
Microchip Technology - PIC18F4410-E/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 25MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, HLVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 4.2V ~ 5.5V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f4410-e-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f4410-e-ml-4411434
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 2  2010-2015 Microchip Technology Inc.

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

The following devices are included in 28-pin SSOP parts:

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC,SSOP

Pin Name
During Programming

Pin Name Pin Type Pin Description

MCLR/VPP/RE3 VPP P Programming Enable

VDD(2) VDD P Power Supply

VSS(2) VSS P Ground

RB5 PGM I Low-Voltage ICSP™ Input when LVP Configuration bit equals ‘1’(1)

RB6 PGC I Serial Clock

RB7 PGD I/O Serial Data

Legend: I = Input, O = Output, P = Power
Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

• PIC18F2221 • PIC18F2480 • PIC18F2580

• PIC18F2321 • PIC18F2510 • PIC18F2585

• PIC18F2410 • PIC18F2515 • PIC18F2610

• PIC18F2420 • PIC18F2520 • PIC18F2620

• PIC18F2423 • PIC18F2523 • PIC18F2680

• PIC18F2450 • PIC18F2525 • PIC18F2682

• PIC18F2455 • PIC18F2550 • PIC18F2685

• PIC18F2458 • PIC18F2553

• PIC18F2221 • PIC18F2321

10
11

2

3
4
5

6

1

8
7

9

12

13
14 15

16
17

18
19
20

23
24
25
26
27
28

22
21

MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS

OSC1
OSC2

RC0
RC1
RC2
RC3

RB7/PGD

RB6/PGC
RB5/PGM
RB4
RB3
RB2
RB1
RB0
VDD

VSS

RC7
RC6
RC5
RC4

P
IC

18
F

2X
X

X

 2010-2015 Microchip Technology Inc. DS30009622M-page 7

PIC18F2XXX/4XXX FAMILY

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte
blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four
16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a “Boot Block” region that is treated separately
from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words
(see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to
note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

Device Code Memory Size (Bytes)

PIC18F2682
000000h-013FFFh (80K)

PIC18F4682

PIC18F2685
000000h-017FFFh (96K)

PIC18F4685

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 8  2010-2015 Microchip Technology Inc.

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE 
FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte
blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in
three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a “Boot Block” region that is treated
separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

000000h

200000h

3FFFFFh

01FFFFh

Note: Sizes of memory areas are not to scale.
* Boot Block size is determined by the BBSIZ<1:2> bits in the CONFIG4L register.

Code Memory

Unimplemented

Read as ‘0’

Configuration

and ID

Space

MEMORY SIZE/DEVICE Address
Range

96 Kbytes
(PIC18F2685/4685)

BBSIZ1:BBSIZ2

11/10 01 00

Boot

Boot

000000h

0007FFh

Block 0

000800h

000FFFh

Block 0

001000h

001FFFh

Block 0

002000h

003FFFh

Block 1

004000h

017FFFh

Unimplemented
Reads all ‘0’s

01FFFFh

Block*

Block*

11/10 01 00

80 Kbytes
(PIC18F2682/4682)

Boot
Block*

Boot
Block* Boot

Block*

Boot
Block*

Block 0
Block 0

Block 0

Unimplemented
Reads all ‘0’s

Block 2

Block 3

Block 2

Block 1

007FFFh
008000h

013FFFh
014000h

Block 4

Block 3

Block 5

Block 4

00FFFFh
010000h

00BFFFh
00C000h

 2010-2015 Microchip Technology Inc. DS30009622M-page 11

PIC18F2XXX/4XXX FAMILY

TABLE 2-6: IMPLEMENTATION OF CODE MEMORY

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE 
FOR PIC18F2480/2580/4480/4580 DEVICES

For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte
block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte
blocks. Addresses, 0000h through 07FFh, however, define a variable “Boot Block” region that is treated separately from
Block 0. All of these blocks define code protection boundaries within the code memory space.

Device Code Memory Size (Bytes)

PIC18F2480
000000h-003FFFh (16K)

PIC18F4480

PIC18F2580
000000h-007FFFh (32K)

PIC18F4580

000000h

200000h

3FFFFFh

01FFFFh

Note: Sizes of memory areas are not to scale.
* Boot Block size is determined by the BBSIZ<0> bit in the CONFIG4L register.

Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

MEMORY SIZE/DEVICE Address
Range

32 Kbytes
(PIC18FX580)

16 Kbytes
(PIC18FX480)

BBSIZ<0>

1 0 1 0

Boot Block*
Boot Block*

Boot Block*
Boot Block*

000000h

0007FFh

Block 0 Block 0

000800h

000FFFh

Block 0 Block 0

001000h

001FFFh

Block 1

002000h

003FFFh

Block 2

004000h

Unimplemented
Reads all ‘0’s

01FFFFh

Unimplemented
Reads all ‘0’s

Block 3

005FFFh
006000h

007FFFh

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 12  2010-2015 Microchip Technology Inc.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see
Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is
important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE 
FOR PIC18F2221/2321/4221/4321 DEVICES

Device Code Memory Size (Bytes)

PIC18F2221
000000h-000FFFh (4K)

PIC18F4221

PIC18F2321
000000h-001FFFh (8K)

PIC18F4321

000000h

200000h

3FFFFFh

01FFFFh

Note: Sizes of memory areas are not to scale.
* Boot Block size is determined by the BBSIZ<1:0> bits in the CONFIG4L register.

Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

MEMORY SIZE/DEVICE Address
Range

8 Kbytes
(PIC18FX321)

4 Kbytes
(PIC18FX221)

BBSIZ<1:0>

11/10 01 00 11/10/01 00

Boot Block*
1K word

Boot Block*
512 words

Boot Block*
256 words Boot Block*

512 words

Boot Block*
256 words

000000h

0001FFh

Block 0
1.75K words

Block 0
0.75K words

000200h

0003FFh

Block 0
1.5K words

Block 0
0.5K words

000400h

0007FFh

Block 0
1K word

Block 1
1K word

000800h

000FFFh

Block 1
2K words

001000h

001FFFh

Unimplemented
Reads all ‘0’s

002000h

1FFFFFh

Unimplemented
Reads all ‘0’s

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 14  2010-2015 Microchip Technology Inc.

FIGURE 2-12: CONFIGURATION AND ID LOCATIONS FOR PIC18F2XXX/4XXX FAMILY DEVICES

ID Location 1 200000h

ID Location 2 200001h

ID Location 3 200002h

ID Location 4 200003h

ID Location 5 200004h

ID Location 6 200005h

ID Location 7 200006h

ID Location 8 200007h

CONFIG1L 300000h

CONFIG1H 300001h

CONFIG2L 300002h

CONFIG2H 300003h

CONFIG3L 300004h

CONFIG3H 300005h

CONFIG4L 300006h

CONFIG4H 300007h

CONFIG5L 300008h

CONFIG5H 300009h

CONFIG6L 30000Ah

CONFIG6H 30000Bh

CONFIG7L 30000Ch

CONFIG7H 30000Dh

Device ID1 3FFFFEh

Device ID2 3FFFFFh

Note: Sizes of memory areas are not to scale.

000000h

1FFFFFh

3FFFFFh

01FFFFh
Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

2FFFFFh

 2010-2015 Microchip Technology Inc. DS30009622M-page 15

PIC18F2XXX/4XXX FAMILY

2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code
memory, ID locations and data EEPROM are programmed (selected devices only, see Section 3.3 “Data EEPROM
Programming”). These memories are then verified to ensure that programming was successful. If no errors are detected,
the Configuration bits are then programmed and verified.

FIGURE 2-13: HIGH-LEVEL PROGRAMMING FLOW

Start

Program Memory

Program IDs

Program Data EE(1)

Verify Program

Verify IDs

Verify Data

Program
Configuration Bits

Verify
 Configuration Bits

Done

Perform Bulk
Erase

Note 1: Selected devices only, see Section 3.3 “Data EEPROM Programming”.

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 18  2010-2015 Microchip Technology Inc.

