

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

- · ·	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2610-i-sp

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

Pin Name	During Programming		
	Pin Name	Pin Type	Pin Description
MCLR/VPP/RE3	VPP	Р	Programming Enable
VDD(2)	VDD	Р	Power Supply
VSS ⁽²⁾	Vss	Р	Ground
RB5	PGM	I	Low-Voltage ICSP™ Input when LVP Configuration bit equals '1'(1)
RB6	PGC	Ţ	Serial Clock
RB7	PGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power **Note 1:** See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

• PIC18F2221

• PIC18F2480

• PIC18F2580

• PIC18F2321

• PIC18F2510

• PIC18F2585

• PIC18F2410

• PIC18F2515

• PIC18F2610

PIC18F2420

• PIC18F2520

• PIC18F2620

PIC18F2423

• PIC18F2523

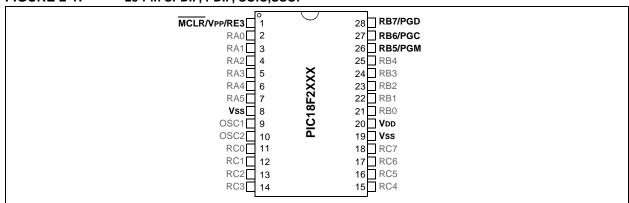
• PIC18F2680

• PIC18F2450

• PIC18F2525

• PIC18F2682

PIC18F2455PIC18F2458

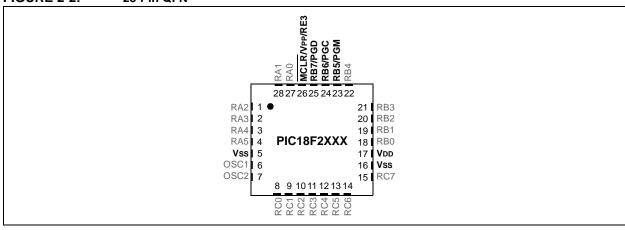

PIC18F2550PIC18F2553

PIC18F2685

The following devices are included in 28-pin SSOP parts:

PIC18F2221
 PIC18F2321

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

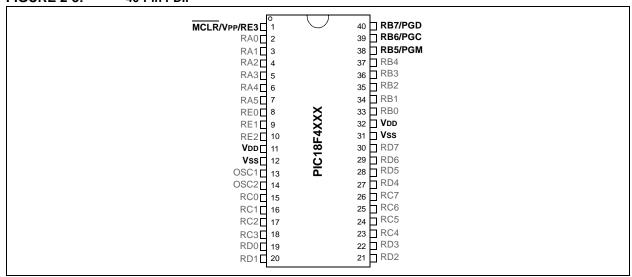
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620

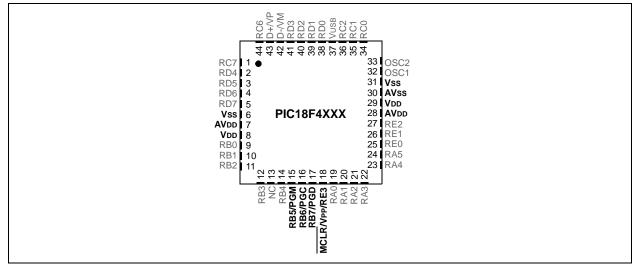

- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

FIGURE 2-3: 40-Pin PDIP



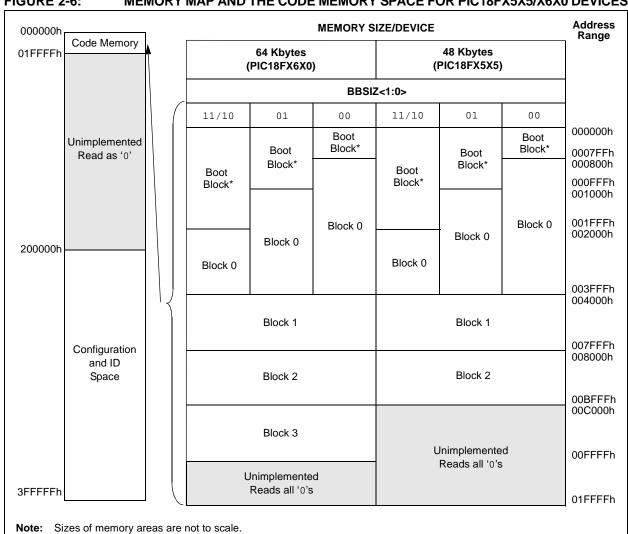
The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585
- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

