

Welcome to **E-XFL.COM**

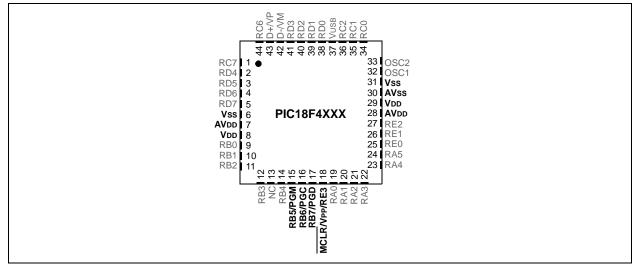
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4610-i-ml

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

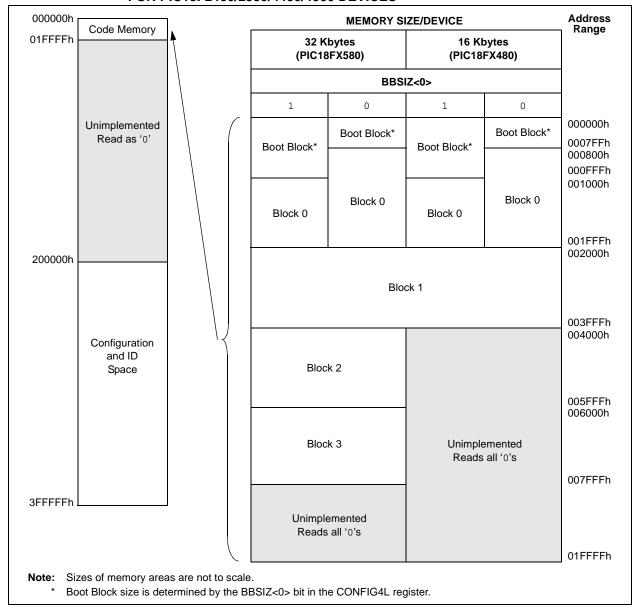
FIGURE 2-5: 44-PIN QFN

2.3 **Memory Maps**

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES


000000h					MEMORY S	IZE/DEVICE			Addres
)1FFFFh	Code Memory		96 Kbytes (PIC18F2685/4685)			80 Kbytes (PIC18F2682/4682)			
				BBSIZ1:BBSIZ2					
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800 000FFF
					Block 0			Disal: 0	001000l
			Block 0	Block 0	BIOCK U	Block 0	Block 0	Block 0	002000
200000h									003FFF
			Block 2 Block 3			Block 1 Block 2 Block 3			001000
		id ID							007FFF 008000
	Configuration								00BFFF 00C000
	and ID Space								00FFFF
	Opaco			Dlook 4			Dlook 4		010000
				Block 4			Block 4		013FFF 014000
			Block 5			Unimplemented			
3FFFFFh				Inimplemented Reads all '0's	d		Reads all '0's		017FFF
	zes of memory ar								」01FFFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-6: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	000000h 003EEEh (16K)
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES

For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

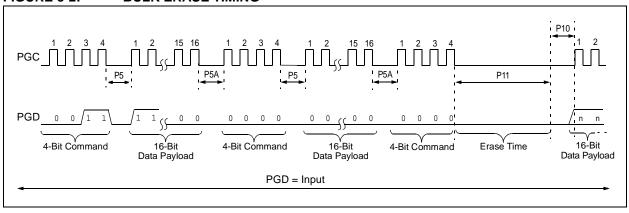
Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in **Section 3.1.3** "**ICSP Row Erase**" and **Section 3.2.1** "**Modifying Code Memory**".

If it is determined that a data EEPROM erase (selected devices only, see **Section 3.3 "Data EEPROM Programming"**) must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3 "Data EEPROM Programming"** and write '1's to the array.

FIGURE 3-2: BULK ERASE TIMING

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

Step 1: Direct access to code memory and enable writes. 0000 8E A6 BSF EECON1, EEPGD 0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR 0000 00 00 NOP - hold PGC high for time P9 and low for time P10.	4-Bit Command	Data Payload	Core Instruction			
0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 1: Direct ac	cess to code memory an	d enable writes.			
0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	9C A6	BCF EECON1, CFGS			
0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 2: Point to f	irst row in code memory.				
0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	6A F7	CLRF TBLPTRH			
0000 82 A6 BSF EECON1, WR	Step 3: Enable e	Step 3: Enable erase and erase single row.				
	0000	82 A6	BSF EECON1, WR			