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output
during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of
PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type
of command being executed. To input a command, PGC is cycled four times. The commands needed for programming
and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits
of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown
Most Significant bit (MSb) first. The command operand, or “Data Payload”, is shown as <MSB><LSB>. Figure 2-18
demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as
appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

TABLE 2-9: SAMPLE COMMAND SEQUENCE

Description 4-Bit Command

Core Instruction
(Shift in16-bit instruction)

0000

Shift Out TABLAT Register 0010

Table Read 1000

Table Read, Post-Increment 1001

Table Read, Post-Decrement 1010

Table Read, Pre-Increment 1011

Table Write 1100

Table Write, Post-Increment by 2 1101

Table Write, Start Programming, 
Post-Increment by 2

1110

Table Write, Start Programming 1111

4-Bit Command Data Payload Core Instruction

1101 3C 40 Table Write, 
post-increment by 2

 2010-2015 Microchip Technology Inc. DS30009622M-page 21

PIC18F2XXX/4XXX FAMILY

FIGURE 3-1: BULK ERASE FLOW

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command Data Payload Core Instruction

0000
0000
0000
0000
0000
0000
1100
0000
0000
0000
0000
0000
0000
1100

0000
0000

0E 3C
6E F8
0E 00
6E F7
0E 05
6E F6
3F 3F
0E 3C
6E F8
0E 00
6E F7
0E 04
6E F6
8F 8F

00 00
00 00

MOVLW 3Ch
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPTRH
MOVLW 05h
MOVWF TBLPTRL
Write 3F3Fh to 3C0005h
MOVLW 3Ch
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPTRH
MOVLW 04h
MOVWF TBLPTRL
Write 8F8Fh TO 3C0004h to erase entire device.
NOP
Hold PGD low until erase completes.

Start

Done

Write 8F8Fh to
3C0004h to Erase

Entire Device

Write 3F3Fh

Delay P11 + P10
Time

to 3C0005h

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 22  2010-2015 Microchip Technology Inc.

3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is
to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer
to the erase methodology described in Section 3.1.3 “ICSP Row Erase” and Section 3.2.1 “Modifying Code
Memory”.

If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 “Data EEPROM
Programming”) must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described
in Section 3.3 “Data EEPROM Programming” and write ‘1’s to the array.

FIGURE 3-2: BULK ERASE TIMING

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block
is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h,
extending to the internal program memory limit (see Section 2.3 “Memory Maps”).

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is
issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by
Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in
Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram
that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

n

1 2 3 4 1 2 15 16 1 2 3

PGC

P5 P5A

PGD

PGD = Input

00 0 1 1

P11

P10

Erase Time

0 0 0 0 0 0

1 2

0 0

4

0

1 2 15 16

P5

1 2 3

P5A

4

0 0 0 0 n

4-Bit Command 4-Bit Command 4-Bit Command16-Bit
Data Payload

16-Bit
Data Payload

16-Bit
Data Payload

1 1

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 26  2010-2015 Microchip Technology Inc.

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

Start Write Sequence

All
locations

done?

No

Done

Start

Yes

Hold PGC Low
for Time P10

Load 2 Bytes
to Write

Buffer at <Addr>

All
bytes

written?

No

Yes

and Hold PGC
High until Done

N = 1
LoopCount = 0

Configure
Device for

Writes

N = 1
LoopCount =

LoopCount + 1

N = N + 1

and Wait P9

1 2 3 4 1 2 15 16 1 2 3 4

PGC
P5A

PGD

PGD = Input

n1 1 1 1

3 4 65

P9

P10

Programming Time

n n n n n n n 0 0

1 2

00 0

16-Bit
Data Payload

0

3

0

P5

4-Bit Command 16-Bit Data Payload 4-Bit Command

 2010-2015 Microchip Technology Inc. DS30009622M-page 27

PIC18F2XXX/4XXX FAMILY

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see
Section 3.1.1 “High-Voltage ICSP Bulk Erase”). It may be the case, however, that the user wishes to modify only a
section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in
Section 4.2 “Verify Code Memory and ID Locations”) and buffered. Modifications can be made on this buffer. Then,
the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY

4-Bit
Command

Data Payload Core Instruction

Step 1: Direct access to code memory.

Step 2: Read and modify code memory (see Section 4.1 “Read Code Memory, ID Locations and Configuration Bits”).

0000
0000

8E A6
9C A6

BSF EECON1, EEPGD
BCF EECON1, CFGS

Step 3: Set the Table Pointer for the block to be erased.

