

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

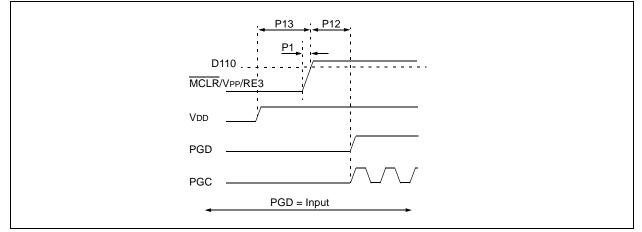
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

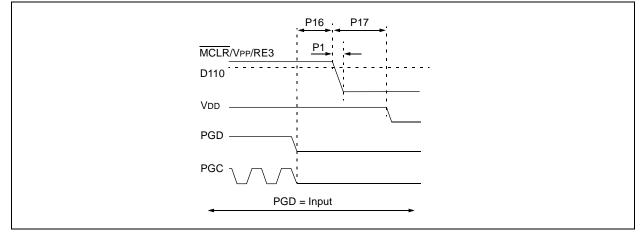
Details

20000	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4515-e-ml

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

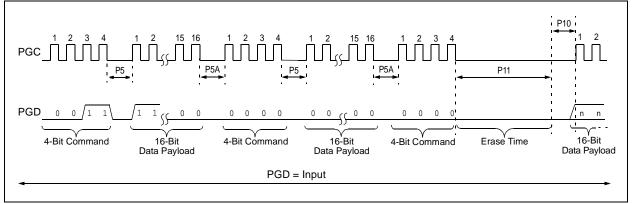
TABLE 3-1: BULK ERASE OPTIONS

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

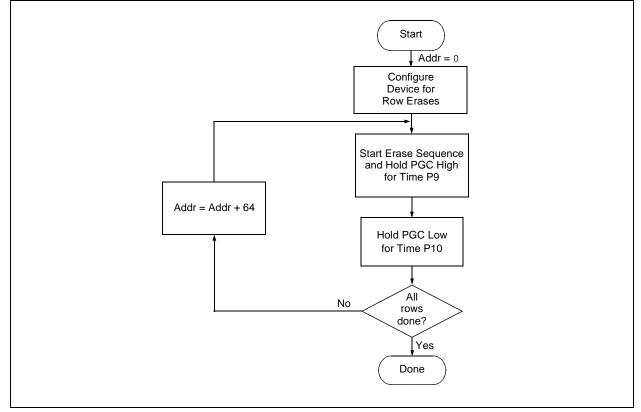
If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 "Data EEPROM Programming") must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in Section 3.3 "Data EEPROM Programming" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.3 "Memory Maps").

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

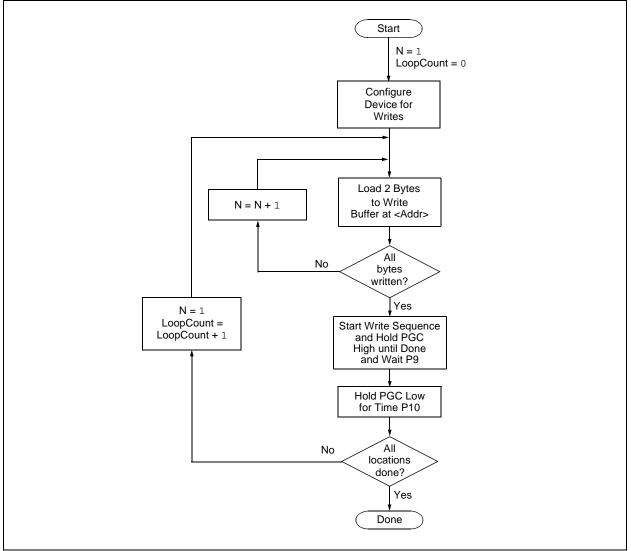
After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

