

Welcome to **E-XFL.COM**

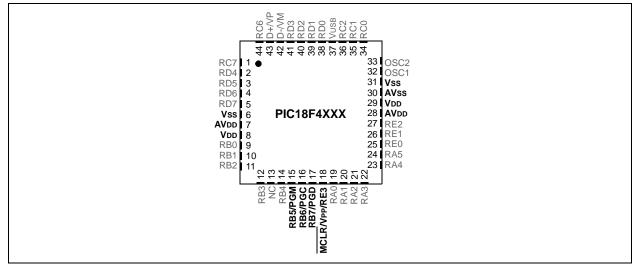
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2610-e-sp

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

FIGURE 2-5: 44-PIN QFN

2.3 **Memory Maps**

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2682	000000h 012EEEh (90K)
PIC18F4682	000000h-013FFFh (80K)
PIC18F2685	000000h 017EEEh (06K)
PIC18F4685	000000h-017FFFh (96K)

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES

000000h					MEMORY S	IZE/DEVICE			Addres
O1FFFFh Code Memory			96 Kbytes (PIC18F2685/4685)		80 Kbytes (PIC18F2682/4682)				
					BBSIZ1:	BBSIZ2			
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800h 000FFFI
					Plack 0			Disal: 0	001000l
			Block 0	Block 0	Block 0	Block (Block 0	Block 0	002000h
200000h									003FFF
			Block 1		Block 1		001000		
			Block 2			Block 2		007FFF 008000	
	Configuration								00BFFF 00C000
	and ID	-	Block 3		Block 3			00FFFF	
	Opaco		Divid 4		Block 4		010000		
		Block 4			BIOCK 4		013FFF 014000		
			Block 5		Unimplemented				
3FFFFFh				Inimplemented Reads all '0's	d		Reads all '0's		017FFF
	zes of memory ar								」01FFFF

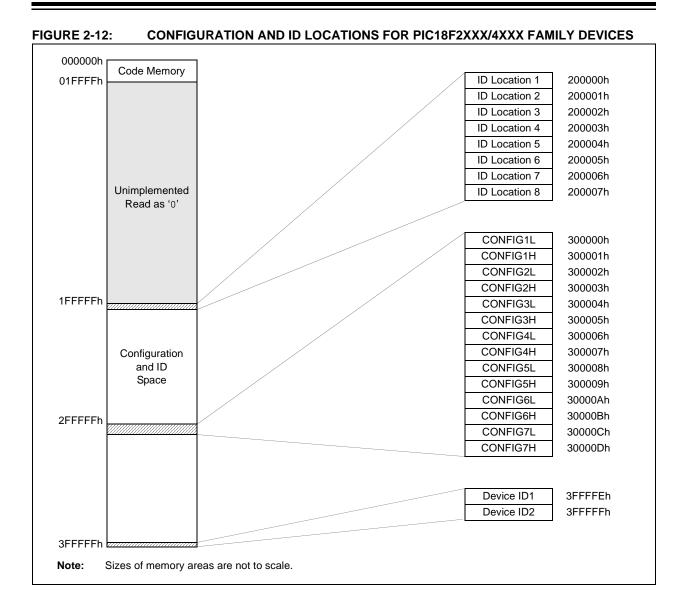
For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.


2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL	
Addr[21:16]	Addr[15:8]	Addr[7:0]	

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

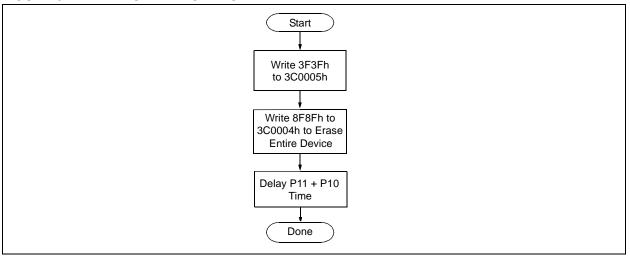
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

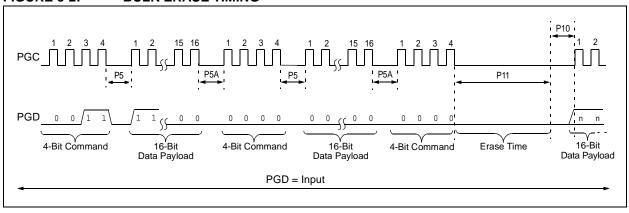

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

FIGURE 3-1: BULK ERASE FLOW


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in **Section 3.1.3** "**ICSP Row Erase**" and **Section 3.2.1** "**Modifying Code Memory**".

If it is determined that a data EEPROM erase (selected devices only, see **Section 3.3 "Data EEPROM Programming"**) must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3 "Data EEPROM Programming"** and write '1's to the array.

FIGURE 3-2: BULK ERASE TIMING

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	Step 1: Direct access to code memory and enable writes.				
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS			
Step 2: Load write	e buffer.				
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>			
Step 3: Repeat for	Step 3: Repeat for all but the last two bytes.				
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.			
Step 4: Load write	Step 4: Load write buffer for last two bytes.				
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.			
To continue writing	To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.				