0000
0000
0000
0000
0000
0000

0E <Addr[21:16]>
6E F8
0E <Addr[8:15]>
6E F7
0E <Addr[7:0]>
6E F6

MOVLW <Addr[21:16]>
MOVWF TBLPTRU
MOVLW <Addr[8:15]>
MOVWF TBLPTRH
MOVLW <Addr[7:0]>
MOVWF TBLPTRL

Step 4: Enable memory writes and set up an erase.

0000
0000

84 A6
88 A6

BSF EECON1, WREN
BSF EECON1, FREE

Step 5: Initiate erase.

0000
0000

82 A6
00 00

BSF EECON1, WR
NOP - hold PGC high for time P9 and low for time P10.

Step 6: Load write buffer. The correct bytes will be selected based on the Table Pointer.

0000
0000
0000
0000
0000
0000
1101
.
.
.

1111
0000

0E <Addr[21:16]>
6E F8
0E <Addr[8:15]>
6E F7
0E <Addr[7:0]>
6E F6
<MSB><LSB>
 .
 .
 .
<MSB><LSB>
00 00

MOVLW <Addr[21:16]>
MOVWF TBLPTRU
MOVLW <Addr[8:15]>
MOVWF TBLPTRH
MOVLW <Addr[7:0]>
MOVWF TBLPTRL
Write 2 bytes and post-increment address by 2.

Repeat as many times as necessary to fill the write buffer

Write 2 bytes and start programming.
NOP - hold PGC high for time P9 and low for time P10.

To continue modifying data, repeat Steps 2 through 6, where the Address Pointer is incremented by the appropriate number of bytes
(see Table 3-4) at each iteration of the loop. The write cycle must be repeated enough times to completely rewrite the contents of
the erase buffer.

Step 7: Disable writes.

0000 94 A6 BCF EECON1, WREN

 2010-2015 Microchip Technology Inc. DS30009622M-page 29

PIC18F2XXX/4XXX FAMILY

FIGURE 3-7: DATA EEPROM WRITE TIMING

n

PGC

PGD

PGD = Input

0 0 0 0

BSF EECON1, WR4-Bit Command

1 2 3 4 1 2 15 16

P5 P5A

P10

1 2

n

Poll WR bit, Repeat until Clear 16-Bit Data
Payload

1 2 3 4 1 2 15 16 1 2 3

P5 P5A

4 1 2 15 16

P5 P5A

0 0 0 0

MOVF EECON1, W, 04-Bit Command

0 0 0 0

4-Bit Command Shift Out DataMOVWF TABLAT

PGC

PGD

(see below)

(see Figure 4-4)

PGD = Input PGD = Output

Poll WR bit

P11A

 2010-2015 Microchip Technology Inc. DS30009622M-page 31

PIC18F2XXX/4XXX FAMILY

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses, 200000h
through 200007h. These locations read out normally even after code protection.

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in Section 3.2.1 “Modifying Code Memory”.
As with code memory, the ID locations must be erased before being modified.

TABLE 3-8: WRITE ID SEQUENCE

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in “Step 2” will be in the range
of 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit
command (‘1111’) is used, but only eight bits of the following 16-bit payload will be written. The LSB of the payload will be
written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive
configuration locations is shown in Table 3-9.

Note: The user only needs to fill the first 8 bytes of the write buffer in order to write the ID locations.

4-Bit
Command

Data Payload Core Instruction

Step 1: Direct access to code memory and enable writes.

0000
0000

8E A6
9C A6

BSF EECON1, EEPGD
BCF EECON1, CFGS

Step 2: Load write buffer with 8 bytes and write.

0000
0000
0000
0000
0000
0000
1101
1101
1101
1111
0000

0E 20
6E F8
0E 00
6E F7
0E 00
6E F6
<MSB><LSB>
<MSB><LSB>
<MSB><LSB>
<MSB><LSB>
00 00

MOVLW 20h
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPTRH
MOVLW 00h
MOVWF TBLPTRL
Write 2 bytes and post-increment address by 2.
Write 2 bytes and post-increment address by 2.
Write 2 bytes and post-increment address by 2.
Write 2 bytes and start programming.
NOP - hold PGC high for time P9 and low for time P10.

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented
in this mode.

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 34  2010-2015 Microchip Technology Inc.