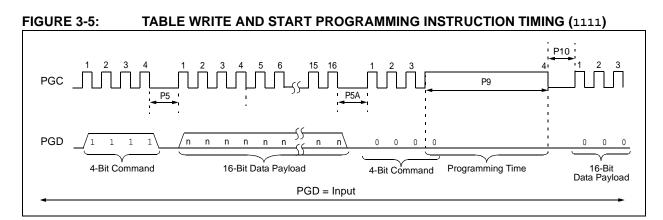

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct ac	cess to code memory an	d enable writes.			
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN			
Step 2: Point to f	irst row in code memory.	·			
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL			
Step 3: Enable e	rase and erase single ro	W.			
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.			
Step 4: Repeat S	Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.				

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE



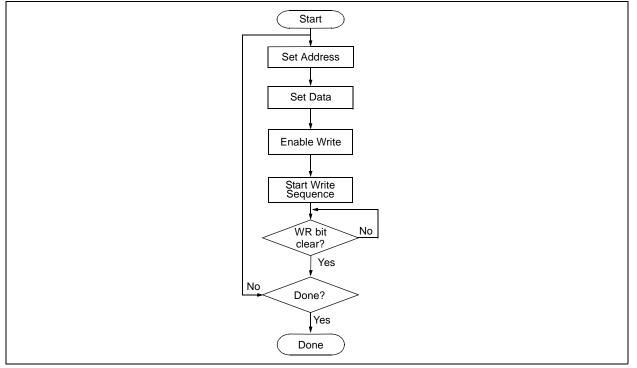


4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	cess to code memory an	d enable writes.
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS
Step 2: Load write	e buffer.	
0000 0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVUW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
Step 4: Load write	e buffer for last two bytes	5.
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.
To continue writin	g data, repeat Steps 2 th	brough 4, where the Address Pointer is incremented by 2 at each iteration of the loop.

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	Data EEPROM programming is not available on the following devices:				
PIC18F2410	PIC18F4410				
PIC18F2450	PIC18F4450				
PIC18F2510	PIC18F4510				
PIC18F2515	PIC18F4515				
PIC18F2610	PIC18F4610				


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

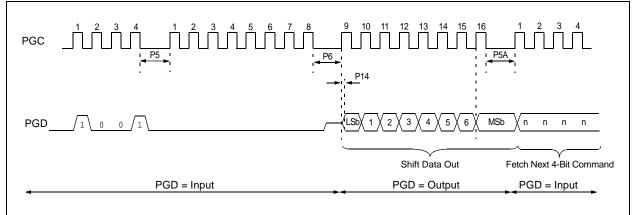
After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

4-Bit Command	Data Payload	Core Instruction				
Step 1: Set Table	Pointer.					
0000 0000 0000 0000 0000 0000	<pre>0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]></pre>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>				
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.					
1001	00 00	TBLRD *+				

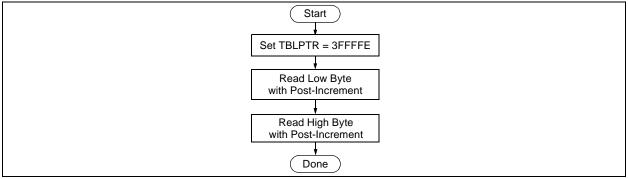
 TABLE 4-1:
 READ CODE MEMORY SEQUENCE

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.


