

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2510-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The following devices are included in 28-pin QFN parts:

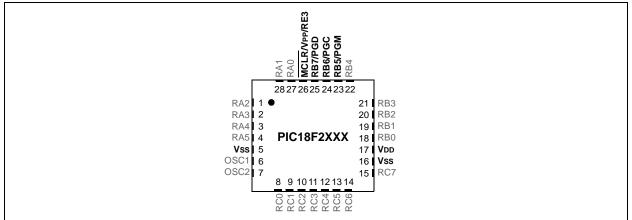
PIC18F2221PIC18F2321

• PIC18F2410

• PIC18F2420

PIC18F2423PIC18F2450

.


• PIC18F2480

- PIC18F2510
 - PIC18F2520

.

- PIC18F2523
- PIC18F2580
- PIC18F2682
- PIC18F2685

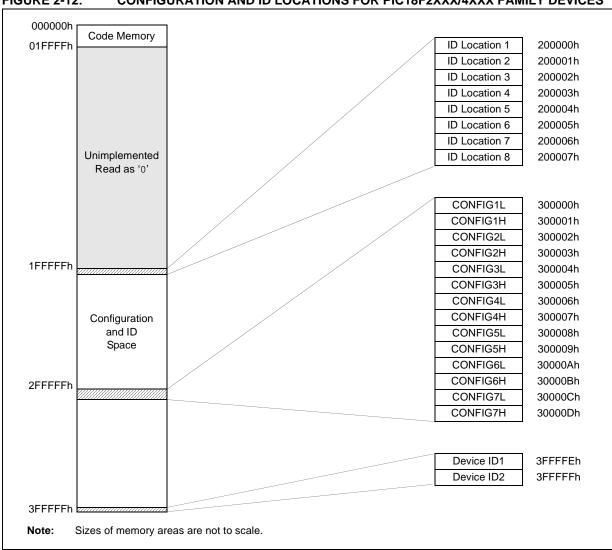
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4458PIC18F4480PIC18F4510

• PIC18F4455

- PIC18F4515PIC18F4520
- PIC18F4523PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585


- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

•

FIGURE 2-3: 40-P

40-Pin PDIP

MCLR/Vpp/RE3	°	40 RB7/PGD
RAO		39 B RB6/PGC
RA1		38 🗖 RB5/PGM
RA2		37 🗖 RB4
RA3		36 🗖 RB3
RA4	6	35 🗖 RB2
RA5	7	34 🗖 RB1
RE0	8 🎽	33 🗖 RB0
RE1	9 🗙	32 🗍 VDD
RE2		31 🗖 Vss
VDD	11 8	30 🗌 RD7
Vss	12 Ú	29 🗖 RD6
OSC1		28 RD5
OSC2		27 🗖 RD4
RC0		26 🗖 RC7
RC1		25 RC6
RC2		24 C5
RC3		23 RC4
RD0		22 RD3
RD1	20	21 RD2

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

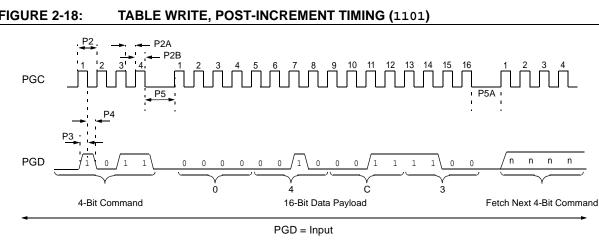

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-9: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write,
		post-increment by 2

FIGURE 2-18:

2.8 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

The PIC18F4455/4458/4550/4553 44-pin TQFP devices are designed to support an alternate programming input: the dedicated ICSP/ICD port. The primary purpose of this port is to provide an alternate In-Circuit Debugging (ICD) option and free the pins (RB6, RB7 and MCLR) that would normally be used for debugging the application. In conjunction with ICD capability, however, the dedicated ICSP/ICD port also provides an alternate port for ICSP.

