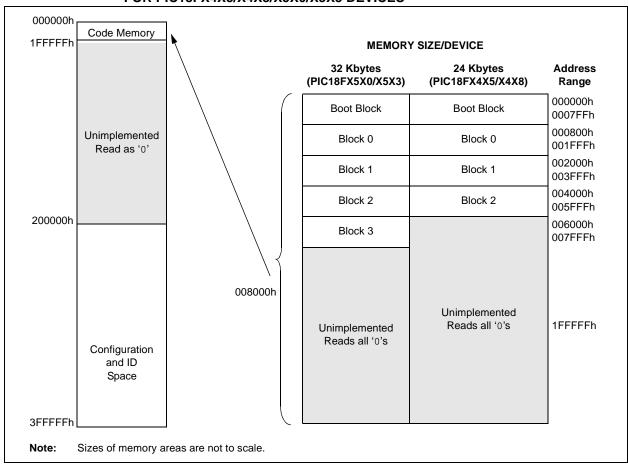





Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

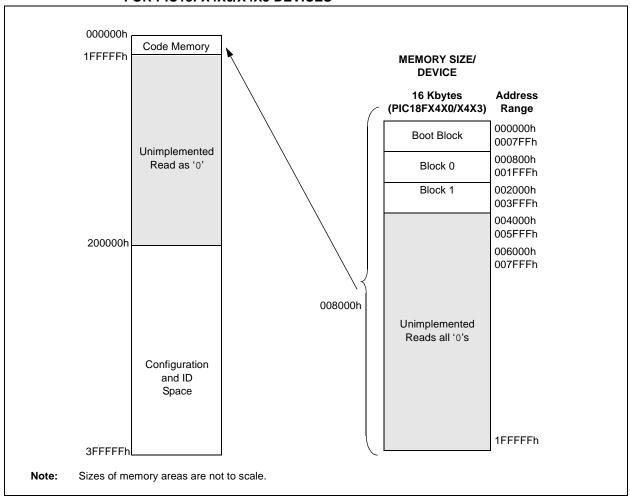

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                           |
|----------------------------|---------------------------------------------------------------------------|
|                            | A salting                                                                 |
| Product Status             | Active                                                                    |
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                               |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 16KB (8K x 16)                                                            |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 768 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 13x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-TQFP                                                                   |
| Supplier Device Package    | 44-TQFP (10x10)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f4410-i-pt |

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

| Device     | Code Memory Size (Bytes) |
|------------|--------------------------|
| PIC18F2455 |                          |
| PIC18F2458 | 000000h 005FFFh (24K)    |
| PIC18F4455 | 000000h-005FFFh (24K)    |
| PIC18F4458 |                          |
| PIC18F2510 |                          |
| PIC18F2520 |                          |
| PIC18F2523 |                          |
| PIC18F2550 |                          |
| PIC18F2553 | 000000h 007FFFh (20K)    |
| PIC18F4510 | 000000h-007FFFh (32K)    |
| PIC18F4520 |                          |
| PIC18F4523 |                          |
| PIC18F4550 |                          |
| PIC18F4553 |                          |

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES




For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

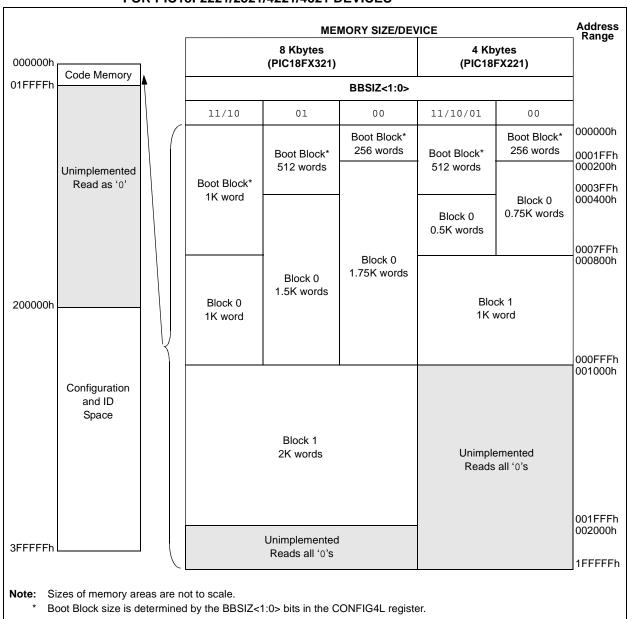
TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

| Device     | Code Memory Size (Bytes) |
|------------|--------------------------|
| PIC18F2410 |                          |
| PIC18F2420 |                          |
| PIC18F2423 |                          |
| PIC18F2450 | 000000h-003FFFh (16K)    |
| PIC18F4410 |                          |
| PIC18F4420 | ]                        |
| PIC18F4450 |                          |

