

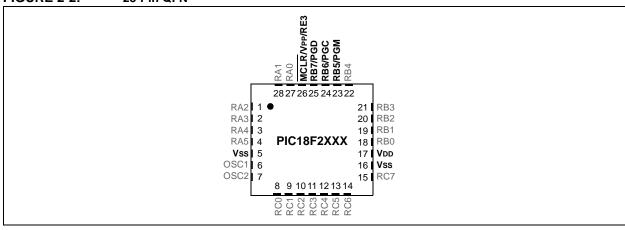
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

B-4-9-	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4321-i-p


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

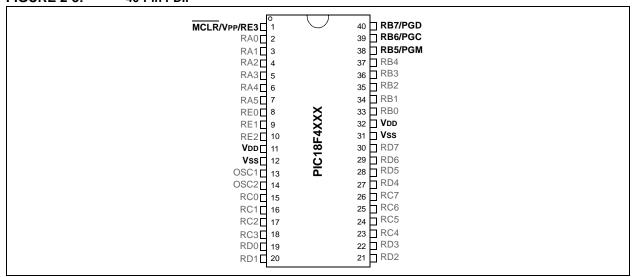
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620


- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

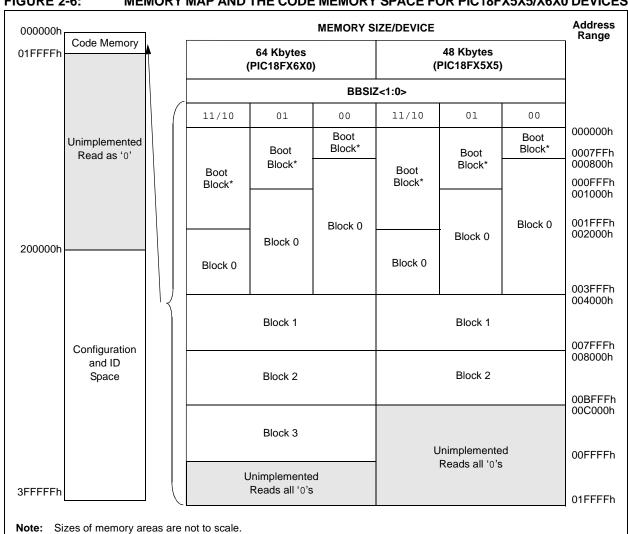

FIGURE 2-3: 40-Pin PDIP

TABLE 2-2: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2515	
PIC18F2525	
PIC18F2585	000000h 00DEEEh (40K)
PIC18F4515	000000h-00BFFFh (48K)
PIC18F4525	
PIC18F4585	
PIC18F2610	
PIC18F2620	
PIC18F2680	000000h 005555h (64K)
PIC18F4610	000000h-00FFFFh (64K)
PIC18F4620	
PIC18F4680	

MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5X5/X6X0 DEVICES FIGURE 2-6:

Boot Block size is determined by the BBSIZ<1:0> bits in the CONFIG4L register.

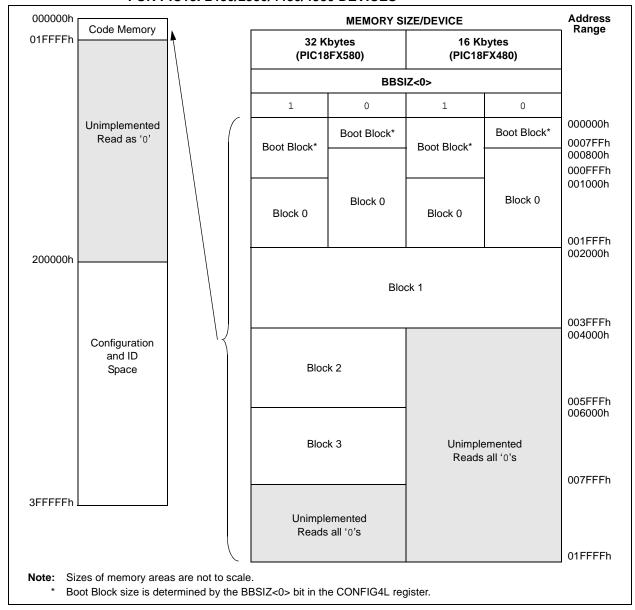
For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2682	000000h 012EEEh (90K)
PIC18F4682	000000h-013FFFh (80K)
PIC18F2685	000000h 017EEEh (06K)
PIC18F4685	000000h-017FFFh (96K)

