

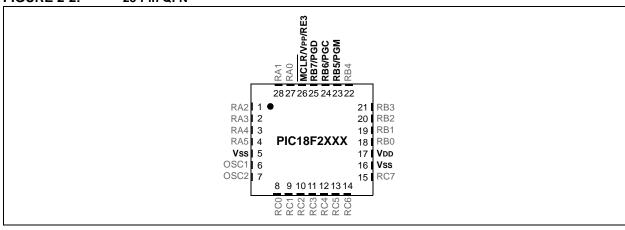
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2610-e-so


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

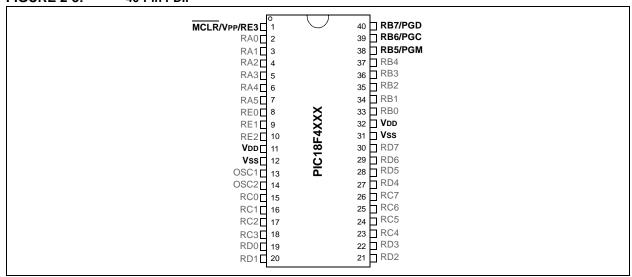
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620

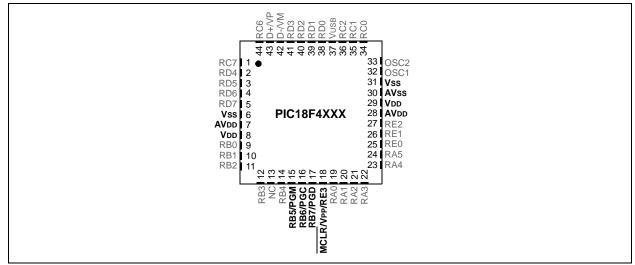

- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

FIGURE 2-3: 40-Pin PDIP



The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

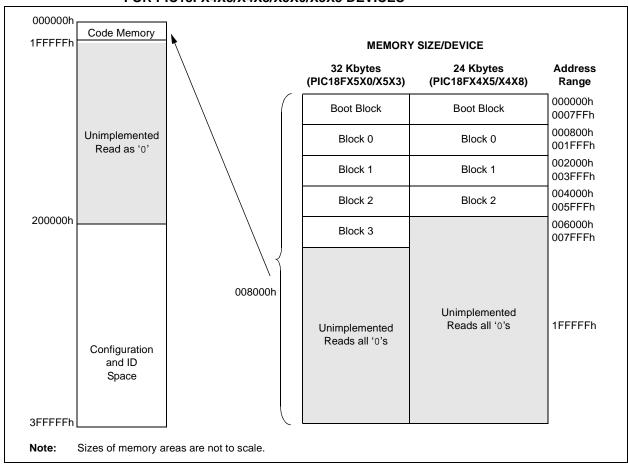
FIGURE 2-5: 44-PIN QFN

2.3 **Memory Maps**

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES

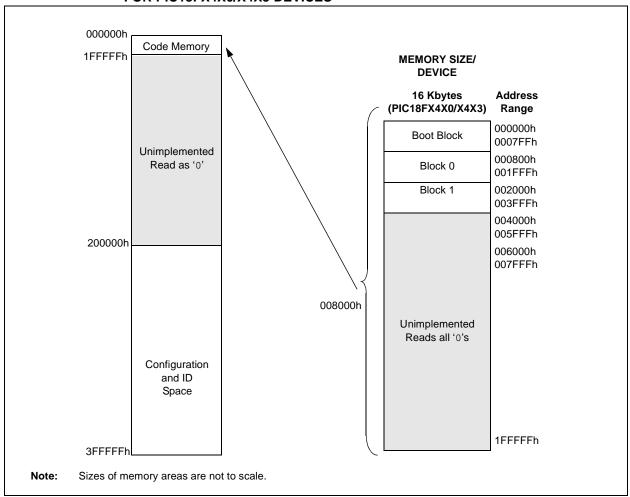

000000h			MEMORY SIZE/DEVIO			IZE/DEVICE	CE		Addres
)1FFFFh	Code Memory		96 Kbytes (PIC18F2685/4685)			80 Kbytes (PIC18F2682/4682)			
			BBSIZ1:BBSIZ2						
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800 000FFF
					Block 0			Disal: 0	001000l
			Block 0	Block 0	BIOCK U	Block 0	Block 0	Block 0	002000
200000h									003FFF
				Block 1			Block 1		
				Block 2			Block 2		007FFF 008000
	Configuration								00BFFF 00C000
	and ID Space			Block 3			Block 3		00FFFF
	Opaco			Dlook 4			Dlook 4		010000
				Block 4			Block 4		013FFF 014000
			Block 5			Unimplemented			
3FFFFFh				Inimplemented Reads all '0's	d		Reads all '0's		017FFF
	zes of memory ar								」01FFFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2455				
PIC18F2458	000000h 005FFFh (24K)			
PIC18F4455	000000h-005FFFh (24K)			
PIC18F4458				
PIC18F2510				
PIC18F2520				
PIC18F2523				
PIC18F2550				
PIC18F2553	000000h 007FFFh (20K)			
PIC18F4510	000000h-007FFFh (32K)			
PIC18F4520				
PIC18F4523				
PIC18F4550				
PIC18F4553				