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES



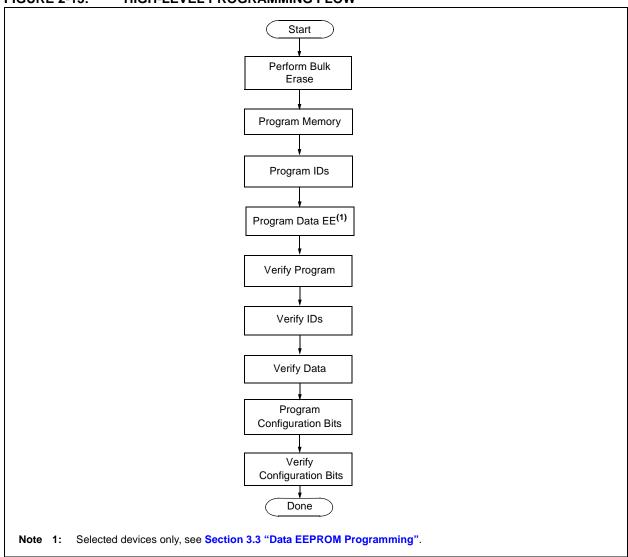
For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.


The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

| Device     | Code Memory Size (Bytes) |
|------------|--------------------------|
| PIC18F2221 | 000000h-000FFFh (4K)     |
| PIC18F4221 | 00000011-000FFF11 (4K)   |
| PIC18F2321 | 000000h 001EEEh (9K)     |
| PIC18F4321 | 000000h-001FFFh (8K)     |


FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES



#### 2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see **Section 3.3 "Data EEPROM Programming"**). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-13: HIGH-LEVEL PROGRAMMING FLOW



#### 2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising  $\overline{\text{MCLR}/\text{VPP/RE3}}$  to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

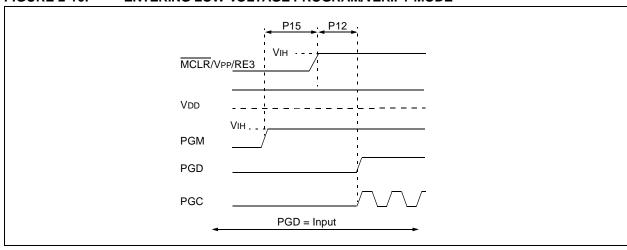
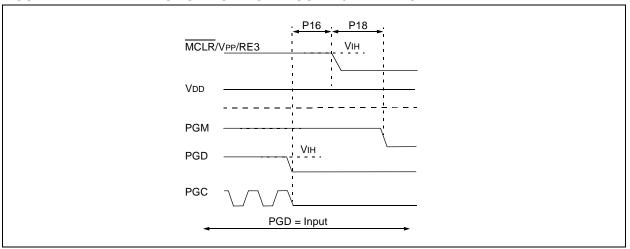




FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE



#### 3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

#### 3.1 ICSP Erase

#### 3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

| Description                      | Data<br>(3C0005h:3C0004h) |  |  |  |
|----------------------------------|---------------------------|--|--|--|
| Chip Erase                       | 3F8Fh                     |  |  |  |
| Erase Data EEPROM <sup>(1)</sup> | 0084h                     |  |  |  |
| Erase Boot Block                 | 0081h                     |  |  |  |
| Erase Configuration Bits         | 0082h                     |  |  |  |
| Erase Code EEPROM Block 0        | 0180h                     |  |  |  |
| Erase Code EEPROM Block 1        | 0280h                     |  |  |  |
| Erase Code EEPROM Block 2        | 0480h                     |  |  |  |
| Erase Code EEPROM Block 3        | 0880h                     |  |  |  |
| Erase Code EEPROM Block 4        | 1080h                     |  |  |  |
| Erase Code EEPROM Block 5        | 2080h                     |  |  |  |

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

#### 3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

**Note:** The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

| Devices (Arranged by Family)                   | Write Buffer Size (Bytes) | Erase Buffer Size (Bytes) |  |
|------------------------------------------------|---------------------------|---------------------------|--|
| PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321 | 8                         | 64                        |  |
| PIC18F2450, PIC18F4450                         | 16                        | 64                        |  |
| PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510 |                           |                           |  |
| PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520 |                           |                           |  |
| PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523 | 32                        | 64                        |  |
| PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580 |                           | 04                        |  |
| PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550 |                           |                           |  |
| PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553 |                           |                           |  |
| PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610 |                           |                           |  |
| PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620 | 64                        | 64                        |  |
| PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680 | - 64                      |                           |  |
| PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685 |                           |                           |  |