FIGURE 3-3: SINGLE ROW ERASE CODE MEMORY FLOW

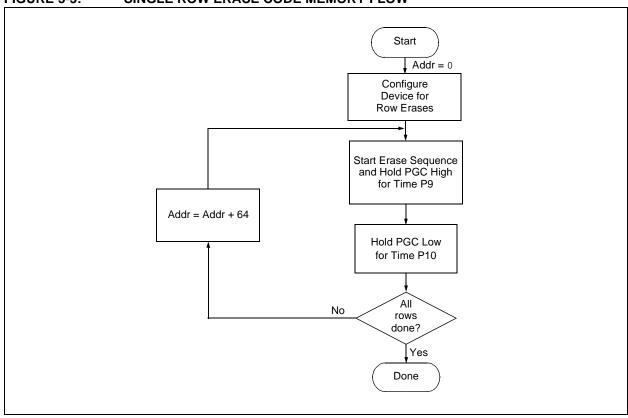


FIGURE 3-4: PROGRAM CODE MEMORY FLOW

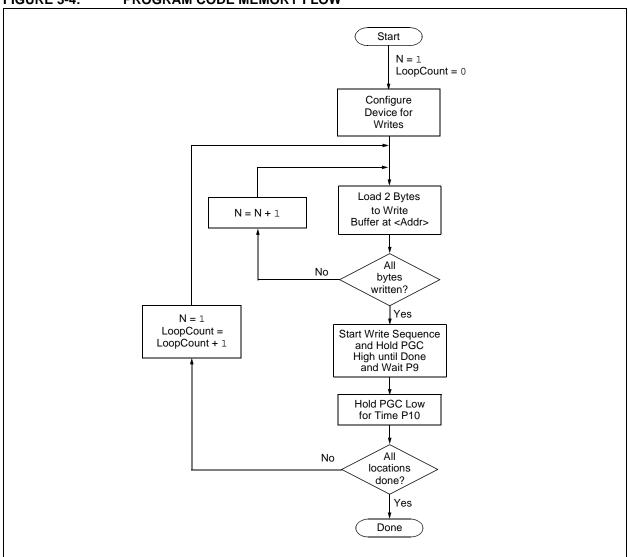
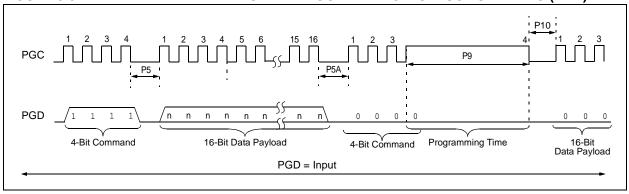



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.2.1 MODIFYING CODE MEMORY

The previous programming example assumed that the device had been Bulk Erased prior to programming (see Section 3.1.1 "High-Voltage ICSP Bulk Erase"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in **Section 4.2 "Verify Code Memory and ID Locations"**) and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

TABLE 3-6: MODIFYING CODE MEMORY

TABLE 3-6:	MODIFYING CODE MEMORY						
4-Bit Command	Data Payload	Core Instruction					
Step 1: Direct acc	Step 1: Direct access to code memory.						
Step 2: Read and	Step 2: Read and modify code memory (see Section 4.1 "Read Code Memory, ID Locations and Configuration Bits").						
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS					
Step 3: Set the Ta	ble Pointer for the block to b	e erased.					
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[8:15]></addr[21:16]>					
Step 4: Enable me	emory writes and set up an e	erase.					
0000	84 A6 88 A6	BSF EECON1, WREN BSF EECON1, FREE					
Step 5: Initiate era	ase.						
0000	82 A6 00 00	BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.					
Step 6: Load write	buffer. The correct bytes wi	Il be selected based on the Table Pointer.					
0000 0000 0000 0000 0000 0000 1101	0E <addr[21:16]> 6E F8 0E <addr[8:15]> 6E F7 0E <addr[7:0]> 6E F6 <msb><lsb></lsb></msb></addr[7:0]></addr[8:15]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[8:15]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.</addr[7:0]></addr[8:15]></addr[21:16]>					
	•	Repeat as many times as necessary to fill the write buffer					
1111 0000	- <msb><lsb> 00 00</lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.					
	To continue modifying data, repeat Steps 2 through 6, where the Address Pointer is incremented by the appropriate number of bytes (see Table 3-4) at each iteration of the loop. The write cycle must be repeated enough times to completely rewrite the contents of the erase buffer.						
Step 7: Disable wi	rites.						
0000	94 A6	BCF EECON1, WREN					