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the
programmer’s buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the
word in the programmer’s buffer. Refer to Section 4.1 “Read Code Memory, ID Locations and Configuration Bits”
for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been
verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer
beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap
the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, ‘1001’. Configuration data is read and
written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may
then be immediately compared to the appropriate configuration data in the programmer’s memory for verification. Refer
to Section 4.1 “Read Code Memory, ID Locations and Configuration Bits” for implementation details of reading
configuration data.

Read Low Byte

Read High Byte

Does
Word = Expect

Data?
Failure,
Report
Error

All
code memory

verified?

No

Yes

No

Set TBLPTR = 0

Start

Set TBLPTR = 200000h

Yes

Read Low Byte

Read High Byte

Does
Word = Expect

Data?
Failure,
Report
Error

All
ID locations

verified?

No

Yes

Done

Yes

No

with Post-Increment

with Post-Increment
Increment

Pointer

with Post-Increment

with Post-Increment

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 36  2010-2015 Microchip Technology Inc.

FIGURE 4-4: SHIFT OUT DATA HOLDING REGISTER TIMING (0010)

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, ‘0000’) and then output on
PGD via the 4-bit command, ‘0010’ (TABLAT register). The result may then be immediately compared to the appropriate
data in the programmer’s memory for verification. Refer to Section 4.4 “Read Data EEPROM Memory” for
implementation details of reading data EEPROM.

4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified:
code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFFh) should
be ignored.

A “blank” or “erased” memory cell will read as ‘1’. Therefore, Blank Checking a device merely means to verify that all bytes
read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read ‘0’ (programmed). Refer to
Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 “Read
Data EEPROM Memory” and Section 4.2 “Verify Code Memory and ID Locations” for implementation details.

FIGURE 4-5: BLANK CHECK FLOW

1 2 3 4

PGC
P5

PGD

PGD = Input

Shift Data Out

P6

PGD = Output

5 6 7 8 1 2 3 4

P5A

9 10 11 13 15 161412

Fetch Next 4-Bit Command

0 1 0 0

PGD = Input

LSb MSb1 2 3 4 5 6

1 2 3 4

n n n n

P14

Yes

No

Start

Blank Check Device

Is
device
blank?

Continue

Abort

 2010-2015 Microchip Technology Inc. DS30009622M-page 39

PIC18F2XXX/4XXX FAMILY

TABLE 5-2: DEVICE ID VALUES

Device
Device ID Value

DEVID2 DEVID1

PIC18F2221 21h 011x xxxx

PIC18F2321 21h 001x xxxx

PIC18F2410 11h 011x xxxx

PIC18F2420 11h 010x xxxx(1)

PIC18F2423 11h 010x xxxx(2)

PIC18F2450 24h 001x xxxx

PIC18F2455 12h 011x xxxx

PIC18F2458 2Ah 011x xxxx

PIC18F2480 1Ah 111x xxxx

PIC18F2510 11h 001x xxxx

PIC18F2515 0Ch 111x xxxx

PIC18F2520 11h 000x xxxx(1)

PIC18F2523 11h 000x xxxx(2)

PIC18F2525 0Ch 110x xxxx

PIC18F2550 12h 010x xxxx

PIC18F2553 2Ah 010x xxxx

PIC18F2580 1Ah 110x xxxx

PIC18F2585 0Eh 111x xxxx

PIC18F2610 0Ch 101x xxxx

PIC18F2620 0Ch 100x xxxx

PIC18F2680 0Eh 110x xxxx

PIC18F2682 27h 000x xxxx

PIC18F2685 27h 001x xxxx

PIC18F4221 21h 010x xxxx

PIC18F4321 21h 000x xxxx

PIC18F4410 10h 111x xxxx

PIC18F4420 10h 110x xxxx(1)

PIC18F4423 10h 110x xxxx(2)

PIC18F4450 24h 000x xxxx

PIC18F4455 12h 001x xxxx

PIC18F4458 2Ah 001x xxxx

PIC18F4480 1Ah 101x xxxx

PIC18F4510 10h 101x xxxx

PIC18F4515 0Ch 011x xxxx

PIC18F4520 10h 100x xxxx(1)

PIC18F4523 10h 100x xxxx(2)

PIC18F4525 0Ch 010x xxxx

PIC18F4550 12h 000x xxxx

PIC18F4553 2Ah 000x xxxx

PIC18F4580 1Ah 100x xxxx

Legend: The ‘x’s in DEVID1 contain the device revision code.
Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 40  2010-2015 Microchip Technology Inc.