5.2 Device ID Word

The Device ID Word for the PIC18F2XX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File 1	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h ^(1,8)	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0	00 0111
30000111	CONTONT	1200	TOWEN			10000	10002	10001	10000	00 0101 ^(1,8)
300002h	CONFIG2L			_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
30000211				VREGEN ^(1,8)	BORVI	BORVU	BORLINI	BORLINU	FWINILIN	01 1111 (1,8)
300003h	CONFIG2H	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX ⁽⁷⁾	1011 (7)
00000011		MOEINE					LI I I OOO	TBREEN	—	101-
		CONFIG4L DEBUG		ICPRT ⁽¹⁾	—	-				1001-1 ⁽¹⁾
			XINST	BBSIZ1	BBSIZ0	_	LVP -			1000 -1-1
300006h	CONFIG4L			_	BBSIZ ⁽³⁾	_		—	STVREN	10-0 -1-1 (3)
				ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾
				BBSIZ1 ⁽²⁾	BBSIZ2(2)	-				1000 -1-1 (2)
300008h	CONFIG5L	_	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111
300009h	CONFIG5H	CPD	CPB	_	—	-	—	-	—	11
30000Ah	CONFIG6L	_	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	—		_		—	111
30000Ch	CONFIG7L		_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111
30000Dh	CONFIG7H		EBTRB		_		_		_	-1
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value			
Device	DEVID2	DEVID1		
PIC18F4585	0Eh	101x xxxx		
PIC18F4610	0Ch	001x xxxx		
PIC18F4620	0Ch	000x xxxx		
PIC18F4680	0Eh	100x xxxx		
PIC18F4682	27h	010x xxxx		
PIC18F4685	27h	011x xxxx		

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

Bit Name	Configuration Words	Description		
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled		
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled		
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6 1000 = Internal RC oscillator, port function on RA6, port function on RA7 1010 = Internal RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0011 = XT oscillator		
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1010 = Internal oscillator, port function on RA6, EC is used by USB 1011 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USE 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0110 = EC oscillator, CLKO function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0101 = EC oscillator, port function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, XT is used by USB 0102 = XT oscillator, PLL is enabled, XT is used by USB		
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide		
CPUDIV<1:0> Note 1: The BE	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide :0> and BBSIZ<2:1> bits, cannot be changed once any of the following		

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description				
WDTEN	CONFIG2H	Watchdog Timer Enable bit				
		1 = WDT is enabled				
		0 = WDT is disabled (control is placed on the SWDTEN bit)				
MCLRE	CONFIG3H	MCLR Pin Enable bit				
		$1 = \overline{MCLR}$ pin is enabled, RE3 input pin is disabled				
		0 = RE3 input pin is enabled, MCLR pin is disabled				
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit				
		1 = Timer1 is configured for low-power operation				
		0 = Timer1 is configured for high-power operation				
PBADEN	CONFIG3H	PORTB A/D Enable bit				
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset				
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset				
PBADEN	CONFIG3H	PORTB A/D Enable bit (PIC18FXX8X devices only)				
		1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset				
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset				
CCP2MX	CONFIG3H	CCP2 MUX bit				
		1 = CCP2 input/output is multiplexed with RC1 ⁽²⁾				
		0 = CCP2 input/output is multiplexed with RB3				
DEBUG	CONFIG4L	Background Debugger Enable bit				
		1 = Background debugger is disabled, RB6 and RB7 are configured as general				
		purpose I/O pins				
		0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit				
		Debug				
XINST	CONFIG4L	Extended Instruction Set Enable bit				
		1 = Instruction set extension and Indexed Addressing mode are enabled				
		 Instruction set extension and Indexed Addressing mode are disabled (Legacy mode) 				
ICPRT	CONFIG4L	Dedicated In-Circuit (ICD/ICSP™) Port Enable bit				
		(PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and				
		PIC18F2450/4450 devices only)				
		1 = ICPORT is enabled				
		0 = ICPORT is disabled				
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)				
		11 = 4K words (8 Kbytes) Boot Block				
BBS17-2.1-(1)						
	CONFIG4L					
		01 = 2K words (4 Kbytes) Boot Block				
		00 = 1K word (2 Kbytes) Boot Block				
BBSIZ<1:0> ⁽¹⁾ BBSIZ<2:1> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block				