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

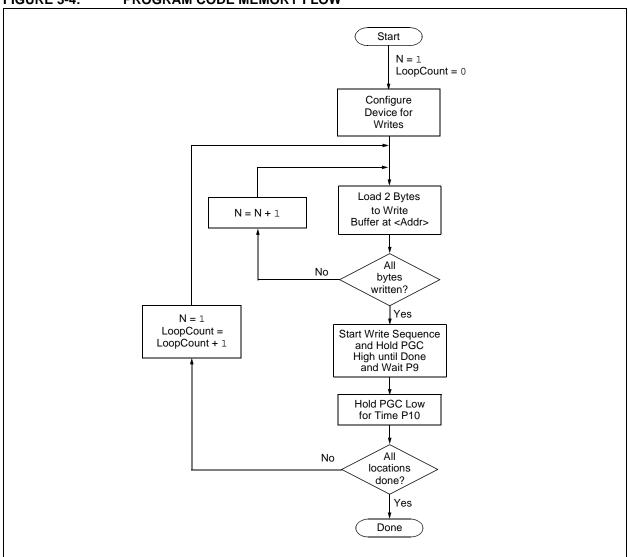
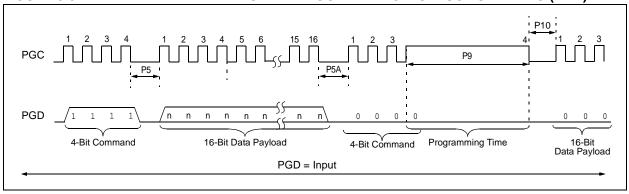




FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)



#### 3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see Section 3.1.1 "High-Voltage ICSP Bulk Erase"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations"**) and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY

| TABLE 3-6:                                           | MODIFYING CODE MEMORY                                                                                                           |                                                                                                                                                                                          |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4-Bit<br>Command                                     | Data Payload                                                                                                                    | Core Instruction                                                                                                                                                                         |  |  |  |  |
| Step 1: Direct access to code memory.                |                                                                                                                                 |                                                                                                                                                                                          |  |  |  |  |
| Step 2: Read and                                     | Step 2: Read and modify code memory (see Section 4.1 "Read Code Memory, ID Locations and Configuration Bits").                  |                                                                                                                                                                                          |  |  |  |  |
| 0000                                                 | 8E A6 BSF EECON1, EEPGD 9C A6 BCF EECON1, CFGS                                                                                  |                                                                                                                                                                                          |  |  |  |  |
| Step 3: Set the Ta                                   | ble Pointer for the block to b                                                                                                  | e erased.                                                                                                                                                                                |  |  |  |  |
| 0000<br>0000<br>0000<br>0000<br>0000                 | 0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>                        | MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>                                                |  |  |  |  |
| Step 4: Enable me                                    | emory writes and set up an e                                                                                                    | erase.                                                                                                                                                                                   |  |  |  |  |
| 0000                                                 | 84 A6<br>88 A6                                                                                                                  | BSF EECON1, WREN<br>BSF EECON1, FREE                                                                                                                                                     |  |  |  |  |
| Step 5: Initiate era                                 | ase.                                                                                                                            |                                                                                                                                                                                          |  |  |  |  |
| 0000                                                 | 82 A6<br>00 00                                                                                                                  | BSF EECON1, WR<br>NOP - hold PGC high for time P9 and low for time P10.                                                                                                                  |  |  |  |  |
| Step 6: Load write                                   | buffer. The correct bytes wi                                                                                                    | Il be selected based on the Table Pointer.                                                                                                                                               |  |  |  |  |
| 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>1101 | 0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6 <msb><lsb></lsb></msb></addr[7:0]></addr[8:15]></addr[21:16]> | MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.</addr[7:0]></addr[8:15]></addr[21:16]> |  |  |  |  |
|                                                      | •                                                                                                                               | Repeat as many times as necessary to fill the write buffer                                                                                                                               |  |  |  |  |
| 1111<br>0000                                         | -<br><msb><lsb><br/>00 00</lsb></msb>                                                                                           | Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.                                                                                               |  |  |  |  |
|                                                      | , , , ,                                                                                                                         | bugh 6, where the Address Pointer is incremented by the appropriate number of bytes the write cycle must be repeated enough times to completely rewrite the contents of                  |  |  |  |  |
| Step 7: Disable wi                                   | rites.                                                                                                                          |                                                                                                                                                                                          |  |  |  |  |
| 0000                                                 | 94 A6                                                                                                                           | BCF EECON1, WREN                                                                                                                                                                         |  |  |  |  |

#### 3.3 Data EEPROM Programming

| Note: Data EEPROM programming is not available or | n the following devices: |
|---------------------------------------------------|--------------------------|
| PIC18F2410                                        | PIC18F4410               |
| PIC18F2450                                        | PIC18F4450               |
| PIC18F2510                                        | PIC18F4510               |
| PIC18F2515                                        | PIC18F4515               |
| PIC18F2610                                        | PIC18F4610               |