TABLE 5-2: DEVICE ID VALUES

Device -	Device	e ID Value
Device	DEVID2	DEVID1
PIC18F2221	21h	011x xxxx
PIC18F2321	21h	001x xxxx
PIC18F2410	11h	011x xxxx
PIC18F2420	11h	010x xxxx ⁽¹⁾
PIC18F2423	11h	010x xxxx ⁽²⁾
PIC18F2450	24h	001x xxxx
PIC18F2455	12h	011x xxxx
PIC18F2458	2Ah	011x xxxx
PIC18F2480	1Ah	111x xxxx
PIC18F2510	11h	001x xxxx
PIC18F2515	0Ch	111x xxxx
PIC18F2520	11h	000x xxxx(1)
PIC18F2523	11h	000x xxxx ⁽²⁾
PIC18F2525	0Ch	110x xxxx
PIC18F2550	12h	010x xxxx
PIC18F2553	2Ah	010x xxxx
PIC18F2580	1Ah	110x xxxx
PIC18F2585	0Eh	111x xxxx
PIC18F2610	0Ch	101x xxxx
PIC18F2620	0Ch	100x xxxx
PIC18F2680	0Eh	110x xxxx
PIC18F2682	27h	000x xxxx
PIC18F2685	27h	001x xxxx
PIC18F4221	21h	010x xxxx
PIC18F4321	21h	000x xxxx
PIC18F4410	10h	111x xxxx
PIC18F4420	10h	110x xxxx(1)
PIC18F4423	10h	110x xxxx ⁽²⁾
PIC18F4450	24h	000x xxxx
PIC18F4455	12h	001x xxxx
PIC18F4458	2Ah	001x xxxx
PIC18F4480	1Ah	101x xxxx
PIC18F4510	10h	101x xxxx
PIC18F4515	0Ch	011x xxxx
PIC18F4520	10h	100x xxxx ⁽¹⁾
PIC18F4523	10h	100x xxxx ⁽²⁾
PIC18F4525	0Ch	010x xxxx
PIC18F4550	12h	000x xxxx
PIC18F4553	2Ah	000x xxxx
PIC18F4580	1Ah	100x xxxx

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7 1000 = Internal RC oscillator, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide
CPUDIV<1:0>	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide - oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled 0 = USB voltage regulator is disabled
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

bit (Block 5 code memory area) ad PIC18F4685 devices only) ot write-protected rite-protected bit (Block 4 code memory area) as and PIC18F4682/4685 devices only) ot write-protected rite-protected bit (Block 3 code memory area) ot write-protected
bit (Block 4 code memory area) 85 and PIC18F4682/4685 devices only) ot write-protected rite-protected bit (Block 3 code memory area) ot write-protected
bit (Block 3 code memory area) ot write-protected
rite-protected bit (Block 3 code memory area) ot write-protected
ot write-protected
•
wite mustastad
rite-protected
bit (Block 2 code memory area)
ot write-protected rrite-protected
bit (Block 1 code memory area)
ot write-protected rite-protected
bit (Block 0 code memory area)
ot write-protected
rite-protected
bit (Data EEPROM)
OM is not write-protected OM is write-protected
bit (Boot Block memory area)
is not write-protected
s write-protected
bit (Configuration registers)
on registers are not write-protected
on registers are write-protected
ection bit (Block 5 code memory area) d PIC18F4685 devices only)
ot protected from Table Reads executed in other blocks
rotected from Table Reads executed in other blocks
ection bit (Block 4 code memory area) 85 and PIC18F4682/4685 devices only)
ot protected from Table Reads executed in other blocks
rotected from Table Reads executed in other blocks
ection bit (Block 3 code memory area)
ot protected from Table Reads executed in other blocks
rotected from Table Reads executed in other blocks
ection bit (Block 2 code memory area) ot protected from Table Reads executed in other blocks
rotected from Table Reads executed in other blocks
ection bit (Block 1 code memory area)
ot protected from Table Reads executed in other blocks rotected from Table Reads executed in other blocks
C' C

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB® IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

TABLE 5-5:	CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS													
	Configuration Word (CONFIGxx)													
Davisa	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF CF	1F 1F	1F 1F	00	87 87	C5	00	03	C0	03	E0 E0	03	40 40
PIC18F4423 PIC18F4450	00 3F	CF	3F	1F	00		C5	00	03	C0	03		03	40
PIC18F4455	3F	CF	3F	1F	00	86 87	ED E5	00	03 07	40 C0	03 07	60 E0	03 07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	CO	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	CO	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	05 0F	CO	05 0F	E0	05 0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	CO	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	CO	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
		olle ere i			00	L 01	00	- 00	OI.	- 00	_ U		UI.	70

Legend: Shaded cells are unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Device	Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	VIH	Input High Voltage	0.8 VDD	VDD	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
	•					
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1	_	μS	VDD = 2.0V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units **Conditions** No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s THLD3 MCLR/VPP/RE3 ↓ to VDD ↓ 100 ns P18 MCLR/VPP/RE3 ↓ to PGM ↓ 0 THLD4

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

- 2: When ICPRT = 1, this specification also applies to ICVPP.
- 3: At 0°C-50°C.

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-856-7

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.