FIGURE 2-5: 44-PIN QFN

2.3 **Memory Maps**


For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-2: IMPLEMENTATION OF CODE MEMORY

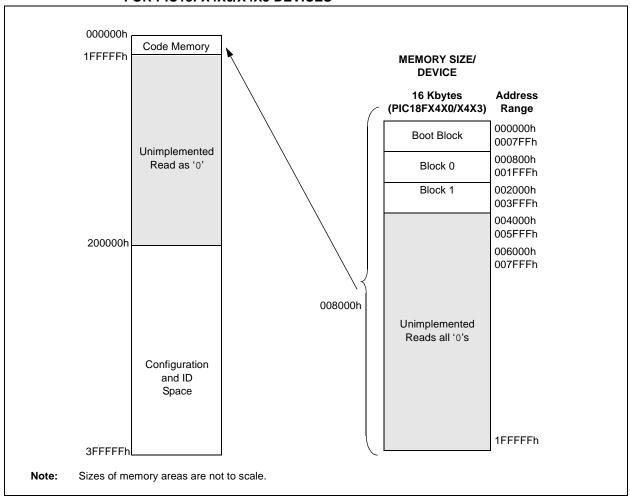
Device	Code Memory Size (Bytes)
PIC18F2515	
PIC18F2525	
PIC18F2585	000000h 00DFFFh (40K)
PIC18F4515	000000h-00BFFFh (48K)
PIC18F4525	
PIC18F4585	1
PIC18F2610	
PIC18F2620	
PIC18F2680	000000h 005555h (64K)
PIC18F4610	000000h-00FFFFh (64K)
PIC18F4620	
PIC18F4680	

MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5X5/X6X0 DEVICES FIGURE 2-6:

Boot Block size is determined by the BBSIZ<1:0> bits in the CONFIG4L register.

For PIC18F2685/4685 devices, the code memory space extends from 0000h to 017FFFh (96 Kbytes) in five 16-Kbyte blocks. For PIC18F2682/4682 devices, the code memory space extends from 0000h to 0013FFFh (80 Kbytes) in four 16-Kbyte blocks. Addresses, 0000h through 0FFFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2685/4685 and PIC18F2682/4682 devices can be configured as 1, 2 or 4K words (see Figure 2-7). This is done through the BBSIZ<2:1> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.


TABLE 2-3: IMPLEMENTATION OF CODE MEMORY

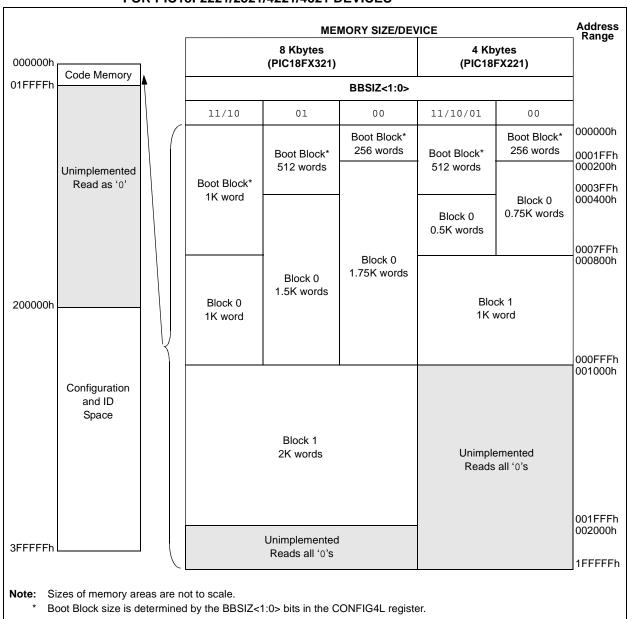
Device	Code Memory Size (Bytes)
PIC18F2682	000000h 012EEEh (90K)
PIC18F4682	000000h-013FFFh (80K)
PIC18F2685	000000h 017EEEh (06K)
PIC18F4685	000000h-017FFFh (96K)

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420]
PIC18F4450	

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.