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

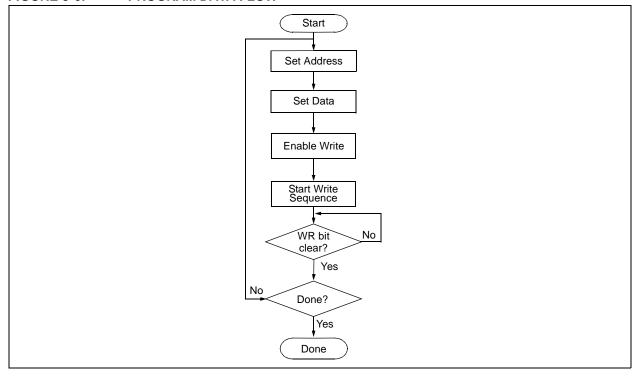
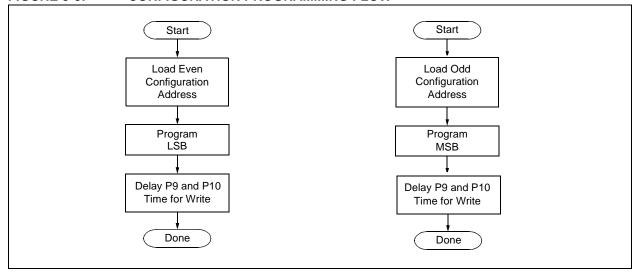




TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

| 4-Bit<br>Command  | Data Payload                      | Core Instruction                                          |  |  |  |
|-------------------|-----------------------------------|-----------------------------------------------------------|--|--|--|
| Step 1: Enable wr | ites and direct access to cor     | nfiguration memory.                                       |  |  |  |
| 0000              | 8E A6<br>8C A6                    | BSF EECON1, EEPGD BSF EECON1, CFGS                        |  |  |  |
|                   |                                   | e to be written. Write even/odd addresses. <sup>(1)</sup> |  |  |  |
| 0000              | 0E 30                             | MOVLW 30h                                                 |  |  |  |
| 0000              | 6E F8                             | MOVWF TBLPTRU                                             |  |  |  |
| 0000              | 0E 00                             | MOVLW 00h                                                 |  |  |  |
| 0000              | 6E F7                             | MOVWF TBLPRTH                                             |  |  |  |
| 0000              | 0E 00                             | MOVLW 00h                                                 |  |  |  |
| 0000              | 6E F6                             | MOVWF TBLPTRL                                             |  |  |  |
| 1111              | <msb ignored=""><lsb></lsb></msb> | Load 2 bytes and start programming.                       |  |  |  |
| 0000              | 00 00                             | NOP - hold PGC high for time P9 and low for time P10.     |  |  |  |
| 0000              | 0E 01                             | MOVLW 01h                                                 |  |  |  |
| 0000              | 6E F6                             | MOVWF TBLPTRL                                             |  |  |  |
| 1111              | <msb><lsb ignored=""></lsb></msb> | Load 2 bytes and start programming.                       |  |  |  |
| 0000              | 00 00                             | NOP - hold PGC high for time P9 and low for time P10.     |  |  |  |

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

#### FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW



#### 4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 4.1** "**Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

Start Set TBLPTR = 200000h Set TBLPTR = 0 Read Low Byte Read Low Byte with Post-Increment with Post-Increment Read High Byte Increment Read High Byte with Post-Increment Pointer with Post-Increment Does Does No Word = Expect Failure, Word = Expect Failure, Data? Report Data? Report Error Error Yes Yes ΑII No No **ID** locations code memory verified? verified? Yes Yes Done

FIGURE 4-2: VERIFY CODE MEMORY FLOW

#### 4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits"** for implementation details of reading configuration data.

#### 4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

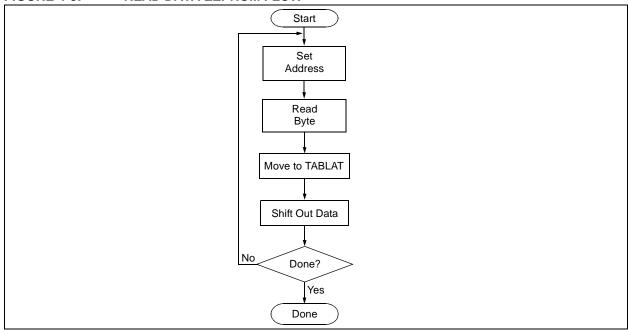



TABLE 4-2: READ DATA EEPROM MEMORY

| 4-Bit<br>Command                | Data Payload                                      | Core Instruction                                                   |  |  |
|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--|--|
| Step 1: Direct ac               | cess to data EEPROM.                              |                                                                    |  |  |
| 0000                            | 9E A6<br>9C A6                                    | BCF EECON1, EEPGD<br>BCF EECON1, CFGS                              |  |  |
| Step 2: Set the d               | ata EEPROM Address Pointe                         | er.                                                                |  |  |
| 0000<br>0000<br>0000<br>0000    | 0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>   | MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr> |  |  |
| Step 3: Initiate a memory read. |                                                   |                                                                    |  |  |
| 0000                            | 80 A6                                             | BSF EECON1, RD                                                     |  |  |
| Step 4: Load data               | a into the Serial Data Holding                    | register.                                                          |  |  |
| 0000<br>0000<br>0000<br>0010    | 50 A8<br>6E F5<br>00 00<br><msb><lsb></lsb></msb> | MOVF EEDATA, W, 0 MOVWF TABLAT NOP Shift Out Data <sup>(1)</sup>   |  |  |

