0000	8E A6	BSF EECON1, EEPGD			
0000	9C A6	BCF EECON1, CFGS			
Step 3: Set the Ta	ble Pointer for the block to b	e erased.			
0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7</addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH</addr[8:15]></addr[21:16]>			
0000	OE <addr[7:0]> 6E F6</addr[7:0]>	MOVLW <addr[:0]=""> MOVWF TBLPTRL</addr[>			
Step 4: Enable me	emory writes and set up an e	erase.			
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE			
Step 5: Initiate era	ase.				
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.			
Step 6: Load write	e buffer. The correct bytes wi	ill be selected based on the Table Pointer.			
0000 0000 0000 0000 0000 1101	<pre>0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6 <msb><lsb></lsb></msb></addr[7:0]></addr[8:15]></addr[21:16]></pre>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVWF TBLPTRH MOVWF TBLPTRH MOVWF TBLPTRH MOVWF TBLPTRL Write 2 bytes and post-increment address by 2. Repeat as many times as necessary to fill the write buffer Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10. ough 6, where the Address Pointer is incremented by the appropriate number of bytes</addr[21:16]>			
(see Table 3-4) at the erase buffer.	each iteration of the loop. T	he write cycle must be repeated enough times to completely rewrite the contents of			
Step 7: Disable w	rites.				
0000	94 A6	BCF EECON1, WREN			

TABLE 3-6: MODIFYING CODE MEMORY

TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to data EEPROM.		
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Set the da	ta EEPROM Address Pointe	er.	
0000 0000 0000 0000	OE <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>	
Step 3: Load the o	data to be written.		
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>	
Step 4: Enable me	emory writes.		
0000	84 A6	BSF EECON1, WREN	
Step 5: Initiate wri	ite.		
0000	82 A6	BSF EECON1, WR	
Step 6: Poll WR b	it, repeat until the bit is clear		
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, O MOVWF TABLAT NOP Shift out data ⁽¹⁾	
Step 7: Hold PGC low for time P10.			
Step 8: Disable writes.			
0000	94 A6	BCF EECON1, WREN	
Repeat Steps 2 through 8 to write more data.			

Note 1: See Figure 4-4 for details on shift out data timing.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction		
Step 1: Enable wr	Step 1: Enable writes and direct access to configuration memory.			
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS		
Step 2: Set Table	Pointer for configuration byt	e to be written. Write even/odd addresses. ⁽¹⁾		
0000 0000 0000 0000 0000 1111 0000	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <msb ignored=""><lsb> 00 00</lsb></msb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.		
0000 0000 1111 0000	0E 01 6E F6 <msb><lsb ignored=""> 00 00</lsb></msb>	MOVLW 01h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.		

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The Device ID Word for the PIC18F2XX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

TABLE 5-2: DEVICE ID VALUES

_	Device ID Value			
Device	DEVID2	DEVID1		
PIC18F2221	21h	011x xxxx		
PIC18F2321	21h	001x xxxx		
PIC18F2410	11h	011x xxxx		
PIC18F2420	11h	010x xxxx(1)		
PIC18F2423	11h	010x xxxx ⁽²⁾		
PIC18F2450	24h	001x xxxx		
PIC18F2455	12h	011x xxxx		
PIC18F2458	2Ah	011x xxxx		
PIC18F2480	1Ah	111x xxxx		
PIC18F2510	11h	001x xxxx		
PIC18F2515	0Ch	111x xxxx		
PIC18F2520	11h	000x xxxx(1)		
PIC18F2523	11h	000x xxxx ⁽²⁾		
PIC18F2525	0Ch	110x xxxx		
PIC18F2550	12h	010x xxxx		
PIC18F2553	2Ah	010x xxxx		
PIC18F2580	1Ah	110x xxxx		
PIC18F2585	0Eh	111x xxxx		
PIC18F2610	0Ch	101x xxxx		
PIC18F2620	0Ch	100x xxxx		
PIC18F2680	0Eh	110x xxxx		
PIC18F2682	27h	000x xxxx		
PIC18F2685	27h	001x xxxx		
PIC18F4221	21h	010x xxxx		
PIC18F4321	21h	000x xxxx		
PIC18F4410	10h	111x xxxx		
PIC18F4420	10h	110x xxxx(1)		
PIC18F4423	10h	110x xxxx ⁽²⁾		
PIC18F4450	24h	000x xxxx		
PIC18F4455	12h	001x xxxx		
PIC18F4458	2Ah	001x xxxx		
PIC18F4480	1Ah	101x xxxx		
PIC18F4510	10h	101x xxxx		
PIC18F4515	0Ch	011x xxxx		
PIC18F4520	10h	100x xxxx ⁽¹⁾		
PIC18F4523	10h	100x xxxx ⁽²⁾		
PIC18F4525	0Ch	010x xxxx		
PIC18F4550	12h	000x xxxx		
PIC18F4553	2Ah	000x xxxx		
PIC18F4580	1Ah	100x xxxx		