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES


000000h		[MEMORY SIZE/DEVICE					Addres	
O1FFFFh Code Memory			96 Kbytes (PIC18F2685/4685)			80 Kbytes (PIC18F2682/4682)			
					BBSIZ1:	BBSIZ2			
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800h 000FFFh
					Block 0			Disal: 0	001000l
			Block 0	Block 0	BIOCK U	Block 0		Block 0	002000
200000h									003FFF
			Block 1			Block 1			001000
				Block 2			Block 2		007FFF 008000
	Configuration								00BFFF 00C000
	and ID Space			Block 3			Block 3		00FFFF
	Opaco			Dlook 4			Dlook 4		010000
				Block 4			Block 4		013FFF 014000
		Block 5			Unimplemented		d		
3FFFFFh				Unimplemented Reads all '0's		Reads all '0's			017FFF
	zes of memory ar								」01FFFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-6: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	000000h 003EEEh (16K)
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES

For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

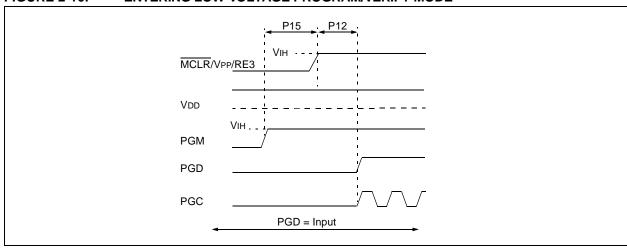


FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-9: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write,
		post-increment by 2

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	: Data EEPROM programming is not available on the following devices:				
PIC18F2410	PIC18F4410				
PIC18F2450	PIC18F4450				
PIC18F2510	PIC18F4510				
PIC18F2515	PIC18F4515				
PIC18F2610	PIC18F4610				

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

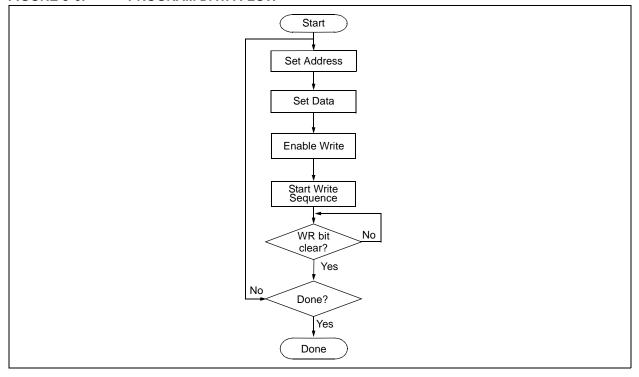


TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	Step 1: Direct access to data EEPROM.						
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Set the da	ata EEPROM Address Pointe	er.					
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>					
Step 3: Load the	data to be written.						
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>					
Step 4: Enable me	emory writes.						
0000	84 A6	BSF EECON1, WREN					
Step 5: Initiate wri	ite.						
0000	82 A6	BSF EECON1, WR					
Step 6: Poll WR b	it, repeat until the bit is clear	1					
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)					
Step 7: Hold PGC	Step 7: Hold PGC low for time P10.						
Step 8: Disable w	rites.						
0000	94 A6	BCF EECON1, WREN					
Repeat Steps 2 th	Repeat Steps 2 through 8 to write more data.						

Note 1: See Figure 4-4 for details on shift out data timing.

4.2 **Verify Code Memory and ID Locations**

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

Start Set TBLPTR = 200000h Set TBLPTR = 0 Read Low Byte Read Low Byte with Post-Increment with Post-Increment Read High Byte Increment Read High Byte with Post-Increment Pointer with Post-Increment Does Does No Word = Expect Failure, Word = Expect Failure, Data? Report Data? Report Error Error Yes Yes ΑII No No **ID** locations code memory verified? verified? Yes Yes Done

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 **Verify Configuration Bits**

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

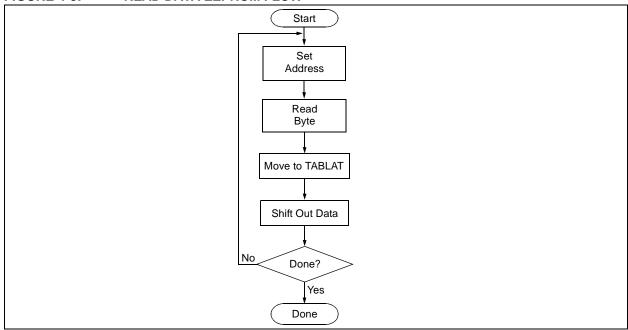


TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	cess to data EEPROM.	
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS
Step 2: Set the d	ata EEPROM Address Pointe	er.
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>
Step 3: Initiate a	memory read.	
0000	80 A6	BSF EECON1, RD
Step 4: Load data	a into the Serial Data Holding	register.
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, 0 MOVWF TABLAT NOP Shift Out Data ⁽¹⁾

