

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4610-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

D : 11	During Programming			
Pin Name	Pin Name	Pin Type	Pin Description	
MCLR/Vpp/RE3	Vpp	Р	Programming Enable	
VDD ⁽²⁾	Vdd	Р	Power Supply	
VSS ⁽²⁾	Vss	Р	Ground	
RB5	PGM	I	Low-Voltage ICSP [™] Input when LVP Configuration bit equals '1' ⁽¹⁾	
RB6	PGC	I	Serial Clock	
RB7	PGD	I/O	Serial Data	

Legend: I = Input, O = Output, P = Power

Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
-

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

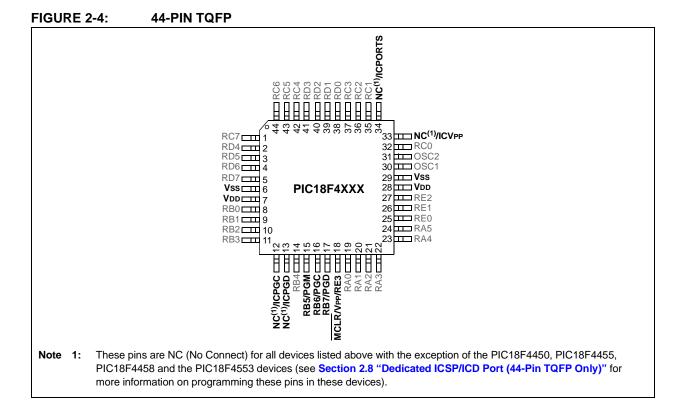
• PIC18F2610

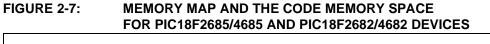
- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

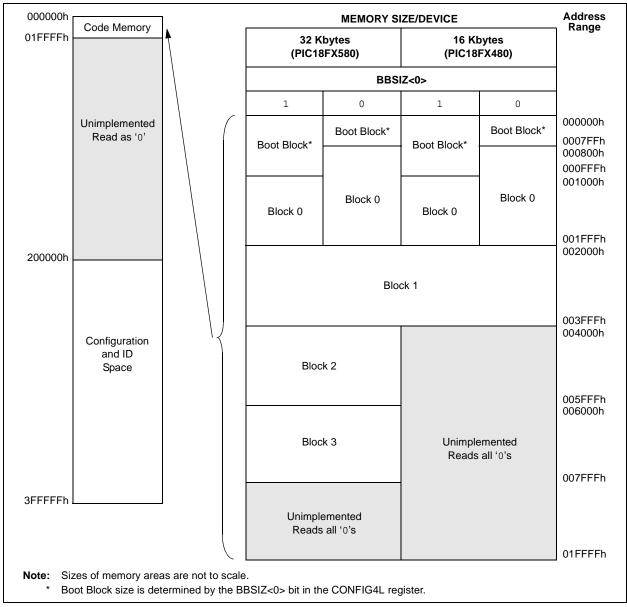

MCLR/VPP/RE3	°	28 RB7/PGD
RAO	2	27 RB6/PGC
RA1	3	26 RB5/PGM
RA2	4	25 RB4
RA3	0 6 8 2 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	24 🗌 RB3
RA4	6 🎗	23 RB2
RA5	7 🖸	22 RB1
	8 8	21 RB0
OSC1	9 <u>0</u>	
OSC2	10 L	
RC0	11	18 RC7
RC1	12	17 🗌 RC6
RC2	13	16 RC5
RC3	14	15 RC4


The following devices are included in 44-pin TQFP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

PIC18F4523

- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

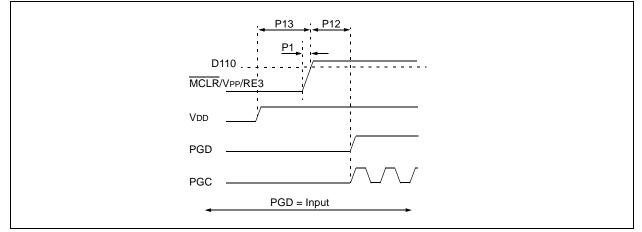

000000h					MEMORY S	IZE/DEVICE			Addre Rang
)1FFFFh	Code Memory		(PI	96 Kbytes C18F2685/46	85)	(80 Kbyte: PIC18F2682/4		Tung
					BBSIZ1	BBSIZ2			
			11/10	01	00	11/10	01	00	
					Boot Block*		Boot	Boot Block*	000000h 0007FFh 000800h 000FFFh
	Unimplemented Read as '0'		Boot Block*			Boot Block*	Block*		
					Block 0			Plack 0	00100 001FF
			Block 0	Block 0	DIOCK	Block 0	Block 0	Block 0	00200
200000h									003FF 00400
			Block 1			Block 1			
				Block 2			Block 2		007FF 00800
	Configuration and ID	and ID		Block 3			Block 3		
	Space			Block 4			Block 4		00FFF 01000
									013FF 01400
				Block 5		Unimplemented		017FF	
BFFFFFh				Inimplemented Reads all '0's	b		Reads all '0's		01FFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

