

innin receive

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

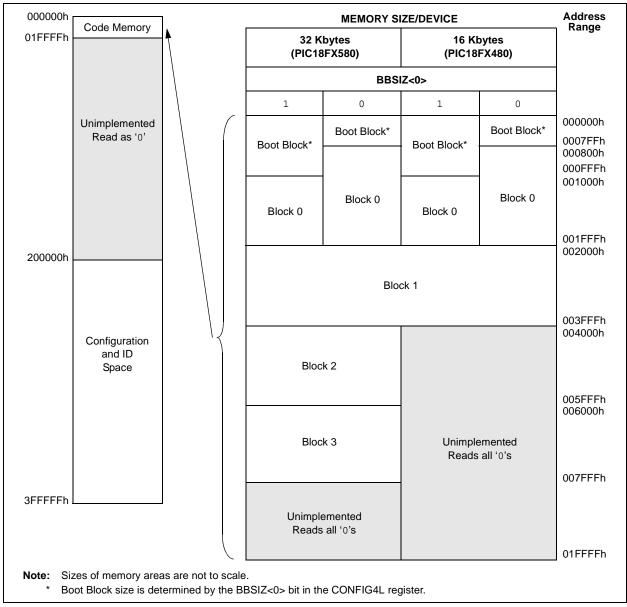
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4515-e-pt

Email: info@E-XFL.COM

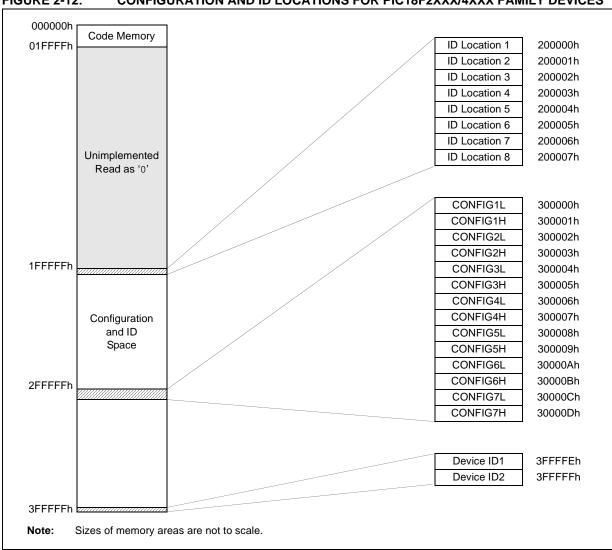
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.


	TABLE 2-3:	IMPLEMENTATION OF CODE MEMORY
--	------------	-------------------------------

Device	Code Memory Size (Bytes)		
PIC18F2682			
PIC18F4682	000000h-013FFFh (80K)		
PIC18F2685			
PIC18F4685	000000h-017FFFh (96K)		


TABLE 2-6:IMPLEMENTATION OF CODE MEMORY

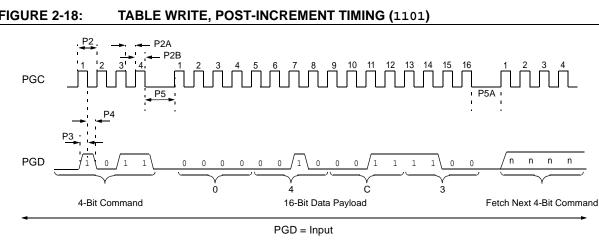

Device	Code Memory Size (Bytes)			
PIC18F2480				
PIC18F4480	000000h-003FFFh (16K)			
PIC18F2580	000000h 007EEEh (22K)			
PIC18F4580	000000h-007FFFh (32K)			

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES

For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

FIGURE 2-18:

2.8 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

The PIC18F4455/4458/4550/4553 44-pin TQFP devices are designed to support an alternate programming input: the dedicated ICSP/ICD port. The primary purpose of this port is to provide an alternate In-Circuit Debugging (ICD) option and free the pins (RB6, RB7 and MCLR) that would normally be used for debugging the application. In conjunction with ICD capability, however, the dedicated ICSP/ICD port also provides an alternate port for ICSP.

Setting the ICPRT Configuration bit enables the dedicated ICSP/ICD port. The dedicated ICSP/ICD port functions the same as the default ICSP/ICD port; however, alternate pins are used instead of the default pins. Table 2-10 identifies the functionally equivalent pins for ICSP purposes:

The dedicated ICSP/ICD port is an alternate port. Thus, ICSP is still available through the default port even though the ICPRT Configuration bit is set. When the VIH is seen on the MCLR/VPP/RE3 pin prior to applying VIH to the ICRST/ICVPP pin, then the state of the ICRST/ICVPP pin is ignored. Likewise, when the VIH is seen on ICRST/ICVPP prior to applying VIH to MCLR/VPP/RE3, then the state of the MCLR/VPP/RE3 pin is ignored.

