

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Batalla	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4610t-i-pt

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

- N	During Programming			
Pin Name Pin Type		Pin Description		
MCLR/VPP/RE3	VPP	Р	Programming Enable	
VDD ⁽²⁾	VDD	Р	Power Supply	
VSS ⁽²⁾	Vss	Р	Ground	
RB5	PGM	I	Low-Voltage ICSP™ Input when LVP Configuration bit equals '1'(1)	
RB6	PGC	Ţ	Serial Clock	
RB7	PGD	I/O	Serial Data	

Legend: I = Input, O = Output, P = Power **Note 1:** See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

• PIC18F2221

• PIC18F2480

• PIC18F2580

• PIC18F2321

• PIC18F2510

• PIC18F2585

• PIC18F2410

• PIC18F2515

• PIC18F2610

PIC18F2420

• PIC18F2520

• PIC18F2620

PIC18F2423

• PIC18F2523

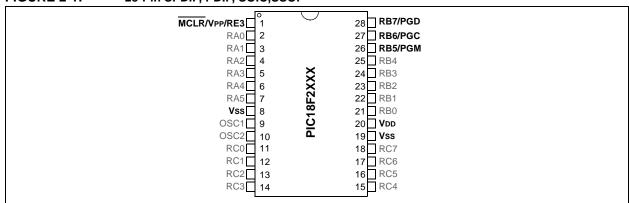
• PIC18F2680

• PIC18F2450

• PIC18F2525

• PIC18F2682

PIC18F2455PIC18F2458

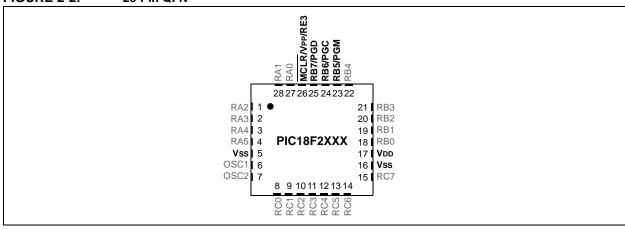

PIC18F2550PIC18F2553

PIC18F2685

The following devices are included in 28-pin SSOP parts:

PIC18F2221
 PIC18F2321

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

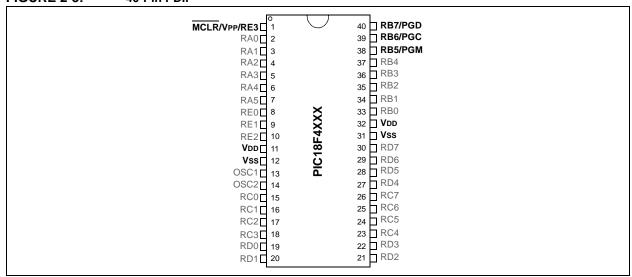
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620

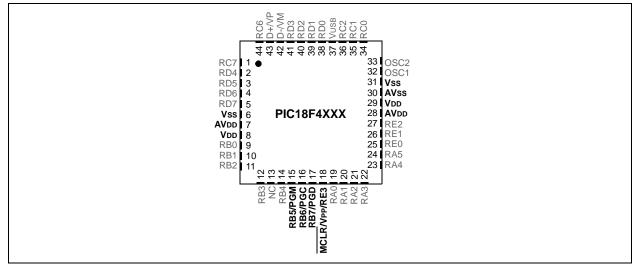

- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

FIGURE 2-3: 40-Pin PDIP



The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

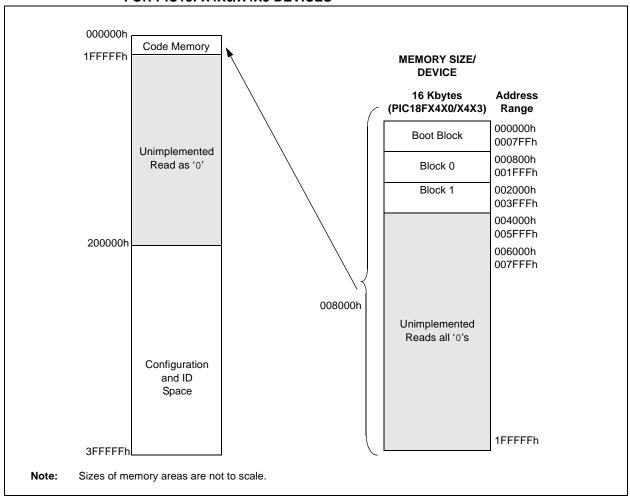
FIGURE 2-5: 44-PIN QFN

2.3 **Memory Maps**

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

FIGURE 2-7: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2685/4685 AND PIC18F2682/4682 DEVICES