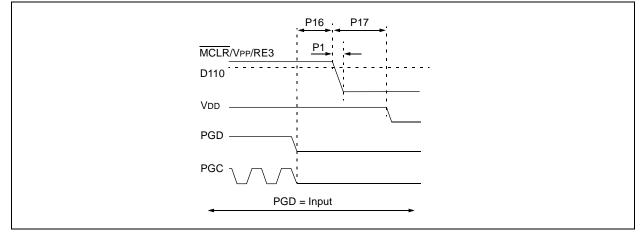
TABLE 2-6:IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2480	
PIC18F4480	000000h-003FFFh (16K)
PIC18F2580	000000h 007EEEh (22K)
PIC18F4580	000000h-007FFFh (32K)

FIGURE 2-10: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2480/2580/4480/4580 DEVICES


For PIC18F2221/4221 devices, the code memory space extends from 0000h to 00FFFh (4 Kbytes) in one 4-Kbyte block. For PIC18F2321/4321 devices, the code memory space extends from 0000h to 01FFFh (8 Kbytes) in two 4-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a variable "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

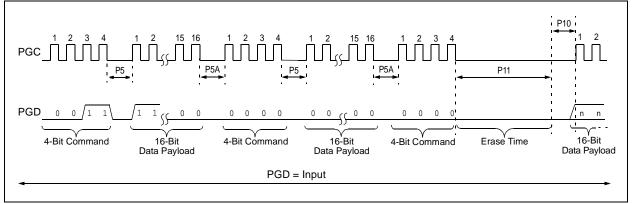
TABLE 3-1: BULK ERASE OPTIONS

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 "Data EEPROM Programming") must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in Section 3.3 "Data EEPROM Programming" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.3 "Memory Maps").

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

3.2 Code Memory Programming

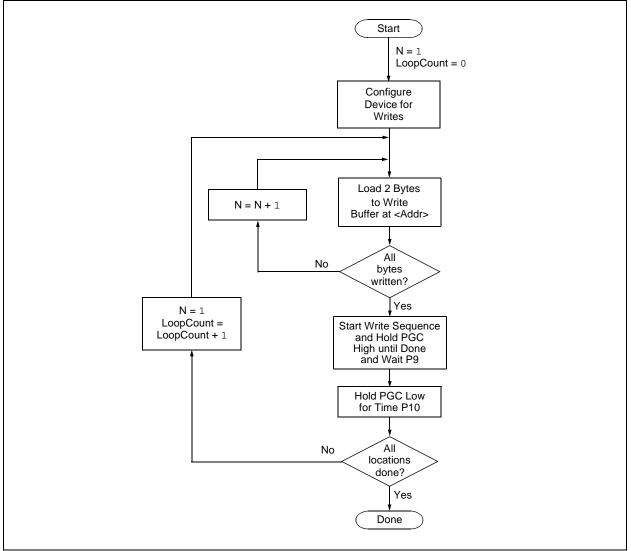
Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

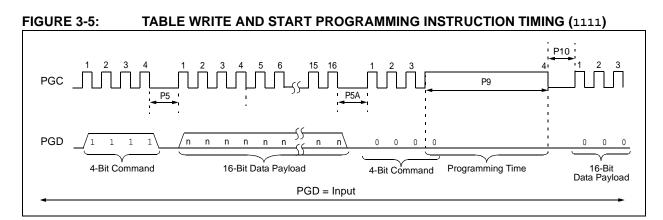
The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.


TABLE 3-4: WRITE AND ERASE BUFFER SIZES

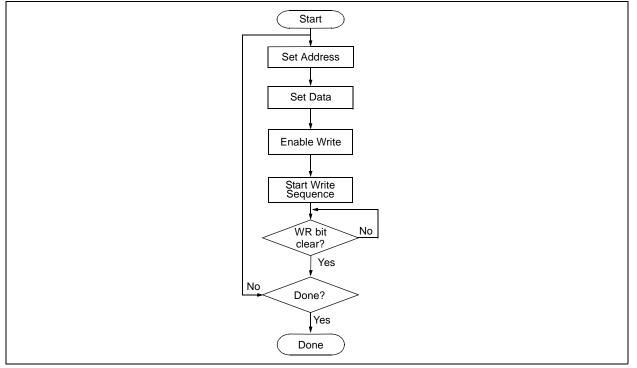

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64
PIC18F2450, PIC18F4450	16	64
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510		
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	22	64
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	- 32	64
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550		
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553		
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610		
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685		

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	cess to code memory an	d enable writes.			
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS			
Step 2: Load write	e buffer.				
0000 0000 0000 0000 0000 0000 Step 3: Repeat fo	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6 r all but the last two byte</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVUW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>			
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.			
Step 4: Load write	Step 4: Load write buffer for last two bytes.				
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.			
To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.					

