

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4410t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

D : 11	During Programming			
Pin Name	Pin Name Pin Type		Pin Description	
MCLR/Vpp/RE3	Vpp	Р	Programming Enable	
VDD ⁽²⁾	Vdd	Р	Power Supply	
VSS ⁽²⁾	Vss	Р	Ground	
RB5	PGM	I	Low-Voltage ICSP [™] Input when LVP Configuration bit equals '1' ⁽¹⁾	
RB6	PGC	I	Serial Clock	
RB7	PGD	I/O	Serial Data	

Legend: I = Input, O = Output, P = Power

Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
-

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

• PIC18F2610

- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

MCLR/VPP/RE3	°	28 RB7/PGD
RAO	2	27 RB6/PGC
RA1	3	26 RB5/PGM
RA2	4	25 RB4
RA3	0 6 8 2 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	24 🗌 RB3
RA4	6 🎗	23 RB2
RA5	7 🖸	22 RB1
	8 8	21 RB0
OSC1	9 <u>0</u>	
OSC2	10 L	
RC0	11	18 RC7
RC1	12	17 🗌 RC6
RC2	13	16 RC5
RC3	14	15 RC4

The following devices are included in 28-pin QFN parts:

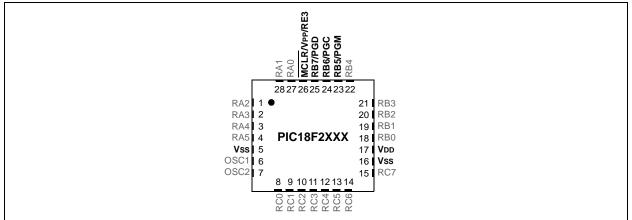
PIC18F2221PIC18F2321

• PIC18F2410

• PIC18F2420

PIC18F2423PIC18F2450

.


• PIC18F2480

- PIC18F2510
 - PIC18F2520

.

- PIC18F2523
- PIC18F2580
- PIC18F2682
- PIC18F2685

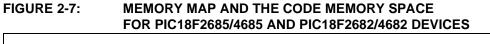
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4458PIC18F4480PIC18F4510

• PIC18F4455

- PIC18F4515PIC18F4520
- PIC18F4523PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585

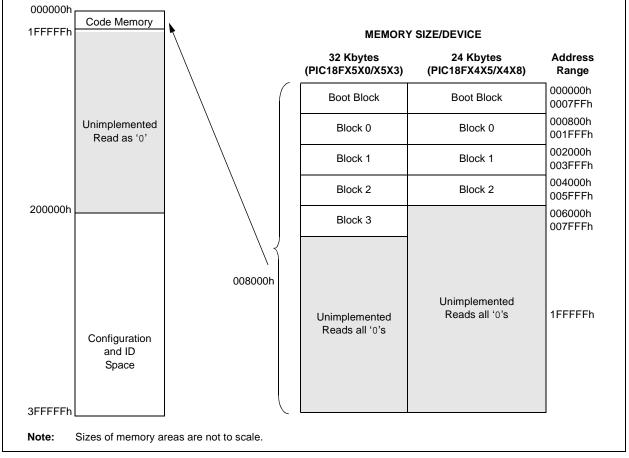

- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

•

FIGURE 2-3: 40-P

40-Pin PDIP

MCLR/Vpp/RE3	°	40 RB7/PGD
RAO		39 B RB6/PGC
RA1		38 🗖 RB5/PGM
RA2		37 🗖 RB4
RA3		36 🗖 RB3
RA4	6	35 🗖 RB2
RA5	7	34 🗖 RB1
RE0	8 🎽	33 🗖 RB0
RE1	9 🗙	32 🗍 VDD
RE2		31 🗖 Vss
VDD	11 8	30 🗌 RD7
Vss	12 Ú	29 🗖 RD6
OSC1		28 RD5
OSC2		27 🗖 RD4
RC0		26 🗖 RC7
RC1		25 RC6
RC2		24 C5
RC3		23 RC4
RD0		22 RD3
RD1	20	21 RD2