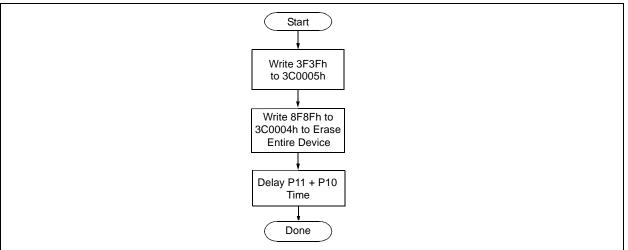
Setting the ICPRT Configuration bit enables the dedicated ICSP/ICD port. The dedicated ICSP/ICD port functions the same as the default ICSP/ICD port; however, alternate pins are used instead of the default pins. Table 2-10 identifies the functionally equivalent pins for ICSP purposes:

The dedicated ICSP/ICD port is an alternate port. Thus, ICSP is still available through the default port even though the ICPRT Configuration bit is set. When the VIH is seen on the MCLR/VPP/RE3 pin prior to applying VIH to the ICRST/ICVPP pin, then the state of the ICRST/ICVPP pin is ignored. Likewise, when the VIH is seen on ICRST/ICVPP prior to applying VIH to MCLR/VPP/RE3, then the state of the MCLR/VPP/RE3 pin is ignored.

The ICPRT Configuration bit can only be programmed through the default ICSP port. Chip Erase functions Note: through the dedicated ICSP/ICD port do not affect this bit. When the ICPRT Configuration bit is set (dedicated ICSP/ICD port enabled), the NC/ICPORTS pin must be tied to either VDD or VSS.

The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

Pin Name	During Programming							
	Pin Name	Pin Type	Dedicated Pins	Pin Description				
MCLR/Vpp/RE3	Vpp	Р	NC/ICRST/ICVPP	Programming Enable				
RB6	PGC	I	NC/ICCK/ICPGC	Serial Clock				
RB7	PGD	I/O	NC/ICDT/ICPGD	Serial Data				

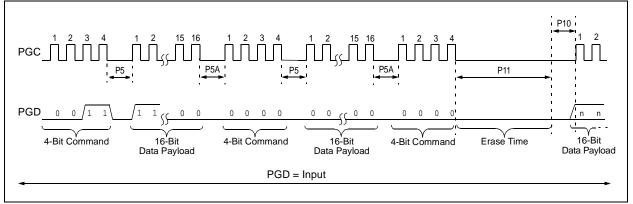

TABLE 2-10: ICSP™ EQUIVALENT PINS

Legend: I = Input, O = Output, P = Power

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	OE 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

TABLE 3-2: BULK ERASE COMMAND SEQUENCE

FIGURE 3-1: BULK ERASE FLOW


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

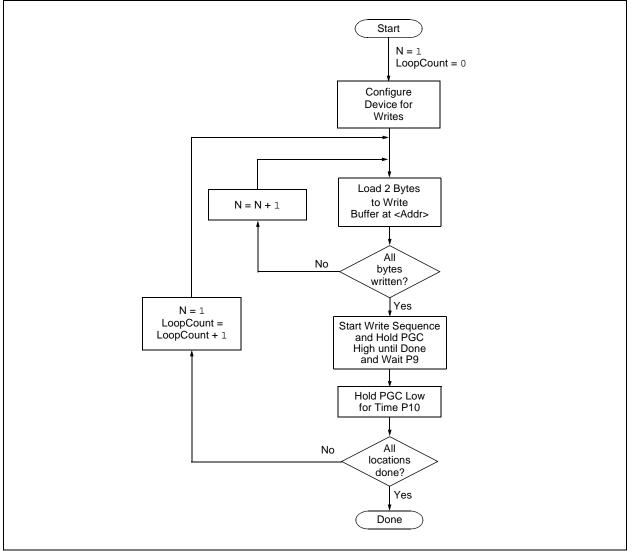
When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

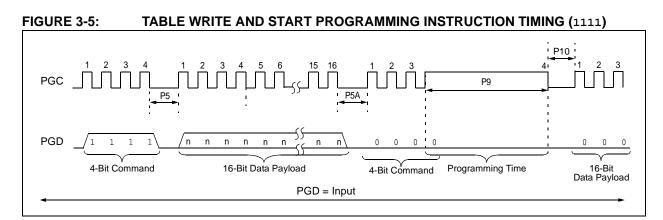
If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 "Data EEPROM Programming") must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in Section 3.3 "Data EEPROM Programming" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.3 "Memory Maps").