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available on the following devices:			
PIC18F2410	PIC18F4410		
PIC18F2450	PIC18F4450		
PIC18F2510	PIC18F4510		
PIC18F2515	PIC18F4515		
PIC18F2610	PIC18F4610		


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

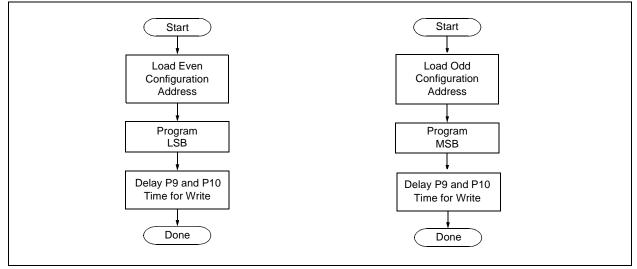
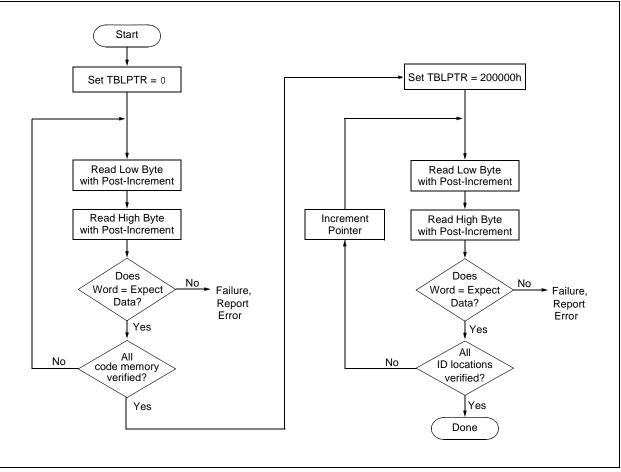


TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction
Step 1: Enable w	ites and direct access to co	nfiguration memory.
0000 0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS
Step 2: Set Table	Pointer for configuration byt	e to be written. Write even/odd addresses. ⁽¹⁾
0000 0000 0000 0000 0000 1111	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <msb ignored=""><lsb></lsb></msb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming.
0000 0000 1111 0000	00 00 0E 01 6E F6 <msb><lsb ignored=""> 00 00</lsb></msb>	NOP - hold PGC high for time P9 and low for time P10. MOVLW 01h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.


FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

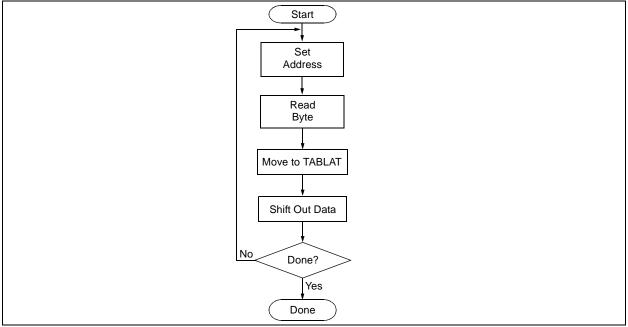
4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits


A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	cess to data EEPROM.				
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS			
Step 2: Set the da	ata EEPROM Address Pointe	er.			
0000 0000 0000 0000 Step 3: Initiate a	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>			
0000	80 A6	BSF EECON1, RD			
Step 4: Load data	Step 4: Load data into the Serial Data Holding register.				
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, O MOVWF TABLAT NOP Shift Out Data ⁽¹⁾			

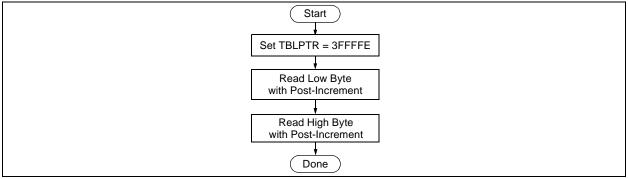
Note 1: The <LSB> is undefined. The <MSB> is the data.

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.