PIC18F4585 0Eh 101x xxxx

PIC18F4610 0Ch 001x xxxx

PIC18F4620 0Ch 000x xxxx

PIC18F4680 0Eh 100x xxxx

PIC18F4682 27h 010x xxxx

PIC18F4685 27h 011x xxxx

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device
Device ID Value

DEVID2 DEVID1

Legend: The ‘x’s in DEVID1 contain the device revision code.
Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

PIC18F2XXX/4XXX FAMILY

DS30009622M-page 44  2010-2015 Microchip Technology Inc.

BBSIZ<1:0>(1) CONFIG4L Boot Block Size Select bits (PIC18F2321/4321 devices only)

11 = 1K word (2 Kbytes) Boot Block
10 = 1K word (2 Kbytes) Boot Block
01 = 512 words (1 Kbyte) Boot Block
00 = 256 words (512 bytes) Boot Block

Boot Block Size Select bits (PIC18F2221/4221 devices only)

11 = 512 words (1 Kbyte) Boot Block
10 = 512 words (1 Kbyte) Boot Block
01 = 512 words (1 Kbyte) Boot Block
00 = 256 words (512 bytes) Boot Block

BBSIZ(1) CONFIG4L Boot Block Size Select bits 
(PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only)

1 = 2K words (4 Kbytes) Boot Block
0 = 1K word (2 Kbytes) Boot Block

LVP CONFIG4L Low-Voltage Programming Enable bit

1 = Low-Voltage Programming is enabled, RB5 is the PGM pin
0 = Low-Voltage Programming is disabled, RB5 is an I/O pin

STVREN CONFIG4L Stack Overflow/Underflow Reset Enable bit

1 = Reset on stack overflow/underflow is enabled
0 = Reset on stack overflow/underflow is disabled

CP5 CONFIG5L Code Protection bit (Block 5 code memory area) 
(PIC18F2685 and PIC18F4685 devices only)

1 = Block 5 is not code-protected
0 = Block 5 is code-protected

CP4 CONFIG5L Code Protection bit (Block 4 code memory area) 
(PIC18F2682/2685 and PIC18F4682/4685 devices only)

1 = Block 4 is not code-protected
0 = Block 4 is code-protected

CP3 CONFIG5L Code Protection bit (Block 3 code memory area)

1 = Block 3 is not code-protected
0 = Block 3 is code-protected

CP2 CONFIG5L Code Protection bit (Block 2 code memory area)

1 = Block 2 is not code-protected
0 = Block 2 is code-protected

CP1 CONFIG5L Code Protection bit (Block 1 code memory area)

1 = Block 1 is not code-protected
0 = Block 1 is code-protected

CP0 CONFIG5L Code Protection bit (Block 0 code memory area)

1 = Block 0 is not code-protected
0 = Block 0 is code-protected

CPD CONFIG5H Code Protection bit (Data EEPROM)

1 = Data EEPROM is not code-protected
0 = Data EEPROM is code-protected

CPB CONFIG5H Code Protection bit (Boot Block memory area)

1 = Boot Block is not code-protected
0 = Boot Block is code-protected

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name
Configuration

Words
Description

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following
code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

 2010-2015 Microchip Technology Inc. DS30009622M-page 47

PIC18F2XXX/4XXX FAMILY

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP
bit defaults to a ‘1’ (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a ‘0’ and RB5/PGM becomes a digital
I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3
is raised to VIHH. Once the LVP bit is programmed to a ‘0’, only the High-Voltage ICSP mode is available and only the
High-Voltage ICSP mode can be used to program the device.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word
locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning
message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An
option to not include the Configuration Word information may be provided. When embedding Configuration Word
information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM
information from the hex file. If data EEPROM information is not present, a simple warning message should be issued.
Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data
EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at
address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

• The contents of all code memory locations

• The Configuration Words, appropriately masked

• ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program
memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit
15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read
back as ‘1’s. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting
checksum calculations.

The mask contains a ‘0’ in unimplemented bit positions, or a ‘1’ where a choice can be made. When ANDed with the
value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying
VIHH to the MCLR/VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