The ICPRT Configuration bit can only be programmed through the default ICSP port. Chip Erase functions Note: through the dedicated ICSP/ICD port do not affect this bit. When the ICPRT Configuration bit is set (dedicated ICSP/ICD port enabled), the NC/ICPORTS pin must be tied to either VDD or VSS.

The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

Pin Name	During Programming					
	Pin Name	Pin Type	Dedicated Pins	Pin Description		
MCLR/Vpp/RE3	Vpp	Р	NC/ICRST/ICVPP	Programming Enable		
RB6	PGC	I	NC/ICCK/ICPGC	Serial Clock		
RB7	PGD	I/O	NC/ICDT/ICPGD	Serial Data		

TABLE 2-10: ICSP™ EQUIVALENT PINS

Legend: I = Input, O = Output, P = Power

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

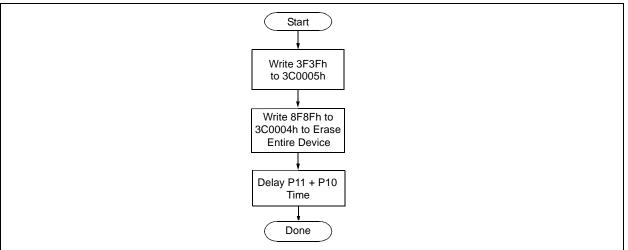
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)			
Chip Erase	3F8Fh			
Erase Data EEPROM ⁽¹⁾	0084h			
Erase Boot Block	0081h			
Erase Configuration Bits	0082h			
Erase Code EEPROM Block 0	0180h			
Erase Code EEPROM Block 1	0280h			
Erase Code EEPROM Block 2	0480h			
Erase Code EEPROM Block 3	0880h			
Erase Code EEPROM Block 4	1080h			
Erase Code EEPROM Block 5	2080h			

TABLE 3-1: BULK ERASE OPTIONS

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.


The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	OE 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

FIGURE 3-1: BULK ERASE FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)	
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64	
PIC18F2450, PIC18F4450	16	64	
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510			
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		64	
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	22		
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	- 32		
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550			
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553			
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610			
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64	
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64		
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685			

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase**"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in Section 4.2 "Verify Code Memory and ID Locations") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	ccess to code memory.	
Step 2: Read an	d modify code memory (see S	ection 4.1 "Read Code Memory, ID Locations and Configuration Bits").
0000	8E A6	BSF EECON1, EEPGD
0000	9C A6	BCF EECON1, CFGS
Step 3: Set the T	Table Pointer for the block to b	e erased.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
Step 4: Enable r	nemory writes and set up an e	rase.
0000	84 A6	BSF EECON1, WREN
0000	88 A6	BSF EECON1, FREE
Step 5: Initiate e	rase.	
0000	82 A6	BSF EECON1, WR
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
Step 6: Load wri	te buffer. The correct bytes wi	Il be selected based on the Table Pointer.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
•		Repeat as many times as necessary to fill the write buffer
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
	at each iteration of the loop. T	bugh 6, where the Address Pointer is incremented by the appropriate number of byte he write cycle must be repeated enough times to completely rewrite the contents of
Step 7: Disable	writes.	
0000	94 A6	BCF EECON1, WREN

TABLE 3-6: MODIFYING CODE MEMORY

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses, 200000h through 200007h. These locations read out normally even after code protection.

Note: The user only needs to fill the first 8 bytes of the write buffer in order to write the ID locations.

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1** "**Modifying Code Memory**". As with code memory, the ID locations must be erased before being modified.

TABLE 3-8: WRITE ID SEQUENCE

4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	ess to code memory and en	able writes.					
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS					
Step 2: Load write	e buffer with 8 bytes and writ	e.					
0000 0000 0000 0000 1101 1101 1101 1111 0000	0E 20 6E F8 0E 00 6E F7 0E 00 6E F6 <msb><lsb> <msb><lsb> <msb><lsb> <msb><lsb></lsb></msb></lsb></msb></lsb></msb></lsb></msb>	MOVLW 20h MOVWF TBLPTRU MOVWF TBLPTRH MOVWF TBLPTRH MOVWF TBLPTRL Write 2 bytes and post-increment address by 2. Write 2 bytes and post-increment address by 2. Write 2 bytes and post-increment address by 2. Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming

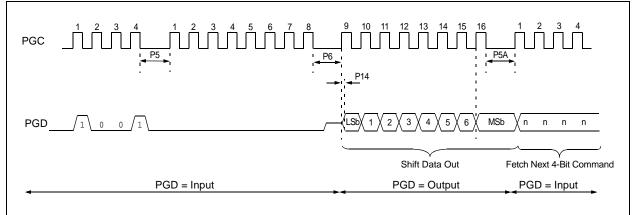
Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only eight bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9.