000000h		[MEMORY S	IZE/DEVICE			Addres
O1FFFFh Code Memory		96 Kbytes (PIC18F2685/4685)		80 Kbytes (PIC18F2682/4682)					
					BBSIZ1:	BBSIZ2			
			11/10	01	00	11/10	01	00	
				Boot	Boot Block*		Boot	Boot Block*	000000 0007FF
	Unimplemented Read as '0'		Boot Block*	Block*		Boot Block*	Block*		000800 000FFF
					Block 0			Disal: 0	001000l
			Block 0	Block 0	BIOCK U	Block 0	Block 0	Block 0	002000h
200000h									003FFF
			Block 1		Block 1		001000		
				Block 2			Block 2		007FFF 008000
	Configuration								00BFFF 00C000
	and ID Space			Block 3			Block 3		00FFFF
	Space			Dlook 4			Dlook 4		010000
				Block 4			Block 4		013FFF 014000
				Block 5		Unimplemented			
3FFFFFh				Inimplemented Reads all '0's	d		Reads all '0's		017FFF
	zes of memory ar								」01FFFF

For PIC18FX5X0/X5X3 devices, the code memory space extends from 000000h to 007FFFh (32 Kbytes) in four 8-Kbyte blocks. For PIC18FX4X5/X4X8 devices, the code memory space extends from 000000h to 005FFFh (24 Kbytes) in three 8-Kbyte blocks. Addresses, 000000h through 0007FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

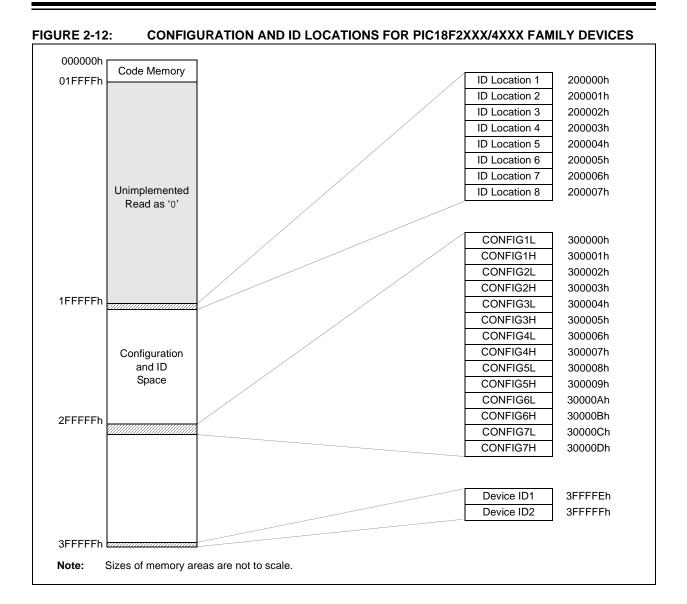
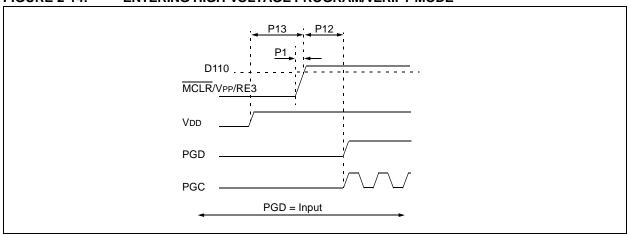

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420]
PIC18F4450	

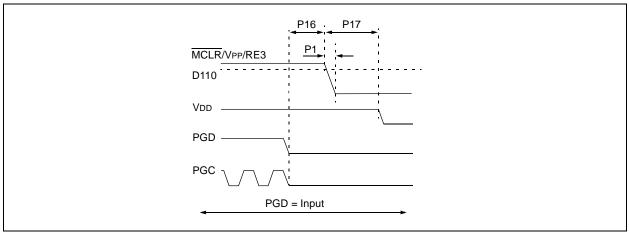
FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.