5.2 Device ID Word

The Device ID Word for the PIC18F2XX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

Bit Name	Configuration Words	Description
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6 1000 = Internal RC oscillator, port function on RA6, port function on RA7 1010 = Internal RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0011 = XT oscillator
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1010 = Internal oscillator, port function on RA6, EC is used by USB 1011 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USE 0111 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0110 = EC oscillator, CLKO function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USE 0101 = EC oscillator, port function on RA6, EC is used by USE 0101 = EC oscillator, PLL is enabled, XT is used by USB 0102 = XT oscillator, PLL is enabled, XT is used by USB
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide
CPUDIV<1:0> Note 1: The BE	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide :0> and BBSIZ<2:1> bits, cannot be changed once any of the following

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide – oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled
BORV<1:0>	CONFIG2L	0 = USB voltage regulator is disabled Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2
		0000 = 1:1 000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

Bit Name	Configuration Words	Description
WDTEN	CONFIG2H	Watchdog Timer Enable bit
		1 = WDT is enabled
		0 = WDT is disabled (control is placed on the SWDTEN bit)
MCLRE	CONFIG3H	MCLR Pin Enable bit
		$1 = \overline{MCLR}$ pin is enabled, RE3 input pin is disabled
		0 = RE3 input pin is enabled, MCLR pin is disabled
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit
		1 = Timer1 is configured for low-power operation
		0 = Timer1 is configured for high-power operation
PBADEN	CONFIG3H	PORTB A/D Enable bit
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
PBADEN	CONFIG3H	PORTB A/D Enable bit (PIC18FXX8X devices only)
		1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
CCP2MX	CONFIG3H	CCP2 MUX bit
		1 = CCP2 input/output is multiplexed with RC1 ⁽²⁾
		0 = CCP2 input/output is multiplexed with RB3
DEBUG	CONFIG4L	Background Debugger Enable bit
		1 = Background debugger is disabled, RB6 and RB7 are configured as general
		purpose I/O pins
		0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit
		Debug
XINST	CONFIG4L	Extended Instruction Set Enable bit
		 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled
		(Legacy mode)
ICPRT	CONFIG4L	Dedicated In-Circuit (ICD/ICSP™) Port Enable bit
		(PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and
		PIC18F2450/4450 devices only)
		1 = ICPORT is enabled
		0 = ICPORT is disabled
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)
		11 = 4K words (8 Kbytes) Boot Block
		10 = 4K words (8 Kbytes) Boot Block
		01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block
BBSIZ<2:1> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only)
		11 = 4K words (8 Kbytes) Boot Block
		10 = 4K words (8 Kbytes) Boot Block
		01 = 2K words (4 Kbytes) Boot Block
		00 = 1K word (2 Kbytes) Boot Block

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

Bit Name	Configuration Words	Description
WRT5	CONFIG6L	Write Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)
		1 = Block 5 is not write-protected0 = Block 5 is write-protected
WRT4	CONFIG6L	Write Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)
		1 = Block 4 is not write-protected0 = Block 4 is write-protected
WRT3	CONFIG6L	Write Protection bit (Block 3 code memory area)
		1 = Block 3 is not write-protected
		0 = Block 3 is write-protected
WRT2	CONFIG6L	Write Protection bit (Block 2 code memory area)
		1 = Block 2 is not write-protected0 = Block 2 is write-protected
WRT1	CONFIG6L	Write Protection bit (Block 1 code memory area)
		1 = Block 1 is not write-protected0 = Block 1 is write-protected
WRT0	CONFIG6L	Write Protection bit (Block 0 code memory area)
		1 = Block 0 is not write-protected
		0 = Block 0 is write-protected
WRTD	CONFIG6H	Write Protection bit (Data EEPROM)
		 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protected
WRTB	CONFIG6H	Write Protection bit (Boot Block memory area)
		1 = Boot Block is not write-protected
		0 = Boot Block is write-protected
WRTC	CONFIG6H	Write Protection bit (Configuration registers)
		1 = Configuration registers are not write-protected
		0 = Configuration registers are write-protected
EBTR5	CONFIG7L	Table Read Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only)
		 1 = Block 5 is not protected from Table Reads executed in other blocks 0 = Block 5 is protected from Table Reads executed in other blocks
EBTR4	CONFIG7L	Table Read Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only)
		 1 = Block 4 is not protected from Table Reads executed in other blocks 0 = Block 4 is protected from Table Reads executed in other blocks
EBTR3	CONFIG7L	Table Read Protection bit (Block 3 code memory area)
		 1 = Block 3 is not protected from Table Reads executed in other blocks 0 = Block 3 is protected from Table Reads executed in other blocks
EBTR2	CONFIG7L	Table Read Protection bit (Block 2 code memory area)
		1 = Block 2 is not protected from Table Reads executed in other blocks
		0 = Block 2 is protected from Table Reads executed in other blocks
EBTR1	CONFIG7L	Table Read Protection bit (Block 1 code memory area)
		 1 = Block 1 is not protected from Table Reads executed in other blocks 0 = Block 1 is protected from Table Reads executed in other blocks

TABLE 5-3:	PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS ((CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.