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

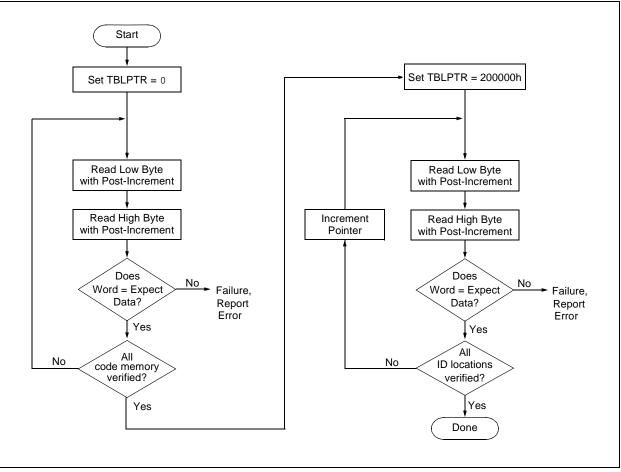
Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

4-Bit Command	Data Payload	Core Instruction					
Step 1: Set Table	Step 1: Set Table Pointer.						
0000 0E <addr[21:16]> 0000 6E F8 0000 0E <addr[15:8]> 0000 6E F7 0000 0E <addr[7:0]> 0000 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>		MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>					
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.						
1001	00 00	TBLRD *+					

 TABLE 4-1:
 READ CODE MEMORY SEQUENCE



4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

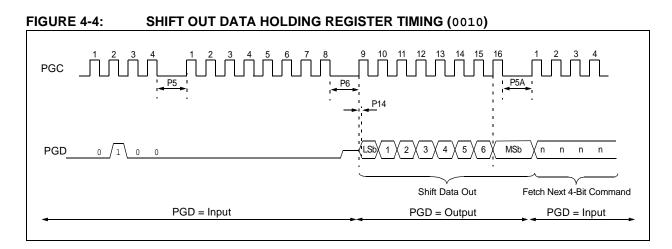

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

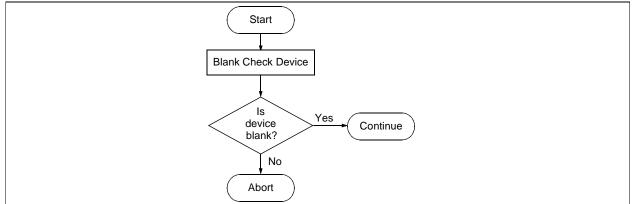
FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4** "**Read Data EEPROM Memory**" for implementation details of reading data EEPROM.


4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

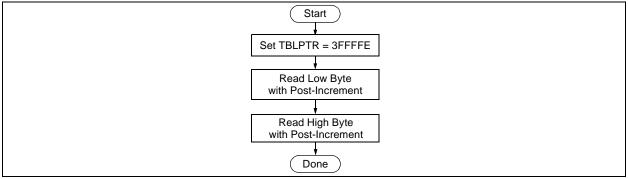
Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.


5.2 Device ID Word

The Device ID Word for the PIC18F2XX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File 1	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value												
300000h ^(1,8)	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000												
300001h	CONFIG1H	IESO	FCMEN			FOSC3	FOSC2	FOSC1	FOSC0	00 0111												
30000111	CONTONT	1200	TOWEN			10000	10002	10001	10000	00 0101 ^(1,8)												
300002h	CONFIG2L			_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111												
30000211				VREGEN ^(1,8)	BORVI	BORVU	BORLINI	BORLINU	FWINILIN	01 1111 (1,8)												
300003h	CONFIG2H	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111												
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX ⁽⁷⁾	1011 (7)												
00000011		MOEINE					LI IIOOO	TBREEN	—	101-												
				ICPRT ⁽¹⁾	—	-				1001-1 ⁽¹⁾												
		DEBUG	DEBUG	DEBUG		BBSIZ1	BBSIZ0	_				1000 -1-1										
300006h	CONFIG4L				DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	XINST	_	BBSIZ ⁽³⁾	_	LVP
				ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾												
				BBSIZ1 ⁽²⁾	BBSIZ2(2)	-				1000 -1-1 (2)												
300008h	CONFIG5L	_	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111												
300009h	CONFIG5H	CPD	CPB	_	—	-	—	-	—	11												
30000Ah	CONFIG6L	_	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111												
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	—		_		—	111												
30000Ch	CONFIG7L		_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111												
30000Dh	CONFIG7H		EBTRB		_		_		_	-1												
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2												
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2												

