

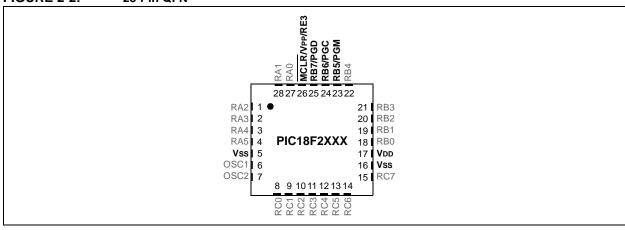
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

D.L.II.	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4321t-i-pt


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

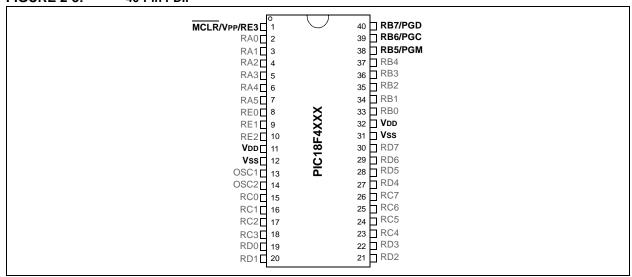
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620


- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

FIGURE 2-3: 40-Pin PDIP

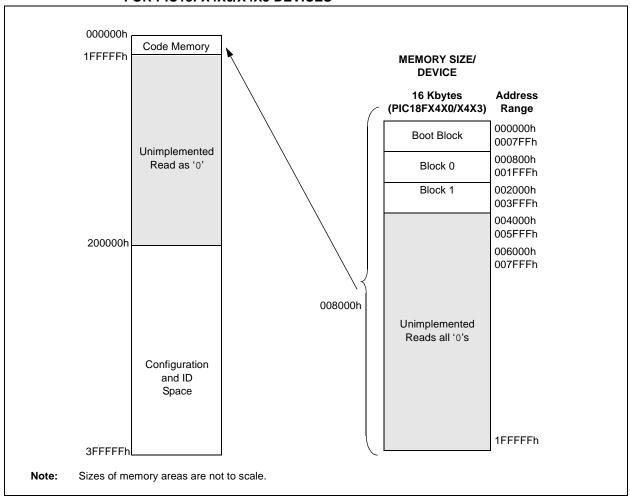
For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)	
PIC18F2682	000000h 042FFFh (90K)	
PIC18F4682	000000h-013FFFh (80K)	
PIC18F2685	000000h 017EEEh (06K)	
PIC18F4685	000000h-017FFFh (96K)	

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES


000000h			MEMORY SIZE/DEVICE			Addres			
01FFFFh Code Memory			96 Kbytes (PIC18F2685/4685)		80 Kbytes (PIC18F2682/4682)				
		BBSIZ1:BBSIZ2							
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*			000800h 000FFFh
					Block 0			Disal: 0	001000l
			Block 0	Block 0	BIOCK U	Block 0	Block 0	Block 0	002000
200000h									003FFF
			Block 1		Block 1		001000		
				Block 2			Block 2		007FFF 008000
	Configuration								00BFFF 00C000
	and ID Space			Block 3			Block 3		00FFFF
	Opaco			Dlook 4			Dlook 4		010000
				Block 4			Block 4		013FFF 014000
			Block 5		Unimplemented				
3FFFFFh				Inimplemented Reads all '0's	d		Reads all '0's		017FFF
	zes of memory ar								」01FFFF

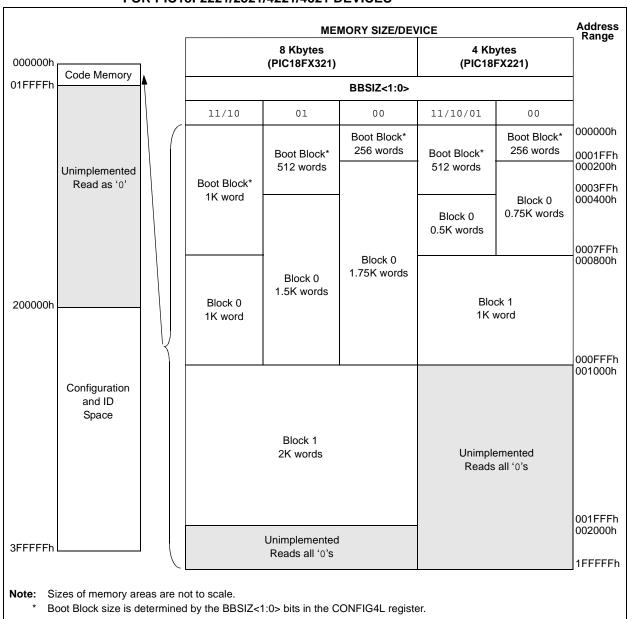
For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420]
PIC18F4450	