The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2221	000000h-000FFFh (4K)
PIC18F4221	00000011-000FFF11 (4K)
PIC18F2321	000000h 001EEEh (9K)
PIC18F4321	000000h-001FFFh (8K)

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

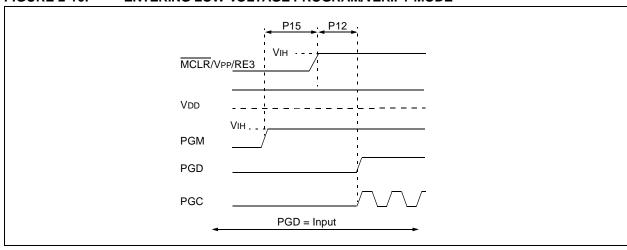
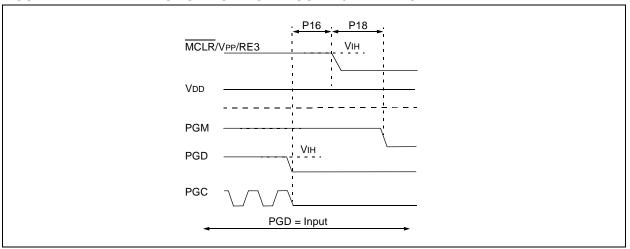



FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.8 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

The PIC18F4455/4458/4550/4553 44-pin TQFP devices are designed to support an alternate programming input: the dedicated ICSP/ICD port. The primary purpose of this port is to provide an alternate In-Circuit Debugging (ICD) option and free the pins (RB6, RB7 and \overline{MCLR}) that would normally be used for debugging the application. In conjunction with ICD capability, however, the dedicated ICSP/ICD port also provides an alternate port for ICSP.

Setting the ICPRT Configuration bit enables the dedicated ICSP/ICD port. The dedicated ICSP/ICD port functions the same as the default ICSP/ICD port; however, alternate pins are used instead of the default pins. Table 2-10 identifies the functionally equivalent pins for ICSP purposes:

The dedicated ICSP/ICD port is an alternate port. Thus, ICSP is still available through the default port even though the ICPRT Configuration bit is set. When the VIH is seen on the MCLR/VPP/RE3 pin prior to applying VIH to the ICRST/ICVPP pin, then the state of the ICRST/ICVPP pin is ignored. Likewise, when the VIH is seen on ICRST/ICVPP prior to applying VIH to MCLR/VPP/RE3, then the state of the MCLR/VPP/RE3 pin is ignored.

Note: The ICPRT Configuration bit can only be programmed through the default ICSP port. Chip Erase functions through the dedicated ICSP/ICD port do not affect this bit.

When the ICPRT Configuration bit is set (dedicated ICSP/ICD port enabled), the NC/ICPORTS pin must be tied to either VDD or VSS.

The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

TABLE 2-10: ICSP™ EQUIVALENT PINS

Pin Name			During P	rogramming
Pili Name	Pin Name	Pin Type	Dedicated Pins	Pin Description
MCLR/Vpp/RE3	VPP	Р	NC/ICRST/ICVPP	Programming Enable
RB6	PGC	I	NC/ICCK/ICPGC	Serial Clock
RB7	PGD	I/O	NC/ICDT/ICPGD	Serial Data

Legend: I = Input, O = Output, P = Power

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64
PIC18F2450, PIC18F4450	16	64
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510		
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	32	64
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	32	04
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550		
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553		
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610		
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685		

TABLE 3-5: WRITE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory an	d enable writes.	
0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Load write	e buffer.		
0000 0000 0000 0000 0000	0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]>	MOVLW <addr[21:16]> MOVWF TBLPTRU MOVLW <addr[15:8]> MOVWF TBLPTRH MOVLW <addr[7:0]> MOVWF TBLPTRL</addr[7:0]></addr[15:8]></addr[21:16]>	
Step 3: Repeat for	Step 3: Repeat for all but the last two bytes.		
1101	<msb><lsb></lsb></msb>	Write 2 bytes and post-increment address by 2.	
Step 4: Load write	Step 4: Load write buffer for last two bytes.		
1111 0000	<msb><lsb></lsb></msb>	Write 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.	
To continue writing	To continue writing data, repeat Steps 2 through 4, where the Address Pointer is incremented by 2 at each iteration of the loop.		