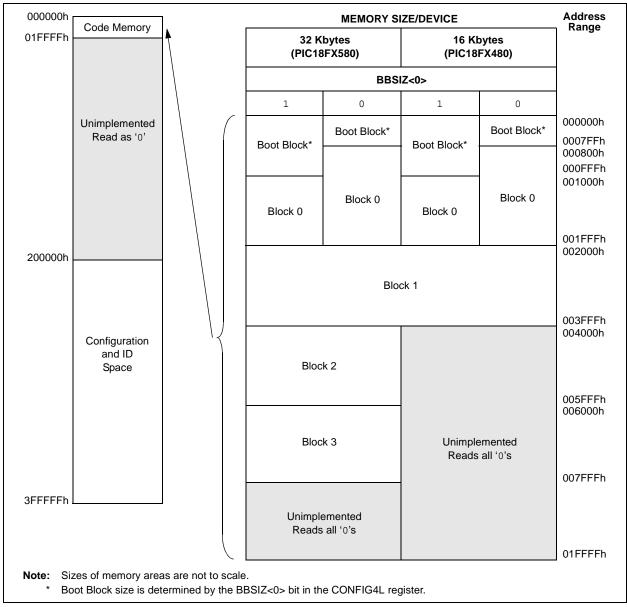

000000h					MEMORY S	IZE/DEVICE			Addre Rang		
)1FFFFh	Code Memory		96 Kbytes (PIC18F2685/4685)			80 Kbytes (PIC18F2682/4682)			Tung		
					BBSIZ1	BBSIZ2					
			11/10	01	00	11/10	01	00			
				Boot	Boot Block*		Boot	Boot Block*	00000 0007F		
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800h 000FFFt		
					Block 0		Block 0	Block 0	00100 001FF		
			Block 0	Block 0	Block 0	Block 0		BIOCK U	00200		
200000h									003FF 00400		
		Block 1			Block 1						
				Block 2			Block 2		007FF 00800		
	Configuration and ID	and ID	Block 3			Block 3			00BFF 00C00		
	Space	Space		Space		Block 4		Block 4			00FFF 01000
									013FF 01400		
			Block 5			Unimplemented Reads all '0's			017FF		
BFFFFFh			Unimplemented Reads all '0's		01FFF						

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2455	
PIC18F2458	
PIC18F4455	000000h-005FFFh (24K)
PIC18F4458	
PIC18F2510	
PIC18F2520	
PIC18F2523	
PIC18F2550	
PIC18F2553	
PIC18F4510	000000h-007FFFh (32K)
PIC18F4520	
PIC18F4523	
PIC18F4550	1
PIC18F4553	

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES


For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

^{© 2010-2015} Microchip Technology Inc.

TABLE 2-6:IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES

For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

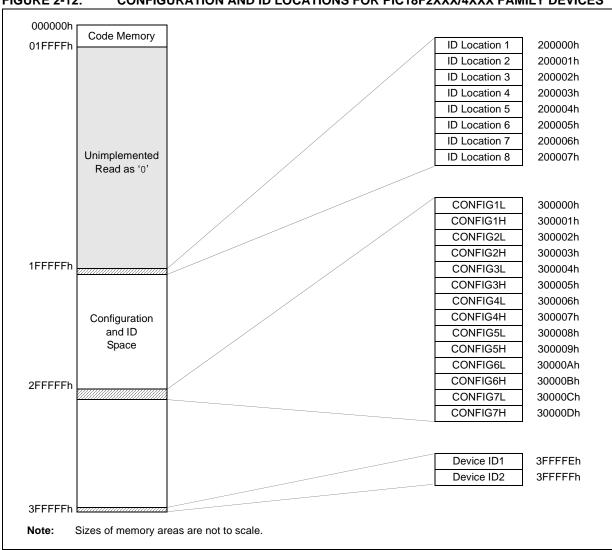
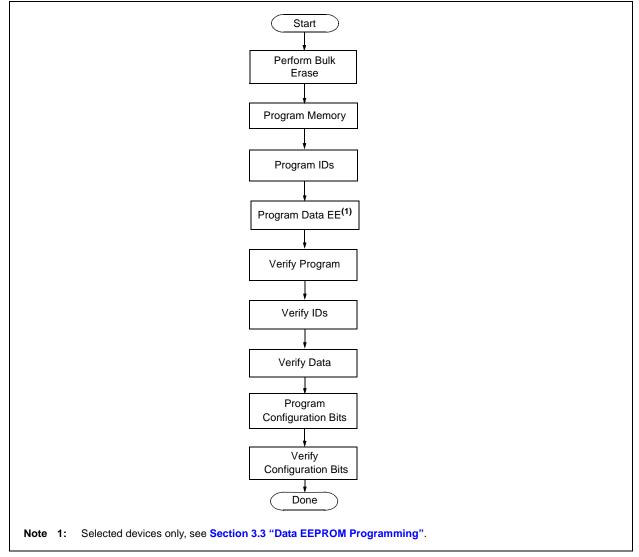