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

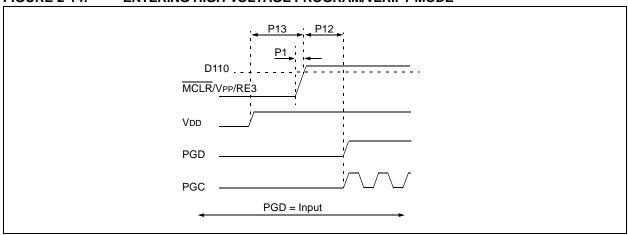

The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

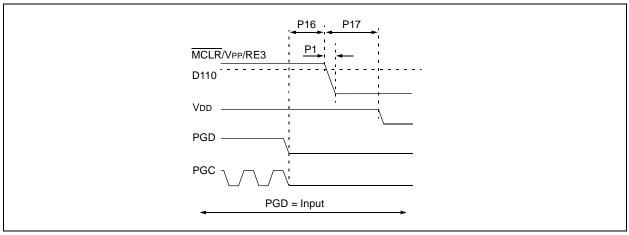
TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2221	000000h-000FFFh (4K)
PIC18F4221	00000011-000FFF11 (4K)
PIC18F2321	000000h 001EEEh (9K)
PIC18F4321	000000h-001FFFh (8K)

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES



2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in Figure 2-14, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see Section 3.3 "Data EEPROM Programming"), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

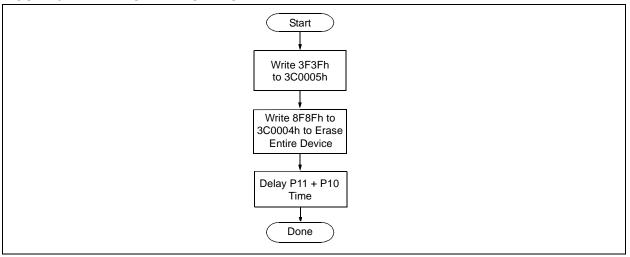
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.


The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

FIGURE 3-1: BULK ERASE FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)	
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64	
PIC18F2450, PIC18F4450	16	64	
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510			
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		64	
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	32		
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	32		
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550			
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553			
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610			
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	0.4	
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64	
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685			

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

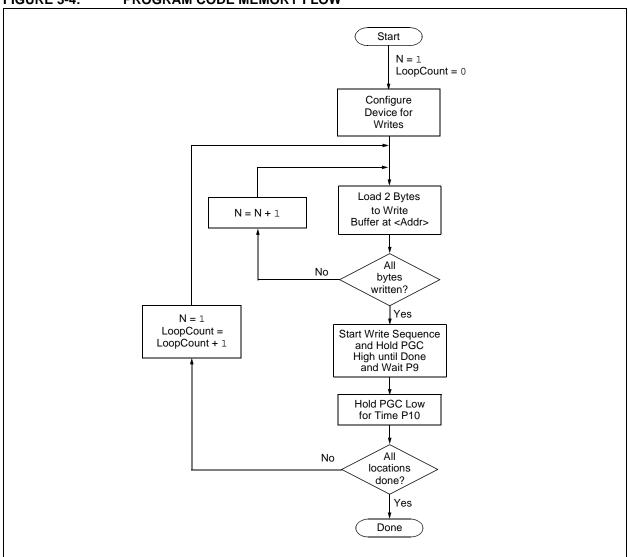
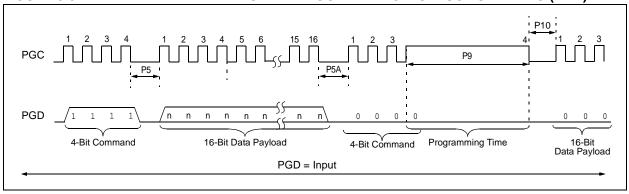
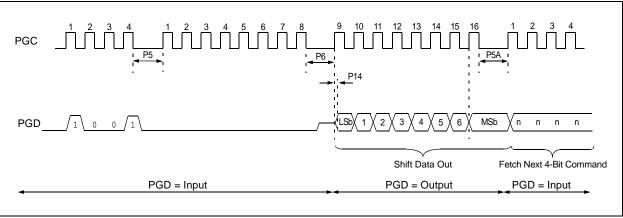