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES

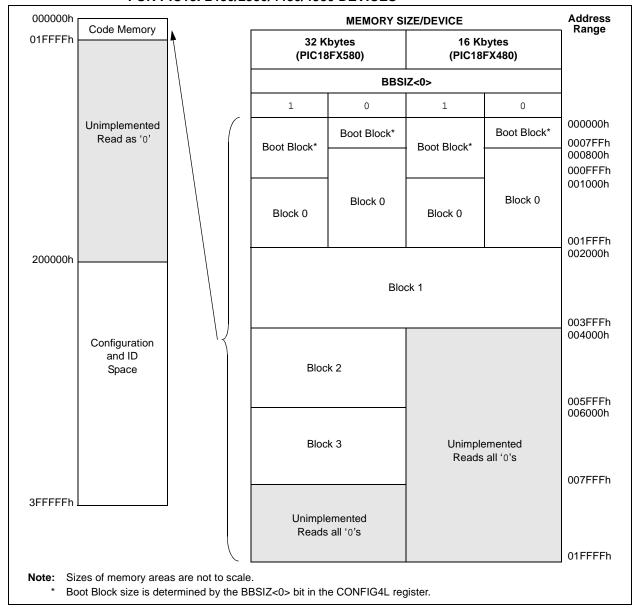


For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420]
PIC18F4450	

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

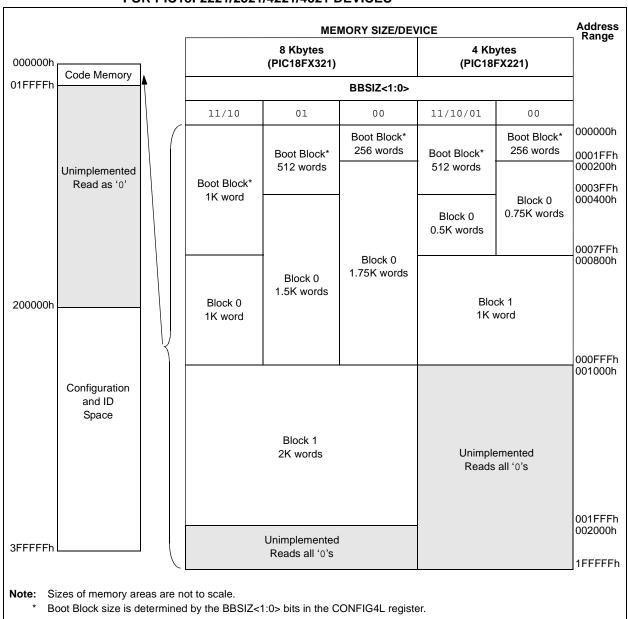

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-6: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2480	000000h 003EEEh (16K)			
PIC18F4480	000000h-003FFFh (16K)			
PIC18F2580	000000h 007EEEh (22K)			
PIC18F4580	000000h-007FFFh (32K)			

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES


For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)			
PIC18F2221	000000h-000EEEh (4K)			
PIC18F4221	– 000000h-000FFFh (4K)			
PIC18F2321	000000h 001EEEh (9K)			
PIC18F4321	000000h-001FFFh (8K)			

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL		
Addr[21:16]	Addr[15:8]	Addr[7:0]		