2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in Figure 2-14, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

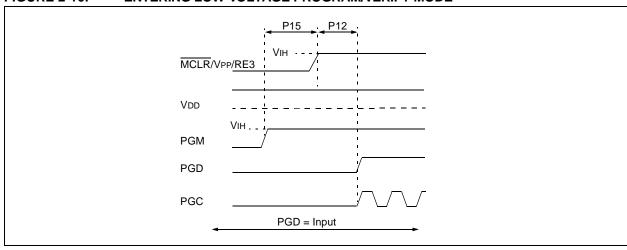


FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

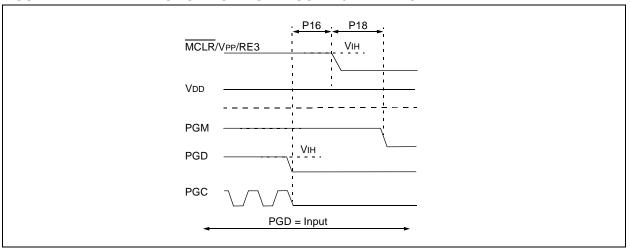
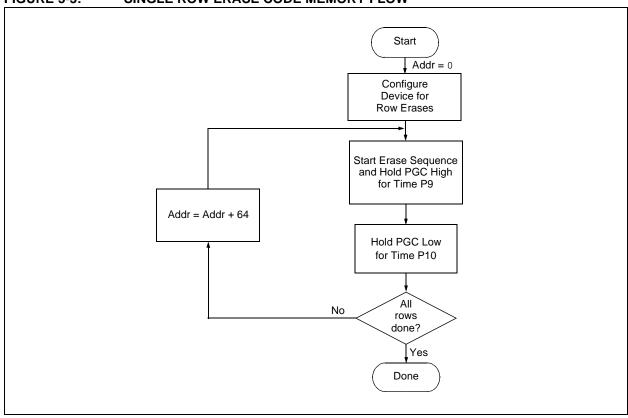



TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

Step 1: Direct access to code memory and enable writes. 0000 8E A6 BSF EECON1, EEPGD 0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR 0000 00 00 NOP - hold PGC high for time P9 and low for time P10.	4-Bit Command	Data Payload	Core Instruction			
0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 1: Direct ac	cess to code memory an	d enable writes.			
0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	9C A6	BCF EECON1, CFGS			
0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 2: Point to f	irst row in code memory.				
0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	6A F7	CLRF TBLPTRH			
0000 82 A6 BSF EECON1, WR	Step 3: Enable e	Step 3: Enable erase and erase single row.				
	0000	82 A6	BSF EECON1, WR			

FIGURE 3-3: SINGLE ROW ERASE CODE MEMORY FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

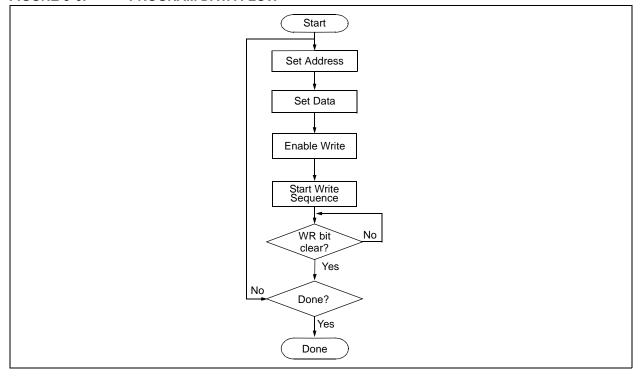
Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64
PIC18F2450, PIC18F4450	16	64
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510		
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	32	64
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	32	04
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550		
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553		
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610		
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685		

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory an	d enable writes.	
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Load write	e buffer.		
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>	
Step 3: Repeat for	r all but the last two byte	es.	
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
Step 4: Load write	Step 4: Load write buffer for last two bytes.		
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.	
To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.			

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	n the following devices:
PIC18F2410	PIC18F4410
PIC18F2450	PIC18F4450
PIC18F2510	PIC18F4510
PIC18F2515	PIC18F4515
PIC18F2610	PIC18F4610


Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses, 200000h through 200007h. These locations read out normally even after code protection.

Note: The user only needs to fill the first 8 bytes of the write buffer in order to write the ID locations.

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1 "Modifying Code Memory"**. As with code memory, the ID locations must be erased before being modified.