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction			
Step 1: Set Table	Pointer.				
0000	OE <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]			
0000	6E F8	MOVWF TBLPTRU			
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>			
0000	6E F7	MOVWF TBLPTRH			
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>			
0000	6E F6	MOVWF TBLPTRL			
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.				
1001	00 00	TBLRD *+			

4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

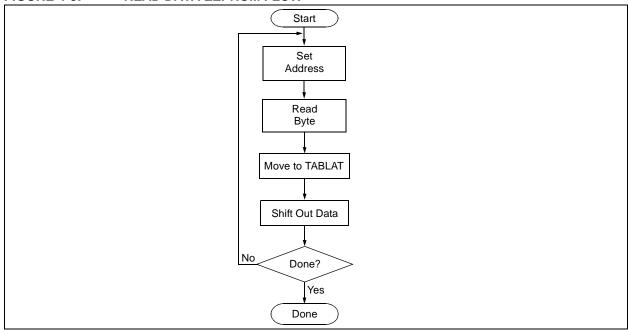


TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	cess to data EEPROM.	
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS
Step 2: Set the d	ata EEPROM Address Pointe	er.
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>
Step 3: Initiate a	memory read.	
0000	80 A6	BSF EECON1, RD
Step 4: Load data into the Serial Data Holding register.		
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, 0 MOVWF TABLAT NOP Shift Out Data ⁽¹⁾

Note 1: The <LSB> is undefined. The <MSB> is the data.

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The Device ID Word for the PIC18F2XXX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

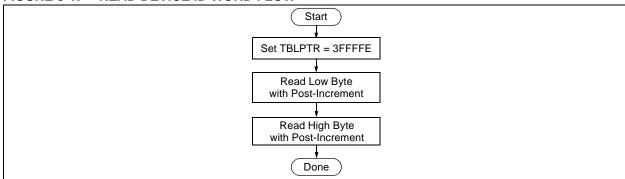


TABLE 5-2: DEVICE ID VALUES

Device -	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F2221	21h	011x xxxx	
PIC18F2321	21h	001x xxxx	
PIC18F2410	11h	011x xxxx	
PIC18F2420	11h	010x xxxx ⁽¹⁾	
PIC18F2423	11h	010x xxxx ⁽²⁾	
PIC18F2450	24h	001x xxxx	
PIC18F2455	12h	011x xxxx	
PIC18F2458	2Ah	011x xxxx	
PIC18F2480	1Ah	111x xxxx	
PIC18F2510	11h	001x xxxx	
PIC18F2515	0Ch	111x xxxx	
PIC18F2520	11h	000x xxxx(1)	
PIC18F2523	11h	000x xxxx ⁽²⁾	
PIC18F2525	0Ch	110x xxxx	
PIC18F2550	12h	010x xxxx	
PIC18F2553	2Ah	010x xxxx	
PIC18F2580	1Ah	110x xxxx	
PIC18F2585	0Eh	111x xxxx	
PIC18F2610	0Ch	101x xxxx	
PIC18F2620	0Ch	100x xxxx	
PIC18F2680	0Eh	110x xxxx	
PIC18F2682	27h	000x xxxx	
PIC18F2685	27h	001x xxxx	
PIC18F4221	21h	010x xxxx	
PIC18F4321	21h	000x xxxx	
PIC18F4410	10h	111x xxxx	
PIC18F4420	10h	110x xxxx(1)	
PIC18F4423	10h	110x xxxx ⁽²⁾	
PIC18F4450	24h	000x xxxx	
PIC18F4455	12h	001x xxxx	
PIC18F4458	2Ah	001x xxxx	
PIC18F4480	1Ah	101x xxxx	
PIC18F4510	10h	101x xxxx	
PIC18F4515	0Ch	011x xxxx	
PIC18F4520	10h	100x xxxx ⁽¹⁾	
PIC18F4523	10h	100x xxxx ⁽²⁾	
PIC18F4525	0Ch	010x xxxx	
PIC18F4550	12h	000x xxxx	
PIC18F4553	2Ah	000x xxxx	
PIC18F4580	1Ah	100x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value		
	DEVID2	DEVID1	
PIC18F4585	0Eh	101x xxxx	
PIC18F4610	0Ch	001x xxxx	
PIC18F4620	0Ch	000x xxxx	
PIC18F4680	0Eh	100x xxxx	
PIC18F4682	27h	010x xxxx	
PIC18F4685	27h	011x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description							
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled							
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled							
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7 1000 = Internal RC oscillator, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator							
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB							
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide							
CPUDIV<1:0>	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide							