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Davias	Device ID Value			
Device	DEVID2	DEVID1		
PIC18F4585	0Eh	101x xxxx		
PIC18F4610	0Ch	001x xxxx		
PIC18F4620	0Ch	000x xxxx		
PIC18F4680	0Eh	100x xxxx		
PIC18F4682	27h	010x xxxx		
PIC18F4685	27h	011x xxxx		

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

Bit Name	Configuration Words	Description
WRT5	CONFIG6L	Write Protection bit (Block 5 code memory area)
		(PIC18F2685 and PIC18F4685 devices only)
		1 = Block 5 is not write-protected
		0 = Block 5 is while-protected
VVR14	CONFIGOL	(PIC18F2682/2685 and PIC18F4682/4685 devices only)
		 1 = Block 4 is not write-protected 0 = Block 4 is write-protected
WRT3	CONFIG6L	Write Protection bit (Block 3 code memory area)
		1 = Block 3 is not write-protected
		0 = Block 3 is write-protected
WRT2	CONFIG6L	Write Protection bit (Block 2 code memory area)
		 1 = Block 2 is not write-protected 0 = Block 2 is write-protected
WRT1	CONFIG6L	Write Protection bit (Block 1 code memory area)
		1 = Block 1 is not write-protected
		0 = Block 1 is write-protected
WRT0	CONFIG6L	Write Protection bit (Block 0 code memory area)
		1 = Block 0 is not write-protected
		0 = Block 0 is write-protected
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)
		1 = Boot Block is not write-protected
		0 = Boot Block is write-protected
WRTC	CONFIG6H	Write Protection bit (Configuration registers)
		1 = Configuration registers are not write-protected
		0 = Configuration registers are write-protected
EBTR5	CONFIG7L	Table Read Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)
		1 = Block 5 is not protected from Table Reads executed in other blocks
		0 = Block 5 is protected from Table Reads executed in other blocks
EBTR4	CONFIG7L	Table Read Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)
		1 = Block 4 is not protected from Table Reads executed in other blocks 0 = Block 4 is protected from Table Reads executed in other blocks
FBTR3	CONFIG7	Table Read Protection bit (Block 3 code memory area)
	00111012	1 = Block 3 is not protected from Table Reads executed in other blocks
		0 = Block 3 is protected from Table Reads executed in other blocks
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)
		 1 = Block 2 is not protected from Table Reads executed in other blocks 0 = Block 2 is protected from Table Reads executed in other blocks
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)
		 1 = Block 1 is not protected from Table Reads executed in other blocks 0 = Block 1 is protected from Table Reads executed in other blocks
L	1	

	PIC18E2XXX/AXXX FAMILY BIT DESCRIPTIONS (CON	
IADLE 3-3:	PICTOFZAAA/4AAA FAMILT DIT DESCRIPTIONS (COT	NTINUED

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- The contents of all code memory locations
- The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