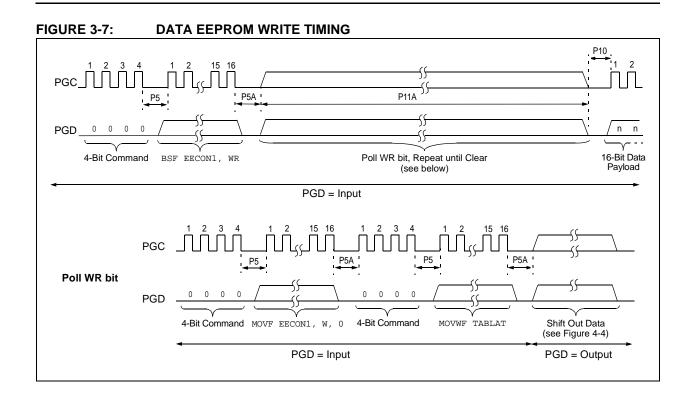


TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	ess to data EEPROM.				
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS			
Step 2: Set the da	ata EEPROM Address Pointe	er.			
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>			
Step 3: Load the	data to be written.				
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>			
Step 4: Enable me	emory writes.				
0000	84 A6	BSF EECON1, WREN			
Step 5: Initiate wri	ite.				
0000	82 A6	BSF EECON1, WR			
Step 6: Poll WR b	it, repeat until the bit is clear	1			
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)			
Step 7: Hold PGC	low for time P10.				
Step 8: Disable w	rites.				
0000	94 A6	BCF EECON1, WREN			
Repeat Steps 2 th	Repeat Steps 2 through 8 to write more data.				

Note 1: See Figure 4-4 for details on shift out data timing.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File N	lame	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value										
300000h ^(1,8)	CONFIG1L	_	-	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000										
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111										
										00 0101 ^(1,8)										
300002h	CONFIG2L	_	_	VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)										
300003h	CONFIG2H			- VREGEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111										
-									CCP2MX ⁽⁷⁾	1011(7)										
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	_	101-										
		ONFIG4L DEBUG		ICPRT ⁽¹⁾	_	_				1001-1(1)										
				BBSIZ1	BBSIZ0	-				1000 -1-1										
300006h	0006h CONFIG4L		DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	DEBUG	XINST	_	BBSIZ ⁽³⁾	_	LVP	_	STVREN	10-0 -1-1(3)
																			ICPRT ⁽⁸⁾	_
				BBSIZ1 ⁽²⁾	BBSIZ2 ⁽²⁾	ı				1000 -1-1 (2)										
300008h	CONFIG5L	_	-	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111										
300009h	CONFIG5H	CPD	СРВ	l	_	I	-	I		11										
30000Ah	CONFIG6L	_		WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111										
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_		111										
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111										
30000Dh	CONFIG7H	_	EBTRB	-	_	-		_	_	-1										
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2										
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2										

Legend: - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
 - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
 - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
 - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
 - **6:** DEVID registers are read-only and cannot be programmed by the user.
 - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
 - 8: Implemented on PIC18F2450/4450 devices only.
 - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
 - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES

Device -	Device	e ID Value
Device	DEVID2	DEVID1
PIC18F2221	21h	011x xxxx
PIC18F2321	21h	001x xxxx
PIC18F2410	11h	011x xxxx
PIC18F2420	11h	010x xxxx ⁽¹⁾
PIC18F2423	11h	010x xxxx ⁽²⁾
PIC18F2450	24h	001x xxxx
PIC18F2455	12h	011x xxxx
PIC18F2458	2Ah	011x xxxx
PIC18F2480	1Ah	111x xxxx
PIC18F2510	11h	001x xxxx
PIC18F2515	0Ch	111x xxxx
PIC18F2520	11h	000x xxxx(1)
PIC18F2523	11h	000x xxxx ⁽²⁾
PIC18F2525	0Ch	110x xxxx
PIC18F2550	12h	010x xxxx
PIC18F2553	2Ah	010x xxxx
PIC18F2580	1Ah	110x xxxx
PIC18F2585	0Eh	111x xxxx
PIC18F2610	0Ch	101x xxxx
PIC18F2620	0Ch	100x xxxx
PIC18F2680	0Eh	110x xxxx
PIC18F2682	27h	000x xxxx
PIC18F2685	27h	001x xxxx
PIC18F4221	21h	010x xxxx
PIC18F4321	21h	000x xxxx
PIC18F4410	10h	111x xxxx
PIC18F4420	10h	110x xxxx(1)
PIC18F4423	10h	110x xxxx ⁽²⁾
PIC18F4450	24h	000x xxxx
PIC18F4455	12h	001x xxxx
PIC18F4458	2Ah	001x xxxx
PIC18F4480	1Ah	101x xxxx
PIC18F4510	10h	101x xxxx
PIC18F4515	0Ch	011x xxxx
PIC18F4520	10h	100x xxxx ⁽¹⁾
PIC18F4523	10h	100x xxxx ⁽²⁾
PIC18F4525	0Ch	010x xxxx
PIC18F4550	12h	000x xxxx
PIC18F4553	2Ah	000x xxxx
PIC18F4580	1Ah	100x xxxx