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description
WRT5	CONFIG6L	Write Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)
		 1 = Block 5 is not write-protected 0 = Block 5 is write-protected
WRT4	CONFIG6L	Write Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)
		1 = Block 4 is not write-protected0 = Block 4 is write-protected
WRT3	CONFIG6L	Write Protection bit (Block 3 code memory area)
		1 = Block 3 is not write-protected
		0 = Block 3 is write-protected
WRT2	CONFIG6L	Write Protection bit (Block 2 code memory area)
		 1 = Block 2 is not write-protected 0 = Block 2 is write-protected
WRT1	CONFIG6L	Write Protection bit (Block 1 code memory area)
		1 = Block 1 is not write-protected
		0 = Block 1 is write-protected
WRT0	CONFIG6L	Write Protection bit (Block 0 code memory area)
		1 = Block 0 is not write-protected
		0 = Block 0 is write-protected
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)
WICID	CONTIONT	1 = Boot Block is not write-protected
		0 = Boot Block is write-protected
WRTC	CONFIG6H	Write Protection bit (Configuration registers)
		1 = Configuration registers are not write-protected
		0 = Configuration registers are write-protected
EBTR5	CONFIG7L	Table Read Protection bit (Block 5 code memory area)
		(PIC18F2685 and PIC18F4685 devices only)
		 1 = Block 5 is not protected from Table Reads executed in other blocks 0 = Block 5 is protected from Table Reads executed in other blocks
EBTR4	CONFIG7L	Table Read Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)
		 1 = Block 4 is not protected from Table Reads executed in other blocks 0 = Block 4 is protected from Table Reads executed in other blocks
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)
		1 = Block 3 is not protected from Table Reads executed in other blocks
EDTDO		0 = Block 3 is protected from Table Reads executed in other blocks
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)
		 1 = Block 2 is not protected from Table Reads executed in other blocks 0 = Block 2 is protected from Table Reads executed in other blocks
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)
		1 = Block 1 is not protected from Table Reads executed in other blocks
		0 = Block 1 is protected from Table Reads executed in other blocks

TABLE 5-3:	PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS ((CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- The contents of all code memory locations
- The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

	Memory Size (Bytes)	Pins	Ending Address							Size (Bytes)				
Device			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F2221	4K	28	0001FF 0003FF	0007FF	000FFF	_	_	_	_	512 1024	1536 1024	2048	4096	
			0001FF							512	3584		-	
PIC18F2321	8K	28	0003FF	000FFF	001FFF				_	1024	3072	4096	8192	
	OIX	20	0007FF	000111	001111					2048	2048	4090		
PIC18F2410	16K	28	0007FF	001FFF	003FFF			_	_	2048	6144	8192	16384	
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384	
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384	
1101012120	TOIL	20	0007FF	001111	000111					2048	6144	0102	10001	
PIC18F2450	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384	
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF		_		2048	6144	16384	24576	
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576	
1101012400	241	20	0007FF	001111	005111	005111				2040	6144	10304	24070	
PIC18F2480	16K	28	000FFF	001FFF	003FFF	_	_	_	—	4096	4096	8192	16384	
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768	
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	007111			2040	14336	32768	49152	
PIC18F2520	32K	28	0007FF	003FFF	003FFF	005FFF	 007FFF		_	2040	14336	16384	32768	
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	14336	16384	32768	
		28 28	0007FF	003FFF	003FFF	005FFF	007FFF				14336		49152	
PIC18F2525	48K	28								2048		32768		
PIC18F2550	32K		0007FF	001FFF	003FFF 003FFF	005FFF 005FFF	007FFF			2048	6144	24576	32768	
PIC18F2553 PIC18F2580	32K	28	0007FF	001FFF 001FFF	003FFF	005FFF	007FFF 007FFF		_	2048	6144	24576 24576	32768	
	32K	28	0007FF 000FFF							2048	6144		32768	
										4096	4096			
	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_		2048	14336	32768	49152	
PIC18F2585			000FFF						_	4096	12288			
	0.414		001FFF	000555	007555	000555	005555			8192	8192	40450	05500	
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536	
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536	
	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
PIC18F2680			000FFF							4096	12288			
				001FFF							8192	8192		
DIO 40 D 0000	0.01/		0007FF		007555			040555		2048	14336	05500		
PIC18F2682	80K	28	000FFF	003FFF	003FFF 007FFF 00BFFF 00FFFF 013FFF	—	4096	12288	65536	81920				
			001FFF							8192	8192			
	0.01/		0007FF		007555					2048	14336	81920		
PIC18F2685	96K	28	000FFF	003FFF	007666	00BFFF	00FFFF	013FFF	017666	4096	12288		98304	
			001FFF							8192	8192			
PIC18F4221	4K	40	0001FF	0007FF	000FFF	_	_	—	—	512	1536	2048	4096	
			0003FF							1024 1024				
	8K	10	0001FF		004555					512	3584		0400	
PIC18F4321		40	0003FF	000FFF	001FFF	—	—	—	—	1024	3072	4096	8192	
	4014	4.5	0007FF	004555	000					2048	2048	0400	4000	
PIC18F4410	16K	40	0007FF	001FFF						2048	6144	8192	16384	
PIC18F4420	16K	40	0007FF	001FFF				—	—	2048	6144	8192	16384	
PIC18F4423	16K	40	0007FF	001FFF	003FFF			—	—	2048	6144	8192	16384	
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	—	_	2048	6144	8192	16384	
			000FFF							4096	4096			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