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
WDTEN	CONFIG2H	Watchdog Timer Enable bit 1 = WDT is enabled 0 = WDT is disabled (control is placed on the SWDTEN bit)
MCLRE	CONFIG3H	MCLR Pin Enable bit 1 = MCLR pin is enabled, RE3 input pin is disabled 0 = RE3 input pin is enabled, MCLR pin is disabled
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit 1 = Timer1 is configured for low-power operation 0 = Timer1 is configured for high-power operation
PBADEN	CONFIG3H	PORTB A/D Enable bit 1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
PBADEN	CONFIG3H	PORTB A/D Enable bit (PIC18FXX8X devices only) 1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
CCP2MX	CONFIG3H	CCP2 MUX bit 1 = CCP2 input/output is multiplexed with RC1 ⁽²⁾ 0 = CCP2 input/output is multiplexed with RB3
DEBUG	CONFIG4L	Background Debugger Enable bit 1 = Background debugger is disabled, RB6 and RB7 are configured as general purpose I/O pins 0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit Debug
XINST	CONFIG4L	Extended Instruction Set Enable bit 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled (Legacy mode)
ICPRT	CONFIG4L	Dedicated In-Circuit (ICD/ICSP TM) Port Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = ICPORT is enabled 0 = ICPORT is disabled
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block
BBSIZ<2:1> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Device Size	Memory		Ending Address								Size (Bytes)				
	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total		
PIC18F2221 4K	414	28	0001FF	0007FF	000FFF					512	1536	2048	4096		
	20	0003FF	0007FF	UUUFFF	_	_	_	_	1024	1024	2040	4096			
			0001FF		001FFF		-	-	_	512	3584	4096	8192		
PIC18F2321	8K	28	0003FF	000FFF						1024	3072				
			0007FF							2048	2048				
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384		
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384		
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384		
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC 10F2450	ION	20	000FFF	001777	003FFF	_		_		4096	4096	0192	10304		
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
DIO4050400	4016	-00	0007FF		000555					2048	6144	8192	40004		
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096	4096		16384		
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
			0007FF				007FFF	_	_	2048	6144	24576	32768		
PIC18F2580	32K	28	000FFF	001FFF	003FFF	005FFF				4096	4096				
			0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2585	48K	28	000FFF							4096	12288				
			001FFF							8192	8192				
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
			0007FF							2048	14336				
PIC18F2680	64K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	_	_	4096	12288	49152	65536		
	O II C		001FFF							8192	8192				
	80K		0007FF	F	FFF 007FFF	00BFFF				2048	14336		81920		
PIC18F2682		0K 28	000FFF				00FFFF	013FFF	_	4096	12288	65536			
	00.1		001FFF							8192	8192				
		K 28	0007FF		007FFF	00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304		
PIC18F2685	96K		000FFF							4096	12288				
1 10 101 2000	0011		001FFF	000111						8192	8192				
			0001FF							512	1536	 	 		
PIC18F4221	4K	40	0003FF	0007FF	000FFF	_	_	_	_	1024	1024	2048	4096		
			0000FF							512	3584				
PIC18F4321	8K	40	0003FF	000FFF	001FFF		_	_		1024	3072	4096	8192		
FIC 101 4321	OIX		0000FF	000111	001111					2048	2048	4000			
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC18F4423	16K	40	0007FF	001FFF	003FFF				_	2048	6144		16384		
1 10 101 4423	101	40	0007FF	JUIL ET	0001 FF	_		_		2048	6144	<u> </u>	10004		
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	_	_	4096	4096	8192	16384		
I edend:		unimplemen				<u> </u>		<u> </u>		4090	4090				

Legend:

— = unimplemented.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Device	Memory Size (Bytes)	Pins	Ending Address								Size (Bytes)			
			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576	
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576	
PIC18F4480	16K	40	0007FF	001FFF	003FFF			_		2048	6144	8192	16384	
PIC 18F4480	Tok	40	000FFF			_	_		_	4096	4096			
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152	
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768	
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768	
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152	
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC18F4580	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
FIC 10F4500			000FFF							4096	4096			
	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152	
PIC18F4585			000FFF							4096	12288			
			001FFF							8192	8192			
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
	64K	4K 40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_		2048	14336	49152	65536	
PIC18F4680			000FFF							4096	12288			
			001FFF							8192	8192			
			0007FF		007FFF			013FFF	_	2048	14336	65536	81920	
PIC18F4682	80K	40	000FFF	003FFF		00BFFF	00FFFF 013FF			4096	12288			
			001FFF							8192	8192			
	96K	96K 44	0007FF	_		00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304	
PIC18F4685			000FFF	003FFF	007FFF					4096	12288			
			001FFF							8192	8192			

Legend: — = unimplemented.