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

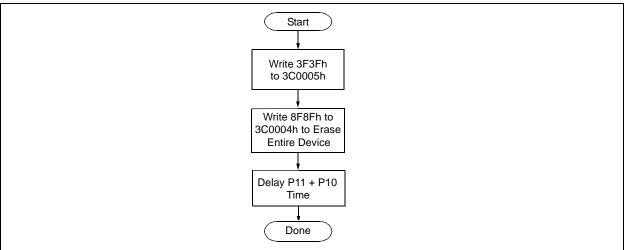
Device	Code Memory Size (Bytes)
PIC18F2221	
PIC18F4221	000000h-000FFFh (4K)
PIC18F2321	000000h 001EEEh (9K)
PIC18F4321	000000h-001FFFh (8K)

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES


00000h Code Me	mory		8 Kbytes (PIC18FX321)	MORY SIZE/DEV	4 Kb	oytes FX221)	Ra
IFFFFh				BBSIZ<1:0>			
		11/10	01	00	11/10/01	00	
Unimplem Read a		Boot Block*	Boot Block* 512 words	Boot Block* 256 words	Boot Block* 512 words	Boot Block* 256 words	000
incau a	3 0	1K word			Block 0 0.5K words	Block 0 0.75K words	000
00000h		Block 0 1K word	Block 0 1.5K words	Block 0 1.75K words	-	ock 1 word	000
Configur and I Spac	D		Block 1 2K words			emented s all '0's	000
FFFFh			Unimplemented Reads all '0's				001 002 1FF

2.4 High-Level Overview of the Programming Process

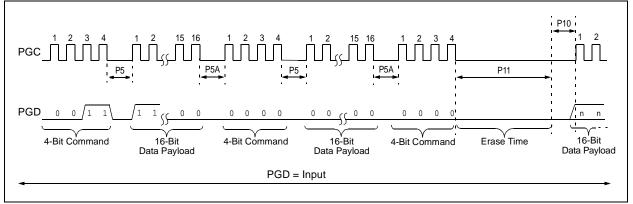
Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see Section 3.3 "Data EEPROM Programming"). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.



4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	OE 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

FIGURE 3-1: BULK ERASE FLOW


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

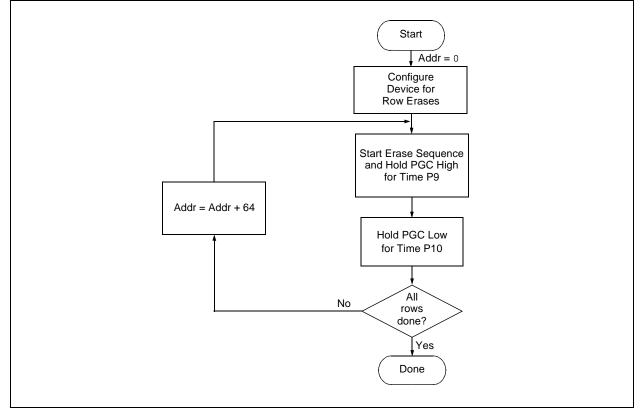
If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 "Data EEPROM Programming") must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in Section 3.3 "Data EEPROM Programming" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.3 "Memory Maps").

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.


The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

4-Bit Command	Data Payload	Core Instruction				
Step 1: Direct ac	Step 1: Direct access to code memory and enable writes.					
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN				
Step 2: Point to f	irst row in code memory.	·				
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL				
Step 3: Enable e	rase and erase single ro	W.				
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.				
Step 4: Repeat S	Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.					

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	cess to code memory an	d enable writes.
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS
Step 2: Load writ	e buffer.	
0000 0000 0000 0000 0000 0000 Step 3: Repeat fc	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 or all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL 28.</addr[7:0]></addr[15:8]></addr[21:16]>
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
Step 4: Load write	e buffer for last two bytes	5.
1111 0000	<msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.
To continue writin	ng data, repeat Steps 2 th	brough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.

