

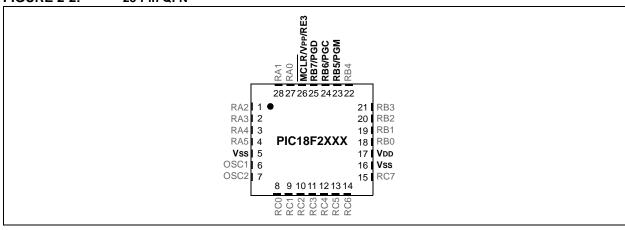
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4410t-i-pt


The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

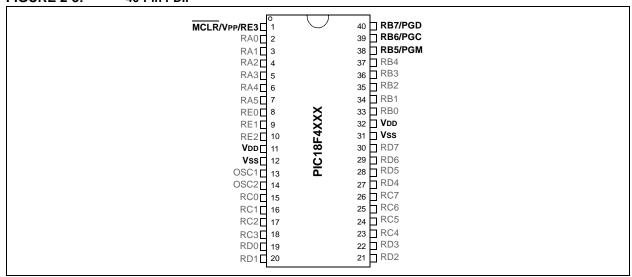
FIGURE 2-2: 28-Pin QFN

The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620


- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

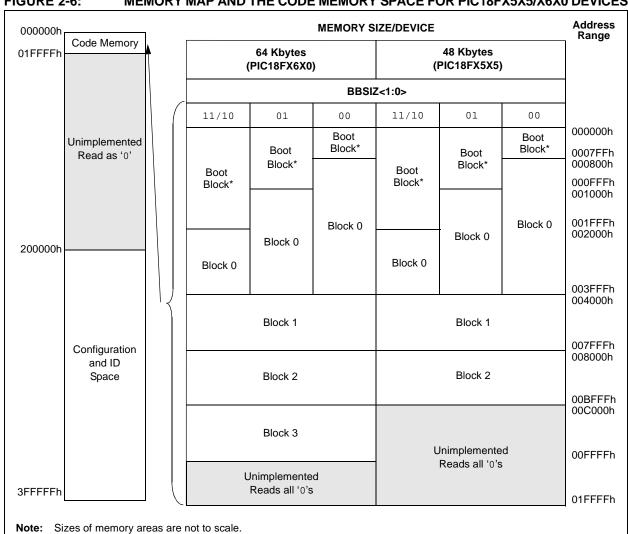
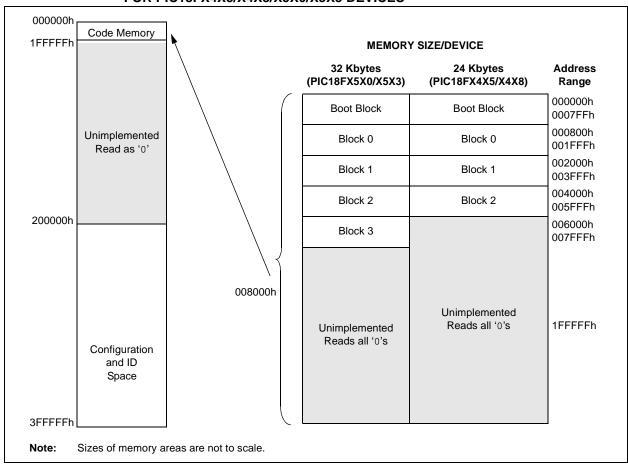

FIGURE 2-3: 40-Pin PDIP

TABLE 2-2: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2515	
PIC18F2525	
PIC18F2585	000000h 00DEEEh (40K)
PIC18F4515	000000h-00BFFFh (48K)
PIC18F4525	
PIC18F4585	1
PIC18F2610	
PIC18F2620	
PIC18F2680	000000h 005555h (64K)
PIC18F4610	000000h-00FFFFh (64K)
PIC18F4620	
PIC18F4680	

MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX5X5/X6X0 DEVICES FIGURE 2-6:



Boot Block size is determined by the BBSIZ<1:0> bits in the CONFIG4L register.

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2455	
PIC18F2458	000000h 005FFFh (04K)
PIC18F4455	000000h-005FFFh (24K)
PIC18F4458	
PIC18F2510	
PIC18F2520	
PIC18F2523	
PIC18F2550	
PIC18F2553	000000h 007FFFh (20K)
PIC18F4510	000000h-007FFFh (32K)
PIC18F4520	
PIC18F4523	
PIC18F4550	
PIC18F4553	