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

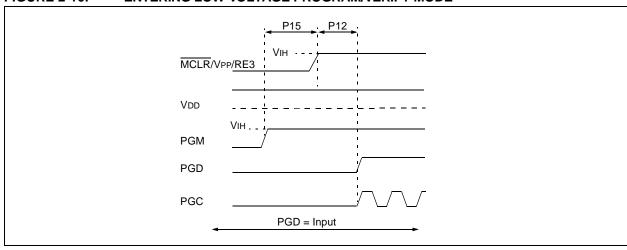


FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

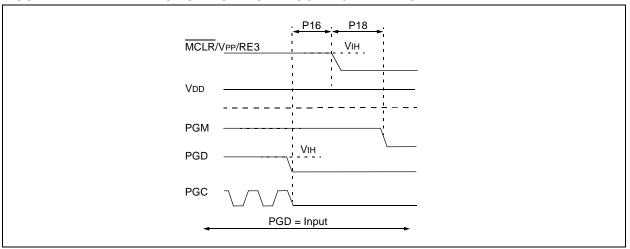


TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

FIGURE 3-1: BULK ERASE FLOW

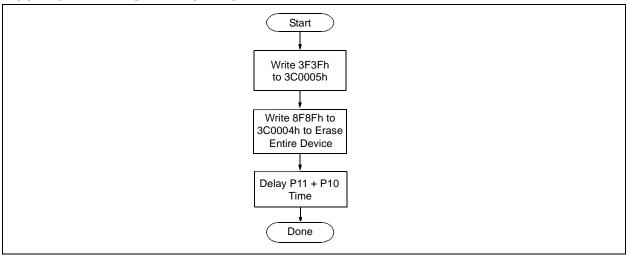


FIGURE 3-4: PROGRAM CODE MEMORY FLOW

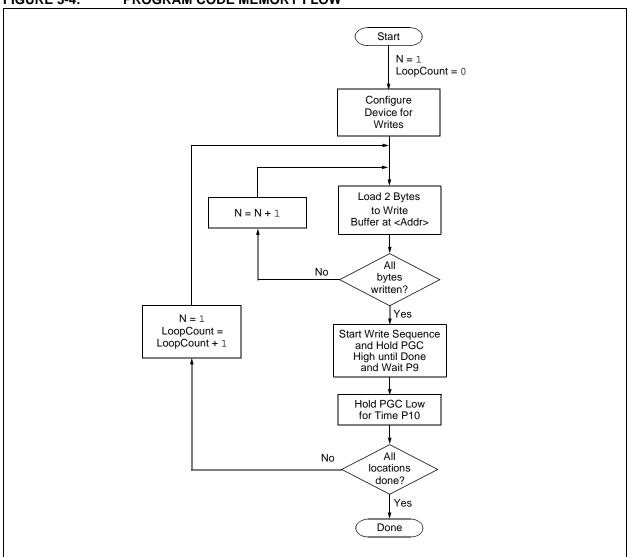
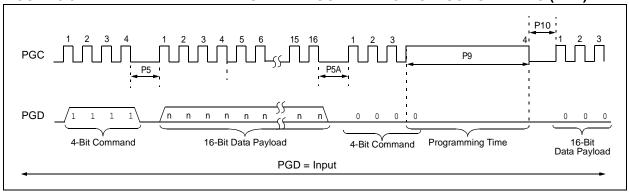



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see Section 3.1.1 "High-Voltage ICSP Bulk Erase"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations"**) and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY

TABLE 3-6:	MODIFYING CODE I	WEMON1						
4-Bit Command	Data Payload	Core Instruction						
Step 1: Direct acc	Step 1: Direct access to code memory.							
Step 2: Read and	Step 2: Read and modify code memory (see Section 4.1 "Read Code Memory, ID Locations and Configuration Bits").							
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS						
Step 3: Set the Ta	ble Pointer for the block to b	e erased.						
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>						
Step 4: Enable me	emory writes and set up an e	erase.						
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE						
Step 5: Initiate era	ase.							
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.						
Step 6: Load write	buffer. The correct bytes wi	Il be selected based on the Table Pointer.						
0000 0000 0000 0000 0000 0000 1101	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6 <msb><lsb></lsb></msb></addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.</addr[7:0]></addr[8:15]></addr[21:16]>						
	•	Repeat as many times as necessary to fill the write buffer						
1111 0000	- <msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.						
	, , , ,	bugh 6, where the Address Pointer is incremented by the appropriate number of bytes the write cycle must be repeated enough times to completely rewrite the contents of						
Step 7: Disable wi	rites.							
0000	94 A6	BCF EECON1, WREN						

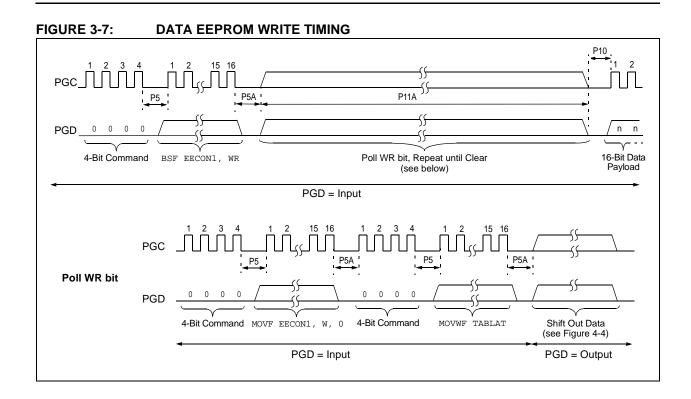


TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction
Step 1: Enable wr	ites and direct access to cor	nfiguration memory.
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS
		e to be written. Write even/odd addresses. ⁽¹⁾
0000	0E 30	MOVLW 30h
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPRTH
0000	0E 00	MOVLW 00h
0000	6E F6	MOVWF TBLPTRL
1111	<msb ignored=""><lsb></lsb></msb>	Load 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
0000	0E 01	MOVLW 01h
0000	6E F6	MOVWF TBLPTRL
1111	<msb><lsb ignored=""></lsb></msb>	Load 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.