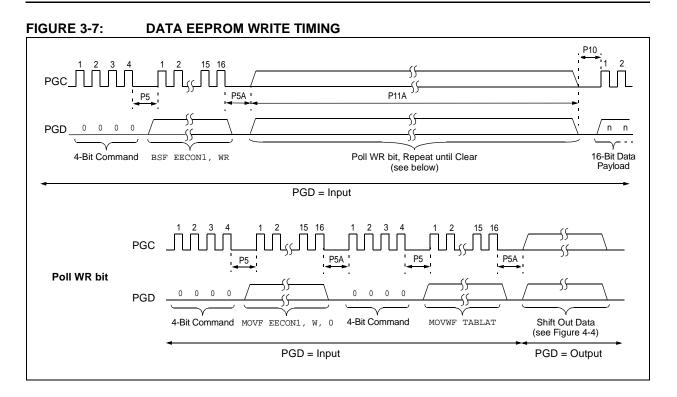

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.


After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

3.2.1 MODIFYING CODE MEMORY


The previous programming example assumed that the device had been Bulk Erased prior to programming (see **Section 3.1.1 "High-Voltage ICSP Bulk Erase**"). It may be the case, however, that the user wishes to modify only a section of an already programmed device.

The appropriate number of bytes required for the erase buffer must be read out of code memory (as described in Section 4.2 "Verify Code Memory and ID Locations") and buffered. Modifications can be made on this buffer. Then, the block of code memory that was read out must be erased and rewritten with the modified data.

The WREN bit must be set if the WR bit in EECON1 is used to initiate a write sequence.

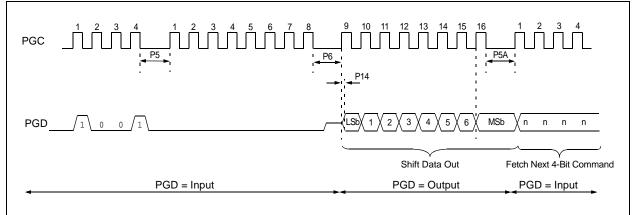
4-Bit Command	Data Payload	Core Instruction
Step 1: Direct ac	ccess to code memory.	
Step 2: Read an	d modify code memory (see S	ection 4.1 "Read Code Memory, ID Locations and Configuration Bits").
0000	8E A6	BSF EECON1, EEPGD
0000	9C A6	BCF EECON1, CFGS
Step 3: Set the T	Table Pointer for the block to b	e erased.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
Step 4: Enable r	nemory writes and set up an e	rase.
0000	84 A6	BSF EECON1, WREN
0000	88 A6	BSF EECON1, FREE
Step 5: Initiate e	rase.	
0000	82 A6	BSF EECON1, WR
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
Step 6: Load wri	te buffer. The correct bytes wi	Il be selected based on the Table Pointer.
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	0E <addr[8:15]></addr[8:15]>	MOVLW <addr[8:15]></addr[8:15]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.
•		Repeat as many times as necessary to fill the write buffer
1111	<msb><lsb></lsb></msb>	Write 2 bytes and start programming.
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.
	at each iteration of the loop. T	bugh 6, where the Address Pointer is incremented by the appropriate number of byte he write cycle must be repeated enough times to completely rewrite the contents of
Step 7: Disable	writes.	
0000	94 A6	BCF EECON1, WREN