Note 1: The <LSB> is undefined. The <MSB> is the data.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

| File N                   | lame                  | Bit 7 | Bit 6     | Bit 5                   | Bit 4                 | Bit 3                 | Bit 2                | Bit 1   | Bit 0                 | Default/<br>Unprogrammed<br>Value  |                      |
|--------------------------|-----------------------|-------|-----------|-------------------------|-----------------------|-----------------------|----------------------|---------|-----------------------|------------------------------------|----------------------|
| 300000h <sup>(1,8)</sup> | CONFIG1L              | _     | -         | USBDIV                  | CPUDIV1               | CPUDIV0               | PLLDIV2              | PLLDIV1 | PLLDIV0               | 00 0000                            |                      |
| 300001h                  | CONFIG1H              | IESO  | FCMEN     | _                       | _                     | FOSC3                 | FOSC2                | FOSC1   | FOSC0                 | 00 0111                            |                      |
|                          |                       |       |           |                         |                       |                       |                      |         |                       | 00 0101 <sup>(1,8)</sup>           |                      |
| 300002h                  | CONFIG2L              | _     | _         | VREGEN <sup>(1,8)</sup> | BORV1                 | BORV0                 | BOREN1               | BOREN0  | PWRTEN                | 1 1111<br>01 1111 <sup>(1,8)</sup> |                      |
| 300003h                  | CONFIG2H              |       |           | - VREGEN                | WDTPS3                | WDTPS2                | WDTPS1               | WDTPS0  | WDTEN                 | 1 1111                             |                      |
| -                        |                       |       |           |                         |                       |                       |                      |         | CCP2MX <sup>(7)</sup> | 1011(7)                            |                      |
| 300005h                  | CONFIG3H              | MCLRE | _         | _                       | _                     | _                     | LPT1OSC              | PBADEN  | _                     | 101-                               |                      |
|                          |                       |       |           |                         | ICPRT <sup>(1)</sup>  | _                     | _                    |         |                       |                                    | 1001-1(1)            |
|                          |                       |       | BUG XINST | BBSIZ1                  | BBSIZ0                | -                     | LVP                  | _       | STVREN                | 1000 -1-1                          |                      |
| 300006h                  | CONFIG4L DEBUG        | DEBUG |           | _                       | BBSIZ <sup>(3)</sup>  | _                     |                      |         |                       | 10-0 -1-1(3)                       |                      |
|                          |                       |       |           | ICPRT <sup>(8)</sup>    | _                     | BBSIZ <sup>(8)</sup>  |                      |         |                       | 100- 01-1(8)                       |                      |
|                          |                       |       |           |                         | BBSIZ1 <sup>(2)</sup> | BBSIZ2 <sup>(2)</sup> | ı                    |         |                       |                                    | 1000 -1-1 <b>(2)</b> |
| 300008h                  | CONFIG5L              | _     | -         | CP5 <sup>(10)</sup>     | CP4 <sup>(9)</sup>    | CP3 <sup>(4)</sup>    | CP2 <sup>(4)</sup>   | CP1     | CP0                   | 11 1111                            |                      |
| 300009h                  | CONFIG5H              | CPD   | СРВ       | l                       | _                     | I                     | -                    | I       |                       | 11                                 |                      |
| 30000Ah                  | CONFIG6L              | _     |           | WRT5 <sup>(10)</sup>    | WRT4 <sup>(9)</sup>   | WRT3 <sup>(4)</sup>   | WRT2 <sup>(4)</sup>  | WRT1    | WRT0                  | 11 1111                            |                      |
| 30000Bh                  | CONFIG6H              | WRTD  | WRTB      | WRTC <sup>(5)</sup>     | _                     | _                     | _                    | _       |                       | 111                                |                      |
| 30000Ch                  | CONFIG7L              | _     | _         | EBTR5 <sup>(10)</sup>   | EBTR4 <sup>(9)</sup>  | EBTR3 <sup>(4)</sup>  | EBTR2 <sup>(4)</sup> | EBTR1   | EBTR0                 | 11 1111                            |                      |
| 30000Dh                  | CONFIG7H              | _     | EBTRB     | -                       | _                     | -                     |                      | _       | _                     | -1                                 |                      |
| 3FFFFEh                  | DEVID1 <sup>(6)</sup> | DEV2  | DEV1      | DEV0                    | REV4                  | REV3                  | REV2                 | REV1    | REV0                  | See Table 5-2                      |                      |
| 3FFFFFh                  | DEVID2 <sup>(6)</sup> | DEV10 | DEV9      | DEV8                    | DEV7                  | DEV6                  | DEV5                 | DEV4    | DEV3                  | See Table 5-2                      |                      |

