

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

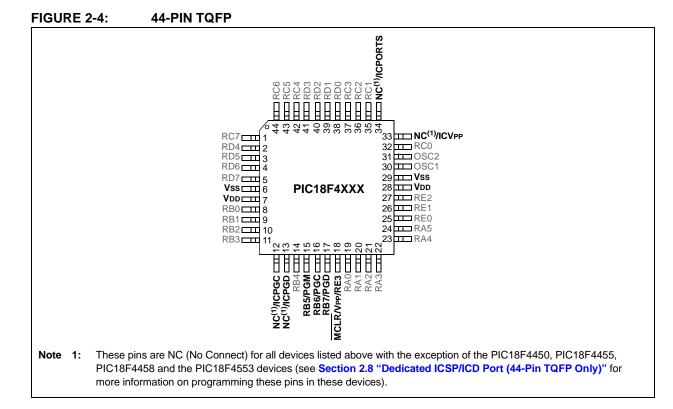
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

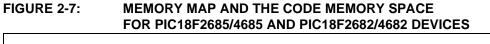
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4510-e-p

Email: info@E-XFL.COM

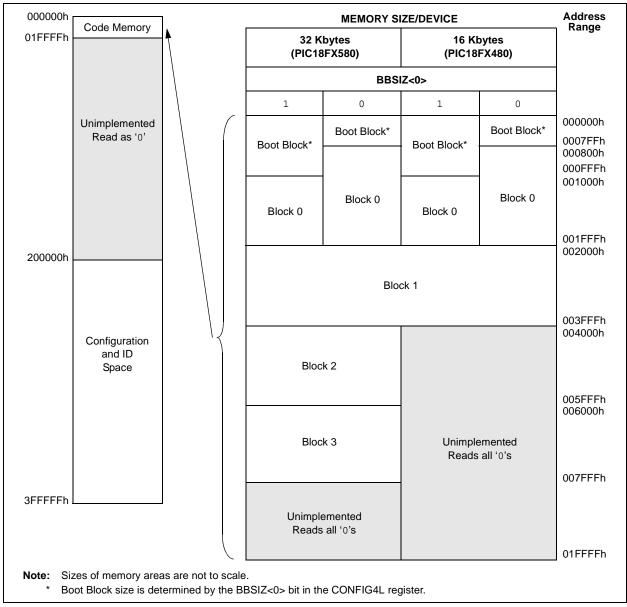

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


The following devices are included in 44-pin TQFP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

PIC18F4523

- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

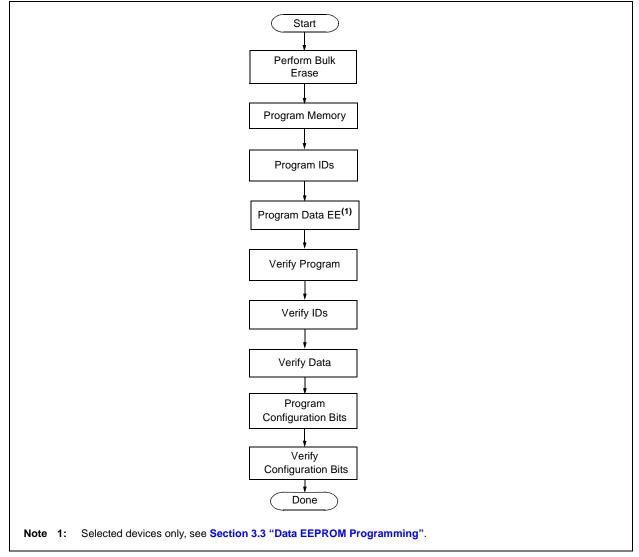

000000h					MEMORY S	IZE/DEVICE			Addre Rang
)1FFFFh	Code Memory		(PI	96 Kbytes C18F2685/46	85)	80 Kbytes (PIC18F2682/4682)			Tung
			BBSIZ1:BBSIZ2						1
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	00000 0007F
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800h 000FFFh
					Block 0			Block 0	00100 001FF
			Block 0	Block 0	BIOCK U	Block 0	Block 0	BIOCK U	002000h
200000h									003FF 00400
			Block 1			Block 1			
	Configuration and ID			Block 2			Block 2		
					Block 3		Block 3		
	Space			Block 4			Block 4		00FFF 01000
									013FF 01400
				Block 5		Unimplemented			017FF
BFFFFFh				Inimplemented Reads all '0's	b		Reads all '0's		01FFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-6:IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES



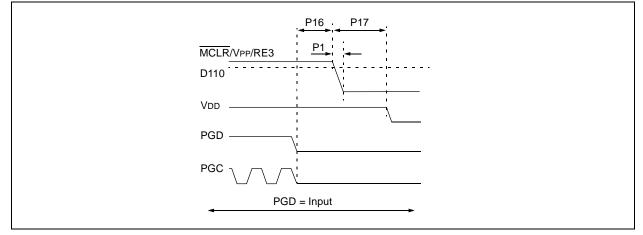
For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see Section 3.3 "Data EEPROM Programming"). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.



2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

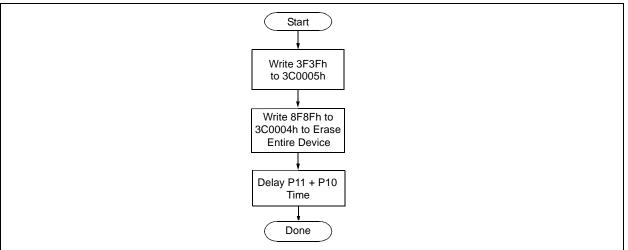
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

TABLE 3-1: BULK ERASE OPTIONS

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.


The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

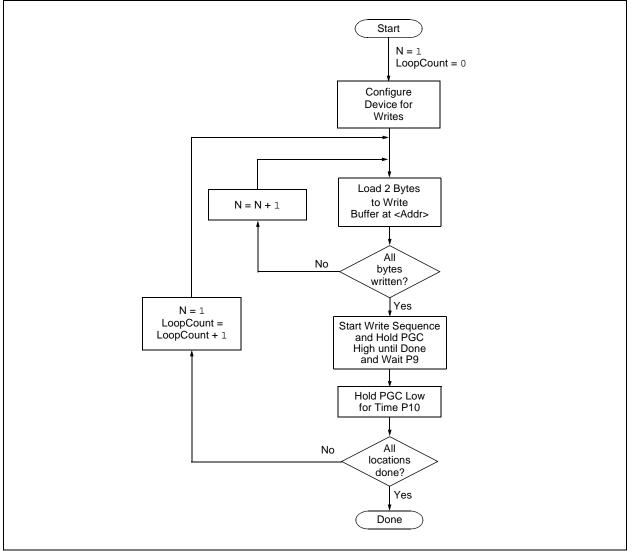
4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	OE 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

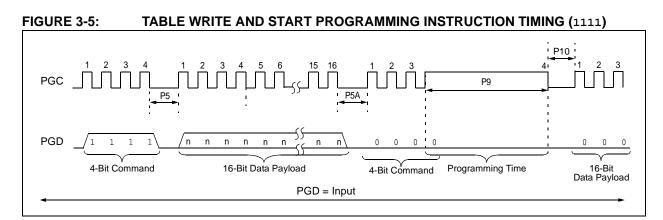
TABLE 3-2: BULK ERASE COMMAND SEQUENCE

FIGURE 3-1: BULK ERASE FLOW

4-Bit Command	Data Payload	Core Instruction				
Step 1: Direct ac	cess to code memory an	d enable writes.				
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN				
Step 2: Point to f	irst row in code memory.	·				
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL				
Step 3: Enable e	rase and erase single ro	W.				
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.				
Step 4: Repeat S	Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.					

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE





4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	Step 1: Direct access to code memory and enable writes.						
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Load write	e buffer.						
0000 0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVUW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>					
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.					
Step 4: Load write buffer for last two bytes.							
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					
To continue writin	g data, repeat Steps 2 th	brough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.					

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	cess to data EEPROM.						
0000 0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Set the da	ata EEPROM Address Pointe	er.					
0000 0000 0000 0000	OE <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>					
Step 3: Load the	data to be written.						
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>					
Step 4: Enable m	emory writes.						
0000	84 A6	BSF EECON1, WREN					
Step 5: Initiate wi	rite.						
0000	82 A6	BSF EECON1, WR					
Step 6: Poll WR b	pit, repeat until the bit is clear	r.					
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, O MOVWF TABLAT NOP Shift out data ⁽¹⁾					
Step 7: Hold PGC	Step 7: Hold PGC low for time P10.						
Step 8: Disable w	vrites.						
0000	94 A6	BCF EECON1, WREN					
Repeat Steps 2 th	Repeat Steps 2 through 8 to write more data.						