TABLE 3-8: WRITE ID SEQUENCE

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	Step 1: Direct access to code memory and enable writes.				
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS			
Step 2: Load write	buffer with 8 bytes and writ	te.			
0000 0000 0000 0000 0000 0000 1101	0E 20 6E F8 0E 00 6E F7 0E 00 6E F6 <msb><lsb></lsb></msb>	MOVLW 20h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPTRH MOVLW 00h MOVWF TBLPTRL Write 2 bytes and post-increment address by 2.			
1101 1101 1111 0000	<msb><lsb> <msb><lsb> <msb><lsb> 00 00</lsb></msb></lsb></msb></lsb></msb>	Write 2 bytes and post-increment address by 2. Write 2 bytes and post-increment address by 2. Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.			

3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only eight bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9.

Note: The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F4585	0Eh	101x xxxx	
PIC18F4610	0Ch	001x xxxx	
PIC18F4620	0Ch	000x xxxx	
PIC18F4680	0Eh	100x xxxx	
PIC18F4682	27h	010x xxxx	
PIC18F4685	27h	011x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide - oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled 0 = USB voltage regulator is disabled
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
		Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
BBSIZ ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block
LVP	CONFIG4L	Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled
CP5	CONFIG5L	Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected
CP4	CONFIG5L	Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected
CP3	CONFIG5L	Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected
CP2	CONFIG5L	Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected
CP1	CONFIG5L	Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected
CP0	CONFIG5L	Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected
CPD	CONFIG5H	Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected
СРВ	CONFIG5H	Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Device	Memory Size (Bytes)	Pins	Ending Address								Size (Bytes)				
			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total		
PIC18F2221 4K	414	28	0001FF	0007FF	000555					512	1536	2049	4006		
	28	0003FF	UUU/FF	000FFF	_		_	-	1024	1024	2048	4096			
PIC18F2321 8K			0001FF		001FFF	_		-	_	512	3584	4096	8192		
	8K	28	0003FF	000FFF						1024	3072				
			0007FF							2048	2048				
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384		
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384		
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384		
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC 10F2450	ION	20	000FFF	001777	003FFF			_		4096	4096	0192	10304		
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
DIO4050400	4016	-00	0007FF	201555						2048	6144		40004		
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096 4096	8192	16384			
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
		28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
	32K		000FFF							4096	4096				
		48K 28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F2585	48K		000FFF							4096	12288				
			001FFF							8192	8192				
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
	64K	28	0007FF	003FFF	007FFF		00FFFF	_	_	2048	14336	49152	65536		
PIC18F2680			000FFF							4096	12288				
F IC 101 2000			001FFF							8192	8192				
	80K	28	0007FF	003FFF	F 007FFF	00BFFF	00FFFF	013FFF	_	2048	14336	65536	81920		
PIC18F2682			000FFF							4096	12288				
			001FFF							8192	8192				
	96K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304		
PIC18F2685			000FFF							4096	12288				
F 10 101 2003	0011		001FFF	000111						8192	8192				
			0001FF							512	1536		 		
PIC18F4221	4K	40	0003FF	0007FF	000FFF	_	_	_	_	1024	1024	2048	4096		
	8K	40	0000FF			:F _	_		_	512	3584	4096	8192		
PIC18F4321			0003FF	000FFF	001FFF					1024	3072				
FIC 101 4321			0000FF	000111	001111					2048	2048				
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384		
PIC18F4423	16K	40	0007FF	001FFF	003FFF				_	2048	6144		16384		
1 10 101 4423	101	40	0007FF	JUILER	0001 FF	_		_		2048	6144		10004		
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	_	_	4096	4096	8192	16384		
I egend:	unimr				<u></u>					4090	4090				

Legend:

— = unimplemented.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Device	Memory Size (Bytes)	Pins			End	ing Addr	Size (Bytes)						
			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F4480	16K	40	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
			000FFF							4096	4096		
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F4580	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
			000FFF							4096	4096		
PIC18F4585	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
			000FFF							4096	12288		
			001FFF							8192	8192		
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
	64K	4K 40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F4680			000FFF							4096	12288		
			001FFF							8192	8192		
	80K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	013FFF	_	2048	14336	65536	81920
PIC18F4682			000FFF							4096	12288		
			001FFF							8192	8192		
	96K	96K 44	0007FF			00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304
PIC18F4685			000FFF	003FFF	007FFF					4096	12288		
			001FFF							8192	8192		

Legend: — = unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units Conditions No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

0

100

ns

2: When ICPRT = 1, this specification also applies to ICVPP.

MCLR/VPP/RE3 ↓ to VDD ↓

MCLR/VPP/RE3 ↓ to PGM ↓

3: At 0°C-50°C.

THLD3

THLD4

P18

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)