					_		0.220									
	Memory		Ending Address						Size (Bytes)							
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total			
	4K	20	0001FF	000755	000555					512	1536	2048	4006			
PICTOFZZZT		28	0003FF	0007FF	000FFF	_	_	_		1024	1024		4096			
			0001FF							512	3584	4096				
PIC18F2321	8K	28	0003FF	000FFF	001FFF	—	—	—	—	1024	3072		8192			
			0007FF							2048	2048					
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	—	—	—	2048	6144	8192	16384			
PIC18F2420	16K	28	0007FF	001FFF	003FFF		—	—	—	2048	6144	8192	16384			
PIC18F2423	16K	28	0007FF	001FFF	003FFF			_	—	2048	6144	8192	16384			
PIC18F2450	16K	28	0007FF 000FFF	001FFF	003FFF	_	_	_	_	2048 4096	6144 4096	8192	16384			
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576			
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576			
	4.01/	20	0007FF	004 555	000555					2048	6144	0400	40004			
PIC18F2480	16K	28	000FFF	001666	003FFF		_	_	_	4096	4096	8192	16384			
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768			
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152			
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768			
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768			
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152			
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768			
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768			
	32K	32K 28	0007FF	001FFF	003FFF	005FFF	007FFF	-	_	2048	6144	24576	32768			
PIC18F2580			000FFF							4096	4096					
		48K 28	0007FF	003FFF	007FFF			-	_	2048	14336	32768	49152			
PIC18F2585	48K		000FFF			00BFFF	—			4096	12288					
			001FFF							8192	8192					
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	_	2048	14336	49152	65536			
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	_	2048	14336	49152	65536			
		64K 28	0007FF							2048	14336	49152	65536			
PIC18F2680	64K		000FFF	003FFF	007FFF	00BFFF	00FFFF	—	-	4096	12288					
			001FFF							8192	8192					
	80K 28					0007FF							2048	14336		
PIC18F2682		28 0 0	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	—	4096	12288	65536	81920			
			001FFF	001FFF		8192	8192									
	96K		0007FF							2048	14336					
PIC18F2685		96K 28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	3FFF 017FFF	4096	12288	81920	98304			
			001FFF							8192	8192					
PIC18F4221	4K	40	0001FF	000766	000555					512	1536	2048	4006			
		40	0003FF	F 0007FF 00	UUUFFF			_	_	1024	1024		4090			
PIC18F4321			0001FF	F						512	3584					
	8K	40	0003FF	000FFF	001FFF	—	—	—	—	1024	3072	4096	8192			
			0007FF							2048	2048					
PIC18F4410	16K	40	0007FF	001FFF	003FFF	—	—	—	_	2048	6144	8192	16384			
PIC18F4420	16K	40	0007FF	001FFF	003FFF	—		_	_	2048	6144	8192	16384			
PIC18F4423	16K	40	0007FF	001FFF	003FFF	_		_	—	2048	6144	8192	16384			
	164	40	0007FF	001555	003555					2048	6144	8102	1629/			
FIC 18F4450	ION	101 40	000FFF		0001 FP					4096	4096	0192 16	10004			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

	Configuration Word (CONFIGxx)													
Device	1L	1H	2L	2H	3L	ЗH	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standa Operati	rd Oper	erating Conditions				
Param No.	Sym	Characteristic	Min	Мах	Units	Conditions
D110	Vінн	High-Voltage Programming Voltage on MCLR/VPP/RE3	Vdd + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	Vdd	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	—	300	μA	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	VIH	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	Vdd - 0.7		V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)		50	pF	To meet AC specifications
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100		ns	VDD = 5.0V
			1		μS	VDD = 2.0V
P2A	TPGCL	Serial Clock (PGC) Low Time	40		ns	VDD = 5.0V
			400		ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40		ns	VDD = 5.0V
			400		ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15		ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15		ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	—	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	—	ns	
P6	TDLY2	Delay Between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	—	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	—	μs	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	—	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended										
Param No.	Sym	Characteristic	Min	Max	Units	Conditions				
P11A	Tdrwt	Data Write Polling Time	4		ms					
P12	THLD2	Input Data Hold Time from $\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$ 1	2		μS					
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100		ns	(Note 2)				
P14	TVALID	Data Out Valid from PGC \uparrow	10		ns					
P15	Tset3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2		μS	(Note 2)				
P16	TDLY8	Delay Between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3$ \downarrow	0		S					
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns					
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S					

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.