**Legend:** - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
  - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
  - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
  - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
  - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
  - **6:** DEVID registers are read-only and cannot be programmed by the user.
  - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
  - 8: Implemented on PIC18F2450/4450 devices only.
  - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
  - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

| Bit Name    | Configuration Words | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PLLDIV<2:0> | CONFIG1L            | Oscillator Selection bits<br>(PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and<br>PIC18F2450/4450 devices only)                                                                                                                                                                                                                                                                                                                                             |
|             |                     | Divider must be selected to provide a 4 MHz input into the 96 MHz PLL:  111 = Oscillator divided by 12 (48 MHz input)  110 = Oscillator divided by 10 (40 MHz input)  101 = Oscillator divided by 6 (24 MHz input)  100 = Oscillator divided by 5 (20 MHz input)  011 = Oscillator divided by 4 (16 MHz input)  010 = Oscillator divided by 3 (12 MHz input)  001 = Oscillator divided by 2 (8 MHz input)  000 = No divide - oscillator used directly (4 MHz input) |
| VREGEN      | CONFIG2L            | USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)  1 = USB voltage regulator is enabled 0 = USB voltage regulator is disabled                                                                                                                                                                                                                                                                |
| BORV<1:0>   | CONFIG2L            | Brown-out Reset Voltage bits  11 = VBOR is set to 2.0V  10 = VBOR is set to 2.7V  01 = VBOR is set to 4.2V  00 = VBOR is set to 4.5V                                                                                                                                                                                                                                                                                                                                |
| BOREN<1:0>  | CONFIG2L            | Brown-out Reset Enable bits  11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled)  10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled)  01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled)  00 = Brown-out Reset is disabled in hardware and software                                                                                                                      |
| PWRTEN      | CONFIG2L            | Power-up Timer Enable bit  1 = PWRT is disabled  0 = PWRT is enabled                                                                                                                                                                                                                                                                                                                                                                                                |
| WDPS<3:0>   | CONFIG2H            | Watchdog Timer Postscaler Select bits  1111 = 1:32,768  1110 = 1:16,384  1101 = 1:8,192  1100 = 1:4,096  1011 = 1:2,048  1010 = 1:512  1000 = 1:256  0111 = 1:128  0110 = 1:64  0101 = 1:32  0100 = 1:16  0011 = 1:8  0010 = 1:4  0001 = 1:2  0000 = 1:1                                                                                                                                                                                                            |

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

<sup>2:</sup> Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

| Bit Name                  | Configuration Words | Description                                                                                                                                                                                                             |  |  |  |  |  |  |
|---------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| WDTEN                     | CONFIG2H            | Watchdog Timer Enable bit  1 = WDT is enabled  0 = WDT is disabled (control is placed on the SWDTEN bit)                                                                                                                |  |  |  |  |  |  |
| MCLRE                     | CONFIG3H            | MCLR Pin Enable bit  1 = MCLR pin is enabled, RE3 input pin is disabled  0 = RE3 input pin is enabled, MCLR pin is disabled                                                                                             |  |  |  |  |  |  |
| LPT1OSC                   | CONFIG3H            | Low-Power Timer1 Oscillator Enable bit  1 = Timer1 is configured for low-power operation  0 = Timer1 is configured for high-power operation                                                                             |  |  |  |  |  |  |
| PBADEN                    | CONFIG3H            | PORTB A/D Enable bit  1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset  0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset                                                          |  |  |  |  |  |  |
| PBADEN                    | CONFIG3H            | PORTB A/D Enable bit (PIC18FXX8X devices only)  1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset  0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset             |  |  |  |  |  |  |
| CCP2MX                    | CONFIG3H            | CCP2 MUX bit  1 = CCP2 input/output is multiplexed with RC1 <sup>(2)</sup> 0 = CCP2 input/output is multiplexed with RB3                                                                                                |  |  |  |  |  |  |
| DEBUG                     | CONFIG4L            | Background Debugger Enable bit  1 = Background debugger is disabled, RB6 and RB7 are configured as general purpose I/O pins  0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit Debug          |  |  |  |  |  |  |
| XINST                     | CONFIG4L            | Extended Instruction Set Enable bit  1 = Instruction set extension and Indexed Addressing mode are enabled  0 = Instruction set extension and Indexed Addressing mode are disabled  (Legacy mode)                       |  |  |  |  |  |  |
| ICPRT                     | CONFIG4L            | Dedicated In-Circuit (ICD/ICSP <sup>TM</sup> ) Port Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)  1 = ICPORT is enabled 0 = ICPORT is disabled                    |  |  |  |  |  |  |
| BBSIZ<1:0> <sup>(1)</sup> | CONFIG4L            | Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)  11 = 4K words (8 Kbytes) Boot Block  10 = 4K words (8 Kbytes) Boot Block  01 = 2K words (4 Kbytes) Boot Block  00 = 1K word (2 Kbytes) Boot Block |  |  |  |  |  |  |
| BBSIZ<2:1> <sup>(1)</sup> | CONFIG4L            | Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only)  11 = 4K words (8 Kbytes) Boot Block  10 = 4K words (8 Kbytes) Boot Block  01 = 2K words (4 Kbytes) Boot Block  00 = 1K word (2 Kbytes) Boot Block |  |  |  |  |  |  |