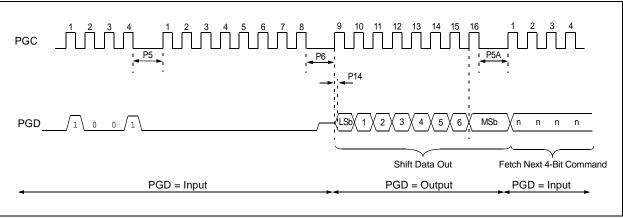
Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction		
Step 1: Set Table	Pointer.			
0000	OE <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]		
0000	6E F8	MOVWF TBLPTRU		
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>		
0000	6E F7	MOVWF TBLPTRH		
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>		
0000	6E F6	MOVWF TBLPTRL		
Step 2: Read memory and then shift out on PGD, LSb to MSb.				
1001	00 00	TBLRD *+		

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The Device ID Word for the PIC18F2XXX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

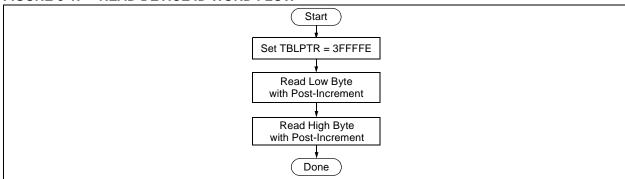


TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File N	lame	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value			
300000h ^(1,8)	CONFIG1L	_	-	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000			
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111			
										00 0101 ^(1,8)			
300002h	CONFIG2L	_	_	VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)			
300003h	CONFIG2H			- VREGEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111			
-									CCP2MX ⁽⁷⁾	1011(7)			
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	_	101-			
	CONFIG4L				ICPRT ⁽¹⁾	_	_				1001-1(1)		
							BBSIZ1	BBSIZ0	-				1000 -1-1
300006h		DEBUG	UG XINST	_	BBSIZ ⁽³⁾	_	LVP	_	STVREN	10-0 -1-1(3)			
				ICPRT ⁽⁸⁾	_	BBSIZ ⁽⁸⁾				100- 01-1(8)			
				BBSIZ1 ⁽²⁾	BBSIZ2 ⁽²⁾	ı				1000 -1-1 (2)			
300008h	CONFIG5L	_	-	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111			
300009h	CONFIG5H	CPD	СРВ	I	_	I	-	I		11			
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111			
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_	-	111			
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111			
30000Dh	CONFIG7H	_	EBTRB	-	_	-		_	_	-1			
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2			
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2			

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
 - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
 - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
 - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
 - **6:** DEVID registers are read-only and cannot be programmed by the user.
 - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
 - 8: Implemented on PIC18F2450/4450 devices only.
 - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

x 5 code memory area) F4685 devices only) rotected cted x 4 code memory area) PIC18F4682/4685 devices only) rotected cted x 3 code memory area) rotected cted cted cted cted
cted 4 code memory area) PIC18F4682/4685 devices only) rotected cted 3 code memory area) rotected
PIC18F4682/4685 devices only) rotected cted c 3 code memory area) rotected
cted c 3 code memory area) rotected
rotected
cted
c 2 code memory area)
rotected cted
c 1 code memory area)
rotected cted
c 0 code memory area)
rotected
cted
EEPROM)
t write-protected ite-protected
Block memory area)
re-protected
rotected
iguration registers)
rs are not write-protected
rs are write-protected
(Block 5 code memory area) F4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 4 code memory area) PIC18F4682/4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 3 code memory area)
ed from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 2 code memory area) red from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 1 code memory area)
red from Table Reads executed in other blocks from Table Reads executed in other blocks

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB® IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

TABLE 5-5:	CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS													
	Configuration Word (CONFIGxx)													
Davisa	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F 1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410 PIC18F4420	00	CF CF	1F	1F	00	87	C5 C5	00	03	C0	03	E0 E0	03	40
-	00	CF	1F	1F 1F	00	87 87	C5	00	03		03	E0	03	40 40
PIC18F4423 PIC18F4450	00 3F	CF	3F	1F	00	86	ED	00	03	C0	03	_	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5		03	40 C0	03	60 E0	03	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	CO	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	CO	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	05 0F	CO	05 0F	E0	05 0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	CO	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	CO	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
		olle ere i			- 50		- 55	00	OI.	50			_ J	70

Legend: Shaded cells are unimplemented.