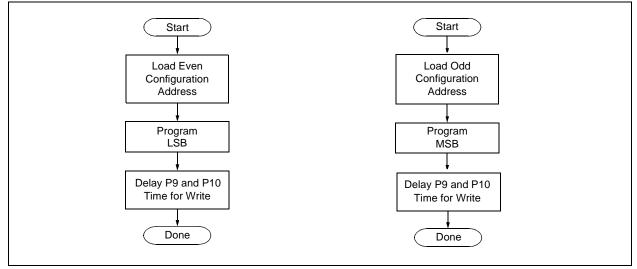

Note 1: See Figure 4-4 for details on shift out data timing.

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction						
Step 1: Enable w	Step 1: Enable writes and direct access to configuration memory.							
0000 0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS						
Step 2: Set Table	Pointer for configuration byt	e to be written. Write even/odd addresses. ⁽¹⁾						
0000 0000 0000 0000 0000 1111	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <msb ignored=""><lsb></lsb></msb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming.						
0000 0000 1111 0000	00 00 0E 01 6E F6 <msb><lsb ignored=""> 00 00</lsb></msb>	NOP - hold PGC high for time P9 and low for time P10. MOVLW 01h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.						

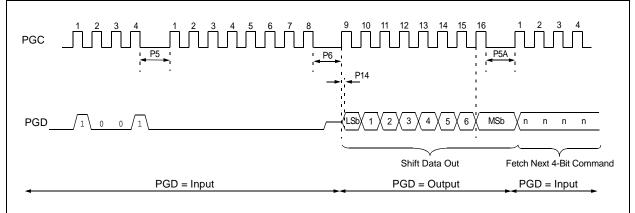
Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

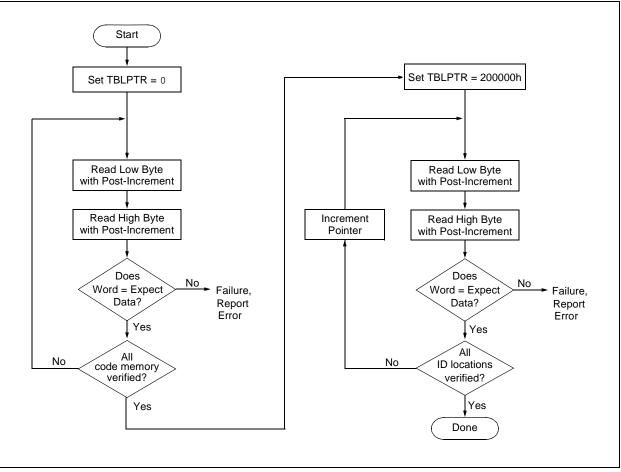
Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

4-Bit Command	Data Payload	Core Instruction				
Step 1: Set Table	Pointer.					
0000 0000 0000 0000 0000 0000	<pre>0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]></pre>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>				
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.					
1001	00 00	TBLRD *+				

 TABLE 4-1:
 READ CODE MEMORY SEQUENCE



4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File 1	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value													
300000h ^(1,8)	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000													
300001h	CONFIG1H	IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0	00 0111													
30000 111	CONTONT	1200	TOWEN			10000	10002	10001	10000	00 0101 ^(1,8)													
300002h	CONFIG2L			_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111													
30000211				VREGEN ^(1,8)	BORVI	BORVU	BORLINI	BORLINU	FWINILIN	01 1111 (1,8)													
300003h	CONFIG2H	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111													
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX ⁽⁷⁾	1011 (7)													
00000011		MOEINE					LI I I OOO	TBABEIN	—	101-													
		34L DEBUG														ICPRT ⁽¹⁾	—	-				1001-1 ⁽¹⁾	
				BBSIZ1	BBSIZ0	_				1000 -1-1													
300006h	CONFIG4L		DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	G XINST	_	BBSIZ ⁽³⁾	_	LVP	—	STVREN	10-0 -1-1 (3)
				ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾													
				BBSIZ1 ⁽²⁾	BBSIZ2(2)	-				1000 -1-1 (2)													
300008h	CONFIG5L	_	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111													
300009h	CONFIG5H	CPD	CPB	_	—	-	—	-	—	11													
30000Ah	CONFIG6L	_	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111													
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	—		_		—	111													
30000Ch	CONFIG7L		_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111													
30000Dh	CONFIG7H		EBTRB		_		_		_	-1													
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2													
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2													