TABLE 3-6: MODIFYING CODE MEMORY

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

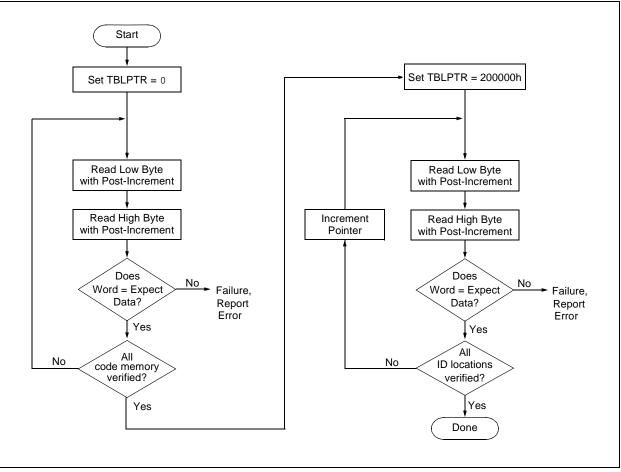
Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

4-Bit Command	Data Payload	Core Instruction							
Step 1: Set Table	Step 1: Set Table Pointer.								
0000 0000 0000 0000 0000 0000	<pre>0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]></pre>	MOVLW Addr[21:16] MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]>							
Step 2: Read mer	mory and then shift out on P	GD, LSb to MSb.							
1001	00 00	TBLRD *+							

TABLE 4-1:READ CODE MEMORY SEQUENCE



4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

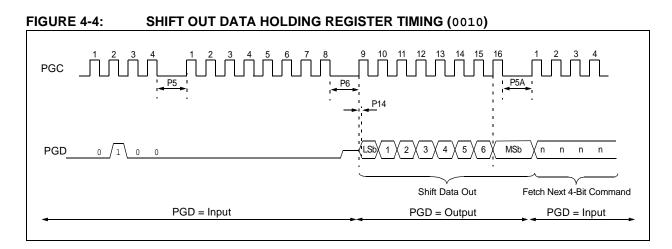

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

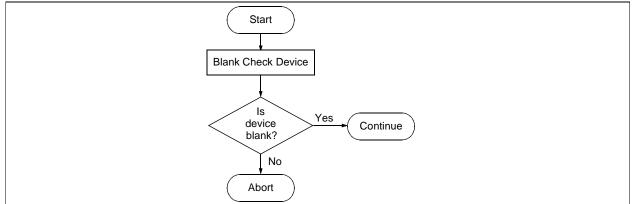
FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading configuration data.

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4** "**Read Data EEPROM Memory**" for implementation details of reading data EEPROM.


4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value		
300000h ^(1,8)	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000		
300001h	CONFIG1H	IESO	FCMEN		_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111		
30000111	CONTONT	1200	TOWEN			10000	10002	10001	10000	00 0101 ^(1,8)		
300002h	CONFIG2L			_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111		
30000211				VREGEN ^(1,8)	BORVI	BORVU	BORLINI	BORLINU	FWINILIN	01 1111 (1,8)		
300003h	CONFIG2H	—	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111		
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX ⁽⁷⁾	1011 (7)		
00000011		MOEINE					LI I I OOO	TBREEN	—	101-		
				ICPRT ⁽¹⁾	—	-				1001-1 ⁽¹⁾		
		DEBUG		BBSIZ1	BBSIZ0	_				1000 -1-1		
300006h	CONFIG4L		DEBUG	DEBUG	DEBUG	XINST	_	BBSIZ ⁽³⁾	_	LVP	—	STVREN
					ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾	
				BBSIZ1 ⁽²⁾	BBSIZ2(2)	-				1000 -1-1 (2)		
300008h	CONFIG5L	_	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111		
300009h	CONFIG5H	CPD	CPB	_	—	-	—	-	—	11		
30000Ah	CONFIG6L	_	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	WRT1	WRT0	11 1111		
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	—		_		—	111		
30000Ch	CONFIG7L		_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111		
30000Dh	CONFIG7H		EBTRB		_		_		_	-1		
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2		
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2		