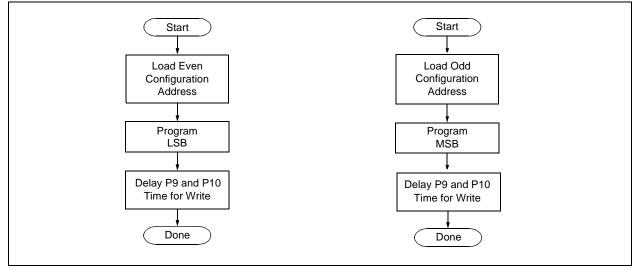
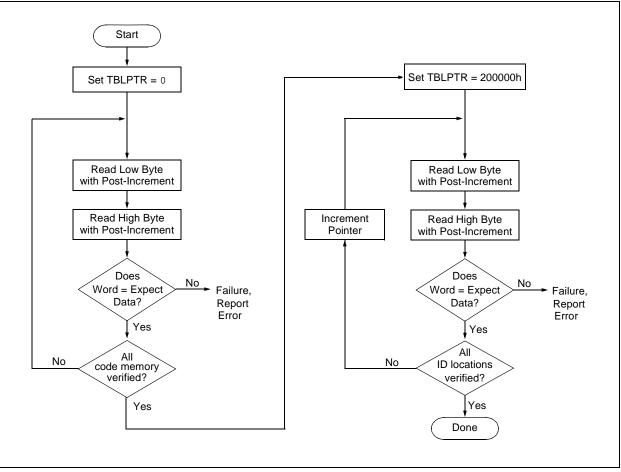

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction					
Step 1: Enable w	Step 1: Enable writes and direct access to configuration memory.						
0000 0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS					
Step 2: Set Table	Pointer for configuration byt	e to be written. Write even/odd addresses. ⁽¹⁾					
0000 0000 0000 0000 0000 1111	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <msb ignored=""><lsb></lsb></msb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming.					
0000 0000 0000 1111 0000	00 00 0E 01 6E F6 <msb><lsb ignored=""> 00 00</lsb></msb>	NOP - hold PGC high for time P9 and low for time P10. MOVLW 01h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.


FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

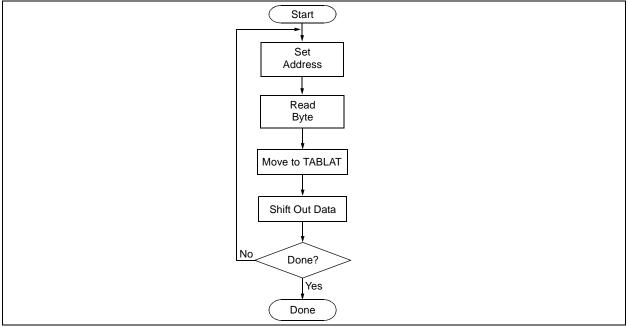
4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits


A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	Step 1: Direct access to data EEPROM.						
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Set the da	Step 2: Set the data EEPROM Address Pointer.						
0000 0000 0000 0000 Step 3: Initiate a	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>					
0000	80 A6	BSF EECON1, RD					
Step 4: Load data	Step 4: Load data into the Serial Data Holding register.						
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, O MOVWF TABLAT NOP Shift Out Data ⁽¹⁾					

Note 1: The <LSB> is undefined. The <MSB> is the data.

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value			
Device	DEVID2	DEVID1		
PIC18F4585	0Eh	101x xxxx		
PIC18F4610	0Ch	001x xxxx		
PIC18F4620	0Ch	000x xxxx		
PIC18F4680	0Eh	100x xxxx		
PIC18F4682	27h	010x xxxx		
PIC18F4685	27h	011x xxxx		

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

Configuration **Bit Name** Description Words BBSIZ<1:0>(1) CONFIG4L Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block BBSIZ⁽¹⁾ CONFIG4I Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block LVP CONFIG4L Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin STVREN CONFIG4L Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled CP5 CONFIG5L Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected CP4 CONFIG5L Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected CP3 CONFIG5L Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected CP2 CONFIG5L Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected CP1 CONFIG5L Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected CP0 CONFIG5L Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected CPD CONFIG5H Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected СРВ CONFIG5H Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description		
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)		
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks 		
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)		
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks 		
DEV<10:3>	DEVID2	Device ID bits		
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.		
DEV<2:0>	DEVID1	Device ID bits		
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.		
REV<4:0>	DEVID1	Revision ID bits		
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.		

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB[®] IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

	Standard Operating Conditions Operating Temperature: 25°C is recommended						
Param No.	Sym	Characteristic	Min	Max	Units	Conditions	
P11A	Tdrwt	Data Write Polling Time	4	—	ms		
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	_	μS		
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	_	ns	(Note 2)	
P14	TVALID	Data Out Valid from PGC ↑	10	—	ns		
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS	(Note 2)	
P16	TDLY8	Delay Between Last PGC \downarrow and $\overline{\mathrm{MCLR}}/\mathrm{VPP}/\mathrm{RE3}\downarrow$	0	_	S		
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns		
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	s		

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.