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES

Device	Device ID Value						
Device	DEVID2	DEVID1					
PIC18F2221	21h	011x xxxx					
PIC18F2321	21h	001x xxxx					
PIC18F2410	11h	011x xxxx					
PIC18F2420	11h	010x xxxx(1)					
PIC18F2423	11h	010x xxxx (2)					
PIC18F2450	24h	001x xxxx					
PIC18F2455	12h	011x xxxx					
PIC18F2458	2Ah	011x xxxx					
PIC18F2480	1Ah	111x xxxx					
PIC18F2510	11h	001x xxxx					
PIC18F2515	0Ch	111x xxxx					
PIC18F2520	11h	000x xxxx(1)					
PIC18F2523	11h	000x xxxx (2)					
PIC18F2525	0Ch	110x xxxx					
PIC18F2550	12h	010x xxxx					
PIC18F2553	2Ah	010x xxxx					
PIC18F2580	1Ah	110x xxxx					
PIC18F2585	0Eh	111x xxxx					
PIC18F2610	0Ch	101x xxxx					
PIC18F2620	0Ch	100x xxxx					
PIC18F2680	0Eh	110x xxxx					
PIC18F2682	27h	000x xxxx					
PIC18F2685	27h	001x xxxx					
PIC18F4221	21h	010x xxxx					
PIC18F4321	21h	000x xxxx					
PIC18F4410	10h	111x xxxx					
PIC18F4420	10h	110x xxxx(1)					
PIC18F4423	10h	110x xxxx(2)					
PIC18F4450	24h	000x xxxx					
PIC18F4455	12h	001x xxxx					
PIC18F4458	2Ah	001x xxxx					
PIC18F4480	1Ah	101x xxxx					
PIC18F4510	10h	101x xxxx					
PIC18F4515	0Ch	011x xxxx					
PIC18F4520	10h	100x xxxx(1)					
PIC18F4523	10h	100x xxxx (2)					
PIC18F4525	0Ch	010x xxxx					
PIC18F4550	12h	000x xxxx					
PIC18F4553	2Ah	000x xxxx					
PIC18F4580	1Ah	100x xxxx					

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

Bit Name	Configuration Words	Description								
WRT5	CONFIG6L	Write Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)								
		1 = Block 5 is not write-protected0 = Block 5 is write-protected								
WRT4	CONFIG6L	Write Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)								
		1 = Block 4 is not write-protected0 = Block 4 is write-protected								
WRT3	CONFIG6L	Write Protection bit (Block 3 code memory area)								
		1 = Block 3 is not write-protected								
		0 = Block 3 is write-protected								
WRT2	CONFIG6L	Write Protection bit (Block 2 code memory area)								
		1 = Block 2 is not write-protected0 = Block 2 is write-protected								
WRT1	CONFIG6L	Write Protection bit (Block 1 code memory area)								
		1 = Block 1 is not write-protected0 = Block 1 is write-protected								
WRT0	CONFIG6L	Write Protection bit (Block 0 code memory area)								
		1 = Block 0 is not write-protected								
		0 = Block 0 is write-protected								
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)								
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected 								
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)								
		1 = Boot Block is not write-protected								
		0 = Boot Block is write-protected								
WRTC	CONFIG6H	Write Protection bit (Configuration registers)								
		1 = Configuration registers are not write-protected								
		0 = Configuration registers are write-protected								
EBTR5	CONFIG7L	Table Read Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)								
		 1 = Block 5 is not protected from Table Reads executed in other blocks 0 = Block 5 is protected from Table Reads executed in other blocks 								
EBTR4	CONFIG7L	Table Read Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)								
		 1 = Block 4 is not protected from Table Reads executed in other blocks 0 = Block 4 is protected from Table Reads executed in other blocks 								
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)								
		 1 = Block 3 is not protected from Table Reads executed in other blocks 0 = Block 3 is protected from Table Reads executed in other blocks 								
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)								
		1 = Block 2 is not protected from Table Reads executed in other blocks								
		0 = Block 2 is protected from Table Reads executed in other blocks								
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)								
		 1 = Block 1 is not protected from Table Reads executed in other blocks 0 = Block 1 is protected from Table Reads executed in other blocks 								

TABLE 5-3:	PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS ((CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