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

Bit Name	Configuration Words	Description
WDTEN	CONFIG2H	Watchdog Timer Enable bit
		1 = WDT is enabled
		0 = WDT is disabled (control is placed on the SWDTEN bit)
MCLRE	CONFIG3H	MCLR Pin Enable bit
		$1 = \overline{MCLR}$ pin is enabled, RE3 input pin is disabled
		0 = RE3 input pin is enabled, MCLR pin is disabled
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit
		1 = Timer1 is configured for low-power operation
		0 = Timer1 is configured for high-power operation
PBADEN	CONFIG3H	PORTB A/D Enable bit
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
PBADEN	CONFIG3H	PORTB A/D Enable bit (PIC18FXX8X devices only)
		1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset
CCP2MX	CONFIG3H	CCP2 MUX bit
		1 = CCP2 input/output is multiplexed with RC1 ⁽²⁾
		0 = CCP2 input/output is multiplexed with RB3
DEBUG	CONFIG4L	Background Debugger Enable bit
		1 = Background debugger is disabled, RB6 and RB7 are configured as general
		purpose I/O pins
		0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit
		Debug
XINST	CONFIG4L	Extended Instruction Set Enable bit
		1 = Instruction set extension and Indexed Addressing mode are enabled
		 Instruction set extension and Indexed Addressing mode are disabled (Legacy mode)
ICPRT	CONFIG4L	Dedicated In-Circuit (ICD/ICSP™) Port Enable bit
	OCIVITO 4E	(PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and
		PIC18F2450/4450 devices only)
		1 = ICPORT is enabled
		0 = ICPORT is disabled
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)
		11 = 4K words (8 Kbytes) Boot Block
BBS17-2.1-(1)		
	CONFIG4L	
		01 = 2K words (4 Kbytes) Boot Block
		00 = 1K word (2 Kbytes) Boot Block
BBSIZ<1:0> ⁽¹⁾ BBSIZ<2:1> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only) 11 = 4K words (8 Kbytes) Boot Block 10 = 4K words (8 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block 01 = 2K words (4 Kbytes) Boot Block

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Configuration Bit Name Description Words BBSIZ<1:0>(1) CONFIG4L Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block BBSIZ⁽¹⁾ CONFIG4I Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block LVP CONFIG4L Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin STVREN CONFIG4L Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled CP5 CONFIG5L Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected CP4 CONFIG5L Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected CP3 CONFIG5L Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected CP2 CONFIG5L Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected CP1 CONFIG5L Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected CP0 CONFIG5L Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected CPD CONFIG5H Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected СРВ CONFIG5H Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.3 Single-Supply ICSP Programming

The LVP bit in Configuration register, CONFIG4L, enables Single-Supply (Low-Voltage) ICSP Programming. The LVP bit defaults to a '1' (enabled) from the factory.

If Single-Supply Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the High-Voltage ICSP mode, where MCLR/VPP/RE3 is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP/RE3 pin.

2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

5.4 Embedding Configuration Word Information in the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the Configuration Word locations from the hex file. If Configuration Word information is not present in the hex file, then a simple warning message should be issued. Similarly, while saving a hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the hex file, it should start at address, 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.5 Embedding Data EEPROM Information In the HEX File

To allow portability of code, a PIC18F2XXX/4XXX Family programmer is required to read the data EEPROM information from the hex file. If data EEPROM information is not present, a simple warning message should be issued. Similarly, when saving a hex file, all data EEPROM information must be included. An option to not include the data EEPROM information may be provided. When embedding data EEPROM information in the hex file, it should start at address, F00000h.

Microchip Technology Inc. believes that this feature is important for the benefit of the end customer.

5.6 Checksum Computation

The checksum is calculated by summing the following:

- The contents of all code memory locations
- The Configuration Words, appropriately masked
- ID locations (if any block is code-protected)

The Least Significant 16 bits of this sum is the checksum. The contents of the data EEPROM are not used.

5.6.1 PROGRAM MEMORY

When program memory contents are summed, each 16-bit word is added to the checksum. The contents of program memory, from 000000h to the end of the last program memory block, are used for this calculation. Overflows from bit 15 may be ignored.

5.6.2 CONFIGURATION WORDS

For checksum calculations, unimplemented bits in Configuration Words should be ignored as such bits always read back as '1's. Each 8-bit Configuration Word is ANDed with a corresponding mask to prevent unused bits from affecting checksum calculations.