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide - oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled 0 = USB voltage regulator is disabled
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
		Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
BBSIZ ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block
LVP	CONFIG4L	Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled
CP5	CONFIG5L	Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected
CP4	CONFIG5L	Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected
CP3	CONFIG5L	Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected
CP2	CONFIG5L	Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected
CP1	CONFIG5L	Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected
CP0	CONFIG5L	Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected
CPD	CONFIG5H	Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected
СРВ	CONFIG5H	Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB® IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

	Memory				End	ing Addr	Size (Bytes)						
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F2221 4K	414	28	0001FF	0007FF	000FFF	_	1	_	_	512	1536	2048	4096
	411	20	0003FF	0007FF						1024	1024	2040	
			0001FF		001FFF			_	_	512	3584		8192
PIC18F2321	8K	28	0003FF	000FFF		_				1024	3072	4096	
			0007FF							2048	2048		
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC 10F2450	ION	20	000FFF	001777	003FFF			_		4096	4096	0192	10304
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
DIO4050400	4016	-00	0007FF	004555	000555					2048	6144	0400	40004
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096	4096	8192	16384
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2580		28	0007FF		003FFF					2048	6144	24576	32768
	32K		000FFF	001FFF		005FFF	007FFF	_	_	4096	4096		
			0007FF							2048	14336	32768	49152
PIC18F2585	48K	28	000FFF	003FFF	007FFF	00BFFF	_	_	_	4096	12288		
1 10 101 2000			001FFF							8192	8192		
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
			0007FF							2048	14336		65536
PIC18F2680	64K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	_	_	4096	12288	49152	
	0		001FFF							8192	8192		
			0007FF							2048	14336		
PIC18F2682	80K	28	000FFF		007FFF	00BFFF	00FFFF	013FFF	_	4096	12288	65536	81920
	00.1		001FFF							8192	8192	00000	
			0007FF					013FFF	017FFF	2048	14336		98304
PIC18F2685	96K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF			4096	12288	81920	
1 10 101 2000	SOL	20	001FFF	000111	007111	002111	001111	010111	017111	8192	8192	01920	
			0001FF							512	1536		
PIC18F4221	4K	40	0003FF	0007FF	000FFF	_	_	_	_	1024	1024	2048	4096
			0000FF							512	3584		
PIC18F4321	8K	40	0003FF	000FFF	001FFF	_	_	_	_	1024	3072	4096	8192
1 10 101 4021	or	+0	0000FF	000111	001111					2048	2048	4000	0102
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4423	16K	40	0007FF	001FFF	003FFF				_	2048	6144	8192	16384
1 10 101 4423	101	40	0007FF	JUIL ET	0001 FF	_		_		2048	6144	0132	10004
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	_	_	4096	4096	8192	16384
Legend:	unimr							<u>İ</u>		4090	4090		

Legend:

— = unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

TABLE 5-5:	: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS													
	Configuration Word (CONFIGxx)													
Davisa	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF CF	1F 1F	1F 1F	00	87 87	C5	00	03	C0	03	E0 E0	03	40 40
PIC18F4423 PIC18F4450	00 3F	CF	3F	1F	00		C5	00	03	C0	03		03	40
PIC18F4455	3F	CF	3F	1F	00	86 87	ED E5	00	03 07	40 C0	03 07	60 E0	03 07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	CO	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	CO	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	05 0F	CO	05 0F	E0	05 0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	CO	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	CO	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
		olle ere i			00	L 01	00	- 00	OI.	- 00	_ U		UI.	70

Legend: Shaded cells are unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Device	Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

Legend: Shaded cells are unimplemented.