	Memory				End	ing Addr	Size (Bytes)									
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total			
PIC18F2221	4K	28	0001FF 0003FF	0007FF	000FFF	_	_	_	_	512 1024	1536 1024	2048	4096			
			0001FF							512	3584					
PIC18F2321 8K	28	0003FF	000FFF	001FFF				_	1024	3072	4096	8192				
	20	0007FF	000111	001111					2048	2048	4030	0132				
PIC18F2410	16K	28	0007FF	001FFF	003FFF			_	_	2048	6144	8192	16384			
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384			
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_		_		2048	6144	8192	16384			
1101012120	TOIL	20	0007FF	001111	000111					2048	6144	0102	10001			
PIC18F2450	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384			
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF		_		2048	6144	16384	24576			
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576			
1101012400	241	20	0007FF	001111	005111	005111				2040	6144	10304	24070			
PIC18F2480	16K	28	000FFF	001FFF	003FFF	_	_	_	—	4096	4096	8192	16384			
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_		2048	6144	24576	32768			
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	007111			2040	14336	32768	49152			
PIC18F2520	32K	28	0007FF	003FFF	003FFF	005FFF	 007FFF		_	2040	14336	16384	32768			
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	14336	16384	32768			
		28 28	0007FF	003FFF	003FFF	005FFF	007FFF				14336		49152			
PIC18F2525	48K	28								2048		32768				
PIC18F2550	32K		0007FF	001FFF 001FFF	003FFF 003FFF	005FFF 005FFF	007FFF			2048	6144	24576	32768			
PIC18F2553 32K PIC18F2580 32K	28	0007FF	UUIFFF	003111	005111	007FFF			2048	6144	24576	32768				
	28	0007FF 000FFF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768				
										4096	4096					
	4016	ok 20	20	20	20	0007FF	000555	007555	000555				2048	14336	20700	40450
PIC18F2585	48K	28	000FFF	003FFF	007FFF	00BFFF	_	_	_	4096	12288	32768	49152			
	0.414		001FFF	000555	007555	000555	005555			8192	8192	40450	05500			
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536			
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF			2048	14336	49152	65536			
	0.414	64K 28	28	0007FF		007555					2048	14336		05500		
PIC18F2680	64K			000FFF	003FFF	007FFF	00BFFF	00FFFF	_	—	4096	12288	49152	65536		
			001FFF							8192	8192					
DIO 40 D 0000	0.01/		0007FF		007555			040555		2048	14336	05500				
PIC18F2682	80K	80K 28	28	uri 28	000FFF	003FFF	007666	00BFFF	00FFFF	013FFF	—	4096	12288	65536	81920	
			001FFF							8192	8192					
	0.01/		0007FF		007555			040555		2048	14336	04000				
PIC18F2685	96K	28	000FFF	003FFF	007666	00BFFF	00FFFF	013FFF	017666	4096	12288	81920	98304			
			001FFF							8192	8192					
PIC18F4221	4K	40	0001FF	0007FF	000FFF	_	_	—	—	512	1536	2048	4096			
			0003FF							1024	1024					
PIC18F4321	014	10	0001FF		004555					512	3584	4096	0400			
	8K	3K 40	0003FF	000FFF	001FFF	—	—	—	—	1024	3072		8192			
	4014	4.5	0007FF	004555	000					2048	2048	0400	1000			
PIC18F4410	16K	40	0007FF	001FFF					—	2048	6144	8192	16384			
PIC18F4420	16K	40	0007FF	001FFF				—	—	2048	6144	8192	16384			
PIC18F4423	16K	40	0007FF	001FFF	003FFF			—	—	2048	6144	8192	16384			
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	—	_	2048	6144	8192	16384			
			000FFF							4096	4096					

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

TABLE 5-5:	CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	~) 5H	6L	6H	7L	7H
Device	1		2L	211	JL		ddress (511	υL	011	1	/11
	04	4 6	0	26	46				-	0	۸ h	DL	Ch	Dh
DIO 40 50004	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F 1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410 PIC18F2420	00	CF CF	1F 1F	1F 1F	00	87 87	C5 C5	00	03 03	C0 C0	03 03	E0 E0	03 03	40 40
PIC18F2420 PIC18F2423	00	CF	1F	1F 1F	00	87	C5	00	03	C0 C0	03	E0 E0	03	40
PIC18F2423	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	03	40 C0	03	E0	03	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	05 0F	C0	05 0F	E0	05 0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	 D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
Legend: Sh						07	- 55	00		00	01		01	-0

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

Legend: Shaded cells are unimplemented.

Device	Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Legend: Shaded cells are unimplemented.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-856-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.