Note 1: The <LSB> is undefined. The <MSB> is the data.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File N	lame	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value													
300000h ^(1,8)	CONFIG1L	_	-	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000													
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111													
										00 0101 ^(1,8)													
300002h	CONFIG2L	_	_	VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)													
300003h	CONFIG2H			- VREGEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111													
-									CCP2MX ⁽⁷⁾	1011(7)													
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	_	101-													
				ICPRT ⁽¹⁾	_	_				1001-1(1)													
				BBSIZ1	BBSIZ0	-				1000 -1-1													
300006h	CONFIG4L	DEBUG	XINST	_	BBSIZ ⁽³⁾	_	LVP	_	STVREN	10-0 -1-1(3)													
																	ICPRT ⁽⁸⁾	_	BBSIZ ⁽⁸⁾				100- 01-1(8)
				BBSIZ1 ⁽²⁾	BBSIZ2 ⁽²⁾	ı				1000 -1-1 (2)													
300008h	CONFIG5L	_	-	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111													
300009h	CONFIG5H	CPD	СРВ	l	_	I	-	I		11													
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111													
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_		111													
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111													
30000Dh	CONFIG7H	_	EBTRB	-	_	-		_	_	-1													
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2													
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2													

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
 - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
 - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
 - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
 - **6:** DEVID registers are read-only and cannot be programmed by the user.
 - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
 - 8: Implemented on PIC18F2450/4450 devices only.
 - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value				
Device	DEVID2	DEVID1			
PIC18F4585	0Eh	101x xxxx			
PIC18F4610	0Ch	001x xxxx			
PIC18F4620	0Ch	000x xxxx			
PIC18F4680	0Eh	100x xxxx			
PIC18F4682	27h	010x xxxx			
PIC18F4685	27h	011x xxxx			

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description					
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled					
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled					
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7 1000 = Internal RC oscillator, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator					
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB					
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide					
CPUDIV<1:0>	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide					

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide - oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled 0 = USB voltage regulator is disabled
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name Configuration Words		Description						
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block						
		Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block						
BBSIZ ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block						
LVP	CONFIG4L	Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin						
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled						
CP5	CONFIG5L	Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected						
CP4	CONFIG5L	Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected						
CP3	CONFIG5L	Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected						
CP2	CONFIG5L	Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected						
CP1	CONFIG5L	Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected						
CP0	CONFIG5L	Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected						
CPD	CONFIG5H	Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected						
СРВ	CONFIG5H	Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected						

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

x 5 code memory area) F4685 devices only) rotected cted x 4 code memory area) PIC18F4682/4685 devices only) rotected cted x 3 code memory area) rotected cted cted cted cted
cted 4 code memory area) PIC18F4682/4685 devices only) rotected cted 4 3 code memory area) rotected
PIC18F4682/4685 devices only) rotected cted c 3 code memory area) rotected
cted c 3 code memory area) rotected
rotected
cted
c 2 code memory area)
rotected cted
c 1 code memory area)
rotected cted
c 0 code memory area)
rotected
cted
EEPROM)
t write-protected ite-protected
Block memory area)
re-protected
rotected
iguration registers)
rs are not write-protected
rs are write-protected
(Block 5 code memory area) F4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 4 code memory area) PIC18F4682/4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 3 code memory area)
ed from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 2 code memory area) red from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 1 code memory area)
red from Table Reads executed in other blocks from Table Reads executed in other blocks

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Memory			Ending Address						Size (Bytes)				
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
DIGAGEAAGG	4016	40	0007FF	001FFF	003FFF	١	_	_	_	2048	6144	8192	16384
PIC18F4480	16K	40	000FFF							4096	4096		
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4580	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC 10F4500			000FFF	OUTEFF						4096	4096		
	48K	40	0007FF	003FFF	007FFF	00BFFF	-	_	-	2048	14336	32768	49152
PIC18F4585			000FFF							4096	12288		
			001FFF							8192	8192		
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
	64K	40	0007FF	_	007FFF	00BFFF	00FFFF	_		2048	14336	49152	65536
PIC18F4680			000FFF	003FFF						4096	12288		
			001FFF							8192	8192		
PIC18F4682	80K	40	0007FF			F 00BFFF	00FFFF	013FFF	_	2048	14336	65536	81920
			000FFF	003FFF	007FFF					4096	12288		
			001FFF							8192	8192		
		96K 44	0007FF				00FFFF	013FFF	017FFF	2048	14336	81920	98304
PIC18F4685	96K		000FFF	003FFF	007FFF	00BFFF				4096	12288		
			001FFF							8192	8192		

Legend: — = unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i		
Param No.	Sym	Characteristic	Min	Max	Units	Conditions		
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)		
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)		
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes		
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)		
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)		
D113	IDDP	Supply Current During Programming	_	10	mA			
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V			
D041	VIH	Input High Voltage	0.8 VDD	VDD	V			
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V		
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V		
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications		
	•							
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)		
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V		
			1	_	μS	VDD = 2.0V		
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns			
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns			
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns			
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns			
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns			
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed		
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS			
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms			

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

.

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15