TABLE 3-7: PROGRAMMING DATA MEMORY

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to data EEPROM.		
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Set the da	ata EEPROM Address Pointe	er.	
0000 0000 0000 0000	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>	
Step 3: Load the	data to be written.		
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>	
Step 4: Enable me	emory writes.		
0000	84 A6	BSF EECON1, WREN	
Step 5: Initiate wri	ite.		
0000	82 A6	BSF EECON1, WR	
Step 6: Poll WR b	it, repeat until the bit is clear	1	
0000 0000 0000 0010	50 A6 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EECON1, W, 0 MOVWF TABLAT NOP Shift out data(1)	
Step 7: Hold PGC low for time P10.			
Step 8: Disable w	rites.		
0000	94 A6	BCF EECON1, WREN	
Repeat Steps 2 th	Repeat Steps 2 through 8 to write more data.		

Note 1: See Figure 4-4 for details on shift out data timing.

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to **Section 4.1** "**Read Code Memory, ID Locations and Configuration Bits**" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

Start Set TBLPTR = 200000h Set TBLPTR = 0 Read Low Byte Read Low Byte with Post-Increment with Post-Increment Read High Byte Increment Read High Byte with Post-Increment Pointer with Post-Increment Does Does No Word = Expect Failure, Word = Expect Failure, Data? Report Data? Report Error Error Yes Yes ΑII No No **ID** locations code memory verified? verified? Yes Yes Done

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to **Section 4.1 "Read Code Memory, ID Locations and Configuration Bits"** for implementation details of reading configuration data.

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The Device ID Word for the PIC18F2XXX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

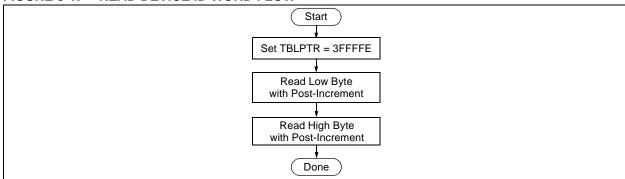


TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7 1000 = Internal RC oscillator, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide
CPUDIV<1:0>	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

x 5 code memory area) F4685 devices only) rotected cted x 4 code memory area) PIC18F4682/4685 devices only) rotected cted x 3 code memory area) rotected cted cted cted cted
cted 4 code memory area) PIC18F4682/4685 devices only) rotected cted 4 3 code memory area) rotected
PIC18F4682/4685 devices only) rotected cted c 3 code memory area) rotected
cted c 3 code memory area) rotected
rotected
cted
c 2 code memory area)
rotected cted
c 1 code memory area)
rotected cted
c 0 code memory area)
rotected
cted
EEPROM)
t write-protected ite-protected
Block memory area)
re-protected
rotected
iguration registers)
rs are not write-protected
rs are write-protected
(Block 5 code memory area) F4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 4 code memory area) PIC18F4682/4685 devices only)
red from Table Reads executed in other blocks
rom Table Reads executed in other blocks
(Block 3 code memory area)
ed from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 2 code memory area) red from Table Reads executed in other blocks
from Table Reads executed in other blocks
(Block 1 code memory area)
red from Table Reads executed in other blocks from Table Reads executed in other blocks

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

	Configuration Word (CONFIGxx)													
Device	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111 VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes	
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	VIH	Input High Voltage	0.8 VDD	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
	•					
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2 TPGC	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1	_	μS	VDD = 2.0V
P2A TPG0	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B TPGCH	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units **Conditions** No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s THLD3 MCLR/VPP/RE3 ↓ to VDD ↓ 100 ns P18 MCLR/VPP/RE3 ↓ to PGM ↓ 0 THLD4

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

- 2: When ICPRT = 1, this specification also applies to ICVPP.
- 3: At 0°C-50°C.

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)