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide – oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled
BORV<1:0>	CONFIG2L	0 = USB voltage regulator is disabled Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2
		0000 = 1:1 000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

	Memory		Ending Address							Size (Bytes)				
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F2221	4K	28	0001FF 0003FF	0007FF	000FFF	_	_	_	_	512 1024	1536 1024	2048	4096	
			0001FF							512	3584			
PIC18F2321	8K	28	0003FF	000FFF	001FFF				_	1024	3072	4096	8192	
1 10 101 2021	OIX	20	0007FF	000111	001111					2048	2048	4090		
PIC18F2410	16K	28	0007FF	001FFF	003FFF			_	_	2048	6144	8192	16384	
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384	
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384	
1101012120	TOIL	20	0007FF	001111	000111					2048	6144	0102	10001	
PIC18F2450	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384	
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF		_		2048	6144	16384	24576	
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576	
1101012400	241	20	0007FF	001111	005111	005111				2040	6144	10304	24070	
PIC18F2480	16K	28	000FFF	001FFF	003FFF	_	_	_	—	4096	4096	8192	16384 32768	
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_		2048	6144	24576		
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	007111			2040	14336	32768	49152	
PIC18F2520	32K	28	0007FF	003FFF	003FFF	005FFF	 007FFF		_	2040	14336	16384	32768	
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	14336	16384	32768	
		28 28	0007FF	003FFF	003FFF	005FFF	007FFF				14336		49152	
PIC18F2525	48K	28								2048		32768		
PIC18F2550	32K 32K	28 28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768	
PIC18F2553	32K 32K	28	0007FF	001FFF	003FFF		007FFF 007FFF		_	2048	6144	24576 24576	32768 32768	
PIC18F2580			0007FF 000FFF	001FFF	003FFF					2048	6144			
										4096	4096			
	48K	28	0007FF	= 003FFF (007FFF	00BFFF				2048	14336	32768	49152	
PIC18F2585			000FFF				_	_	_	4096	12288			
	0.414		001FFF	000555	007555	000555	005555			8192	8192	40450	05500	
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536	
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536	
DIO 40 D 0000	0.414	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
PIC18F2680	64K		000FFF							4096	12288			
			001FFF							8192	8192			
DIO 40 D 0000	0.01/		0007FF		007555			040555		2048	14336	05500		
PIC18F2682	80K	28	000FFF	003FFF	007666	00BFFF	00FFFF	013FFF	—	4096	12288	65536	81920	
			001FFF							8192	8192			
			0007FF	_			00FFFF	013FFF	017FFF	2048	14336	81920	98304	
PIC18F2685	96K	28	000FFF	003FFF	007666	00BFFF				4096	12288			
			001FFF							8192	8192			
PIC18F4221	4K	40	0001FF	0007FF	000FFF	_	—	—	—	512	1536	2048	4096	
			0003FF							1024	1024			
PIC18F4321	8K	40	0001FF							512	3584	4096	8192	
			0003FF	000FFF	001FFF	—	—	—	—	1024	3072			
	4014	4.5	0007FF	004555	000					2048	2048	0400	1000	
PIC18F4410	16K	40	0007FF	001FFF						2048	6144	8192	16384	
PIC18F4420	16K	40	0007FF	001FFF				—	—	2048	6144	8192	16384	
PIC18F4423	16K	40	0007FF	001FFF	003FFF			—	—	2048	6144	8192	16384	
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	—	_	2048	6144	8192	16384	
			000FFF							4096	4096			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

	•••													
	Configuration Word (CONFIGxx)													
Device	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	Vihh	High-Voltage Programming Voltage on MCLR/VPP/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	D111 VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μA	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Viн	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	<u> </u>	50	pF	To meet AC specifications
P1	Tr	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	-	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1		μS	VDD = 2.0V
P2A TPGCL	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15		ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	—	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	—	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.