	Memory	Pins	Ending Address							Size (Bytes)				
Device	Size (Bytes)		Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
	16K	40	0007FF	001FFF	000555					2048	6144	8192	10001	
PIC18F4480	ION	40	000FFF	UUIFFF	003FFF	_	_	_	_	4096	4096		16384	
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	—	—	2048	6144	24576	32768	
	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC18F4580			000FFF							4096	4096			
	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_		2048	14336	88 32768	49152	
PIC18F4585			000FFF						—	4096	12288			
			001FFF							8192	8192			
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	_	2048	14336	49152	65536	
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	—	2048	14336	49152	65536	
	64K	40	0007FF		007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
PIC18F4680			000FFF	003FFF						4096	12288			
			001FFF							8192	8192			
PIC18F4682	80K	40	0007FF		007FFF				_	2048	14336	65536	81920	
			000FFF	003FFF		00BFFF	00FFFF	013FFF		4096	12288			
			001FFF							8192	8192			
	96K		0007FF			00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304	
PIC18F4685		44	000FFF	003FFF	007FFF					4096	12288			
			001FFF							8192	8192			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Legend: — = unimplemented.

TABLE 5-5:	CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	~) 5H	6L	6H	7L	7H
Device	1		2L	211	JL		ddress (511	υL	011	1	/11
	04	4 6	0	26	46				-	0	۸ h	DL	Ch	Dh
DIO 40 50004	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F 1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410 PIC18F2420	00	CF CF	1F 1F	1F 1F	00	87 87	C5 C5	00	03 03	C0 C0	03 03	E0 E0	03 03	40 40
PIC18F2420 PIC18F2423	00	CF	1F	1F 1F	00	87	C5	00	03	C0 C0	03	E0 E0	03	40
PIC18F2423	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	03	40 C0	03	E0	03	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	05 0F	C0	05 0F	E0	05 0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	 D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
Legend: Sh						07	- 55	00		00	01		01	-0

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

	Standard Operating Conditions Operating Temperature: 25°C is recommended										
Param No.	Sym	Characteristic	Min	Max	Units	Conditions					
P11A	Tdrwt	Data Write Polling Time	4	—	ms						
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	_	μS						
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	_	ns	(Note 2)					
P14	TVALID	Data Out Valid from PGC ↑	10	—	ns						
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS	(Note 2)					
P16	TDLY8	Delay Between Last PGC \downarrow and $\overline{\mathrm{MCLR}}/\mathrm{VPP}/\mathrm{RE3}\downarrow$	0	_	S						
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns						
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	s						

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-856-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.