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

<sup>2:</sup> Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

| Bit Name  | Configuration Words | Description                                                                                                                                                                  |  |  |  |  |
|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| EBTR0     | CONFIG7L            | Table Read Protection bit (Block 0 code memory area)                                                                                                                         |  |  |  |  |
|           |                     | <ul> <li>1 = Block 0 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 0 is protected from Table Reads executed in other blocks</li> </ul>       |  |  |  |  |
| EBTRB     | CONFIG7H            | Table Read Protection bit (Boot Block memory area)                                                                                                                           |  |  |  |  |
|           |                     | <ul> <li>1 = Boot Block is not protected from Table Reads executed in other blocks</li> <li>0 = Boot Block is protected from Table Reads executed in other blocks</li> </ul> |  |  |  |  |
| DEV<10:3> | DEVID2              | Device ID bits                                                                                                                                                               |  |  |  |  |
|           |                     | These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.                                                                                   |  |  |  |  |
| DEV<2:0>  | DEVID1              | Device ID bits                                                                                                                                                               |  |  |  |  |
|           |                     | These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.                                                                                  |  |  |  |  |
| REV<4:0>  | DEVID1              | Revision ID bits                                                                                                                                                             |  |  |  |  |
|           |                     | These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.                                                 |  |  |  |  |

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

<sup>2:</sup> Not available in PIC18FXX8X and PIC18F2450/4450 devices.

#### 5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

- **Note 1:** The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.
  - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

#### 5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

#### 5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

#### 5.6 Checksum Computation

The checksum is calculated by summing the following:

- · The contents of all code memory locations
- · The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