The mask contains a '0' in unimplemented bit positions, or a '1' where a choice can be made. When ANDed with the value read out of a Configuration Word, only implemented bits remain. A list of suitable masks is provided in Table 5-5.

	Memory	emory Ending Address						Size (Bytes)					
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F2221	4K	28	0001FF 0003FF	0007FF	000FFF	_	_	_	_	512 1024	1536 1024	2048	4096
											3584		
	01/	20	0001FF	000555	004555					512		4000	0400
PIC18F2321	8K	28	0003FF 0007FF	000FFF	001FFF	_		_	_	1024 2048	3072 2048	4096	8192
PIC18F2410	16K	28	0007FF	001FFF	003FFF			_	_	2048	6144	8192	16384
PIC18F2420	16K	28	0007FF	001FFF	003FFF			_		2048	6144	8192	16384
PIC18F2423	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384
			0007FF							2048	6144		
PIC18F2450	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF				2048	6144	16384	24576
			0007FF							2048	6144		
PIC18F2480	16K	28	000FFF	001FFF	003FFF	—	—	—	—	4096	4096	8192	16384
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	—	—	—	2048	14336	32768	49152
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	—	—	2048	14336	16384	32768
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	—	—	2048	14336	16384	32768
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF				2048	14336	32768	49152
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF			2048	6144	24576	32768
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768
	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_		2048	6144	04570	32768
PIC18F2580	32N	20	000FFF	UUIFFF	003FFF	005FFF	007FFF	_	_	4096	4096	24576	
			0007FF							2048	14336		
PIC18F2585	48K	28	000FFF	003FFF	007FFF	00BFFF	_	_	—	4096	12288	32768	49152
			001FFF							8192	8192		
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	—	2048	14336	49152	65536
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	—	2048	14336	49152	65536
			0007FF							2048	14336		
PIC18F2680	64K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	—	—	4096	12288	49152	65536
			001FFF							8192	8192		
			0007FF							2048	14336		
PIC18F2682	80K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	—	4096	12288	65536	81920
			001FFF							8192	8192		
			0007FF							2048	14336		
PIC18F2685	96K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	017FFF	4096	12288	81920	98304
			001FFF							8192	8192		
PIC18F4221	4K	40	0001FF	0007FF	000FFF	_	_	_	_	512	1536	2048	4096
			0003FF							1024	1024		
DIO / 0 D / 0 D /			0001FF							512	3584	4096	
PIC18F4321	8K	40	0003FF	000FFF	001FFF	_	—	—	—	1024	3072		8192
	4014	40	0007FF	004555	000555					2048	2048	0400	40004
PIC18F4410	16K	40	0007FF	001FFF		—	—	—	—	2048	6144	8192	16384
PIC18F4420	16K	40	0007FF	001FFF		—	—			2048	6144	8192	16384
PIC18F4423	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4450	16K	40	0007FF 000FFF	001FFF	003FFF	—	—	—	—	2048 4096	6144 4096	8192	16384
			JUUFFF							4090	4090		

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

Legend: — = unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	Vihh	High-Voltage Programming Voltage on MCLR/VPP/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	Vdd	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μA	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Viн	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)		50	pF	To meet AC specifications
P1	Tr	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	-	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1		μS	VDD = 2.0V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns	
P4	THLD1	Input Data Hold Time from PGC \downarrow	15		ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	—	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	—	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

	Standard Operating Conditions Operating Temperature: 25°C is recommended									
Param No.	Sym	Characteristic	Min	Max	Units	Conditions				
P11A	Tdrwt	Data Write Polling Time	4	—	ms					
P12	THLD2	Input Data Hold Time from MCLR/VPP/RE3 ↑	2	_	μS					
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100	_	ns	(Note 2)				
P14	TVALID	Data Out Valid from PGC ↑	10	—	ns					
P15	TSET3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2	—	μS	(Note 2)				
P16	TDLY8	Delay Between Last PGC \downarrow and $\overline{\mathrm{MCLR}}/\mathrm{VPP}/\mathrm{RE3}\downarrow$	0	_	S					
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns					
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	s					

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.