#### 5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

#### 5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

| Device         | Memory<br>Size<br>(Bytes) |                  | Ending Address |         |         |          |         |          |         | Size (Bytes)  |                   |                     |                 |
|----------------|---------------------------|------------------|----------------|---------|---------|----------|---------|----------|---------|---------------|-------------------|---------------------|-----------------|
|                |                           | Pins             | Boot<br>Block  | Block 0 | Block 1 | Block 2  | Block 3 | Block 4  | Block 5 | Boot<br>Block | Block 0           | Remaining<br>Blocks | Device<br>Total |
| PIC18F2221 4K  | 414                       | 00               | 0001FF         | 0007FF  | 000555  |          |         |          |         | 512           | 1536              | 2048                | 4096            |
|                | 28                        | 0003FF           | UUU/FF         | 000FFF  | _       | _        | _       | -        | 1024    | 1024          | 20 <del>4</del> 0 | 4096                |                 |
| PIC18F2321 8K  |                           |                  | 0001FF         |         |         |          |         |          |         | 512           | 3584              |                     |                 |
|                | 28                        | 0003FF           | 000FFF         | 001FFF  | _       | <u> </u> | -       | _        | 1024    | 3072          | 4096              | 8192                |                 |
|                |                           |                  | 0007FF         |         |         |          |         |          | [       | 2048          | 2048              |                     |                 |
| PIC18F2410     | 16K                       | 28               | 0007FF         | 001FFF  | 003FFF  | _        | -       | _        | _       | 2048          | 6144              | 8192                | 16384           |
| PIC18F2420     | 16K                       | 28               | 0007FF         | 001FFF  | 003FFF  | _        |         |          | _       | 2048          | 6144              | 8192                | 16384           |
| PIC18F2423     | 16K                       | 28               | 0007FF         | 001FFF  | 003FFF  | _        | -       | _        | _       | 2048          | 6144              | 8192                | 16384           |
| DIO4050 :50    | 16K                       | 28               | 0007FF         | 001FFF  | 000555  |          |         |          |         | 2048          | 6144              | 8192                | 16384           |
| PIC18F2450     | ION                       | 20               | 000FFF         | 001777  | 003FFF  | _        |         | _        |         | 4096          | 4096              |                     |                 |
| PIC18F2455     | 24K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | _       | _        | _       | 2048          | 6144              | 16384               | 24576           |
| PIC18F2458     | 24K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | _       | _        | _       | 2048          | 6144              | 16384               | 24576           |
| DIO4050400     | 4016                      | -00              | 0007FF         | 004555  |         |          |         |          |         | 2048          | 6144              | 0400                | 16384           |
| PIC18F2480     | 16K                       | 28               | 000FFF         | 001FFF  | 003FFF  |          | _       |          | _       | 4096          | 4096              | 8192                |                 |
| PIC18F2510     | 32K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | 007FFF  | _        | _       | 2048          | 6144              | 24576               | 32768           |
| PIC18F2515     | 48K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | _       | _        | _       | 2048          | 14336             | 32768               | 49152           |
| PIC18F2520     | 32K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | 007FFF  | _        | _       | 2048          | 14336             | 16384               | 32768           |
| PIC18F2523     | 32K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | 007FFF  | _        | _       | 2048          | 14336             | 16384               | 32768           |
| PIC18F2525     | 48K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | _       | _        | _       | 2048          | 14336             | 32768               | 49152           |
| PIC18F2550     | 32K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | 007FFF  | _        | _       | 2048          | 6144              | 24576               | 32768           |
| PIC18F2553     | 32K                       | 28               | 0007FF         | 001FFF  | 003FFF  | 005FFF   | 007FFF  | _        | _       | 2048          | 6144              | 24576               | 32768           |
| PIC18F2580     | 32K                       | 28               | 0007FF         |         |         |          | 007FFF  | _        | _       | 2048          | 6144              | 24576               | 32768           |
|                |                           |                  | 000FFF         | 001FFF  | 003FFF  |          |         |          |         | 4096          | 4096              |                     |                 |
|                |                           | 48K 28           | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | _       | _        | _       | 2048          | 14336             | 32768               | 49152           |
| PIC18F2585 48  | 48K                       |                  | 000FFF         |         |         |          |         |          |         | 4096          | 12288             |                     |                 |
|                | .0.1                      |                  | 001FFF         |         |         |          |         |          |         | 8192          | 8192              |                     |                 |
| PIC18F2610     | 64K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | 00FFFF  | _        | _       | 2048          | 14336             | 49152               | 65536           |
| PIC18F2620     | 64K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | 00FFFF  | _        | _       | 2048          | 14336             | 49152               | 65536           |
| PIC18F2680     | 64K                       | 28               | 0007FF         | 003FFF  | 007FFF  |          | 00FFFF  | _        | _       | 2048          | 14336             | 49152               | 65536           |
|                |                           |                  | 000FFF         |         |         |          |         |          |         | 4096          | 12288             |                     |                 |
|                |                           |                  | 001FFF         |         |         |          |         |          |         | 8192          | 8192              |                     |                 |
| PIC18F2682     | 80K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | 00FFFF  | 013FFF   | _       | 2048          | 14336             | 65536               | 81920           |
|                |                           |                  | 000FFF         |         |         |          |         |          |         | 4096          | 12288             |                     |                 |
|                |                           |                  | 001FFF         |         |         |          |         |          |         | 8192          | 8192              |                     |                 |
| PIC18F2685     | 96K                       | 28               | 0007FF         | 003FFF  | 007FFF  | 00BFFF   | 00FFFF  | 013FFF   | 017FFF  | 2048          | 14336             | 81920               | 98304           |
|                |                           |                  | 000FFF         |         |         |          |         |          |         | 4096          | 12288             |                     |                 |
|                |                           |                  | 001FFF         |         |         |          |         |          |         | 8192          | 8192              |                     |                 |
|                | 4K                        |                  | 0001FF         | 0007FF  | 000FFF  | _        | _       | _        |         | 512           | 1536              | 2048                | 4096            |
| PIC18F4221     |                           | 40               | 0003FF         |         |         |          |         |          | _       | 1024          | 1024              |                     |                 |
|                | 8K                        |                  | 0000FF         |         |         |          | _       |          | _       | 512           | 3584              | 4096                | 8192            |
| PIC18F4321     |                           | 40               | 0003FF         | 000FFF  | 001FFF  |          |         |          |         | 1024          | 3072              |                     |                 |
| F 10 101 432 1 |                           |                  | 0000FF         | 000111  | 001111  |          |         |          |         | 2048          | 2048              |                     |                 |
| PIC18F4410     | 16K                       | 40               | 0007FF         | 001FFF  | 003FFF  |          |         |          |         | 2048          | 6144              | 8192                | 16384           |
| PIC18F4410     | 16K                       | 40               | 0007FF         | 001FFF  | 003FFF  |          |         |          |         | 2048          | 6144              | 8192                | 16384           |
| PIC18F4423     |                           | 40               | 0007FF         | 001FFF  | 003FFF  |          |         |          |         | 2048          | 6144              |                     | 16384           |
| 1 10 101 4423  | ION                       | 16K 40<br>16K 40 | 0007FF         | JUILER  | 0001 FF |          | _       | _        | _       | 2048          | 6144              | 8192<br>- 8192      | 16384           |
| PIC18F4450     | 16K                       |                  | 0007FF         | 001FFF  | 003FFF  |          |         | _        |         | 4096          | 4096              |                     |                 |
| l egend:       |                           |                  |                |         |         |          |         | <u> </u> |         | 4090          | 4090              |                     |                 |

Legend:

— = unimplemented.

# 6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units **Conditions** No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s THLD3 MCLR/VPP/RE3 ↓ to VDD ↓ 100 ns P18 MCLR/VPP/RE3 ↓ to PGM ↓ 0 THLD4

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

- 2: When ICPRT = 1, this specification also applies to ICVPP.
- 3: At 0°C-50°C.

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

<sup>2</sup> ms (for HS/PLL mode only) + 1.5  $\mu$ s (for EC mode only)