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES

For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

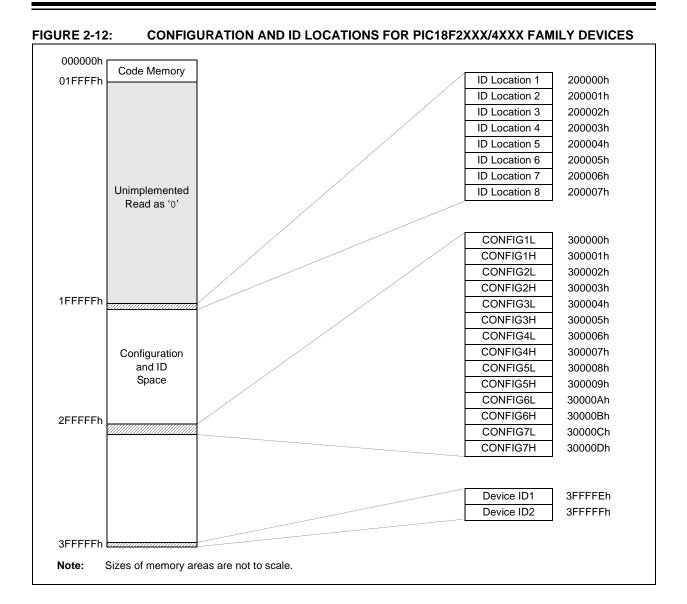
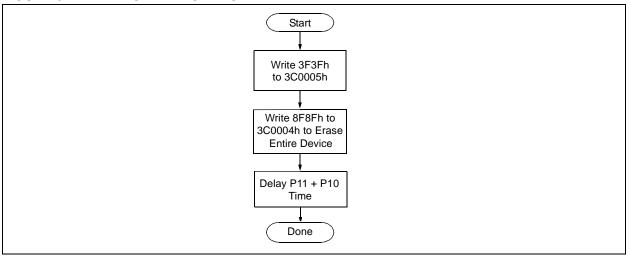
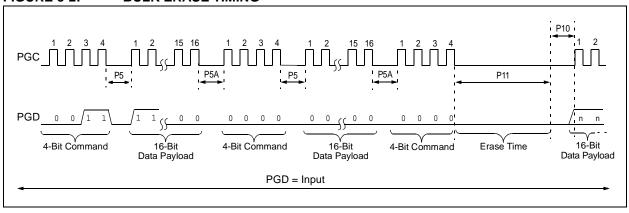



TABLE 3-2: BULK ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 05	MOVLW 05h
0000	6E F6	MOVWF TBLPTRL
1100	3F 3F	Write 3F3Fh to 3C0005h
0000	0E 3C	MOVLW 3Ch
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 04	MOVLW 04h
0000	6E F6	MOVWF TBLPTRL
1100	8F 8F	Write 8F8Fh TO 3C0004h to erase entire device.
		NOP
		Hold PGD low until erase completes.
0000	00 00	
0000	00 00	

FIGURE 3-1: BULK ERASE FLOW


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in **Section 3.1.3** "**ICSP Row Erase**" and **Section 3.2.1** "**Modifying Code Memory**".

If it is determined that a data EEPROM erase (selected devices only, see **Section 3.3 "Data EEPROM Programming"**) must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3 "Data EEPROM Programming"** and write '1's to the array.

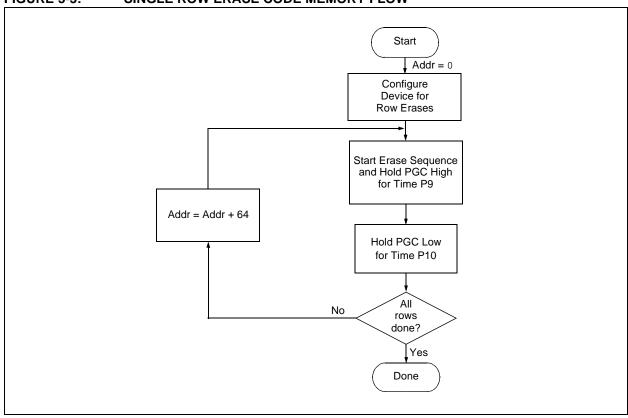
FIGURE 3-2: BULK ERASE TIMING

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.


The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

Step 1: Direct access to code memory and enable writes. 0000 8E A6 BSF EECON1, EEPGD 0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR 0000 00 00 NOP - hold PGC high for time P9 and low for time P10.	4-Bit Command	Data Payload	Core Instruction
0000 9C A6 BCF EECON1, CFGS 0000 84 A6 BSF EECON1, WREN Step 2: Point to first row in code memory. 0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 1: Direct ac	cess to code memory an	d enable writes.
0000 6A F8 CLRF TBLPTRU 0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	9C A6	BCF EECON1, CFGS
0000 6A F7 CLRF TBLPTRH 0000 6A F6 CLRF TBLPTRL Step 3: Enable erase and erase single row. 0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	Step 2: Point to f	irst row in code memory.	
0000 88 A6 BSF EECON1, FREE 0000 82 A6 BSF EECON1, WR	0000	6A F7	CLRF TBLPTRH
0000 82 A6 BSF EECON1, WR	Step 3: Enable e	rase and erase single ro	w.
	0000	82 A6	BSF EECON1, WR

FIGURE 3-3: SINGLE ROW ERASE CODE MEMORY FLOW

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64
PIC18F2450, PIC18F4450	16	64
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510		
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	32	64
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	32	04
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550		
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553		
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610		
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	- 64	64
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685		

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

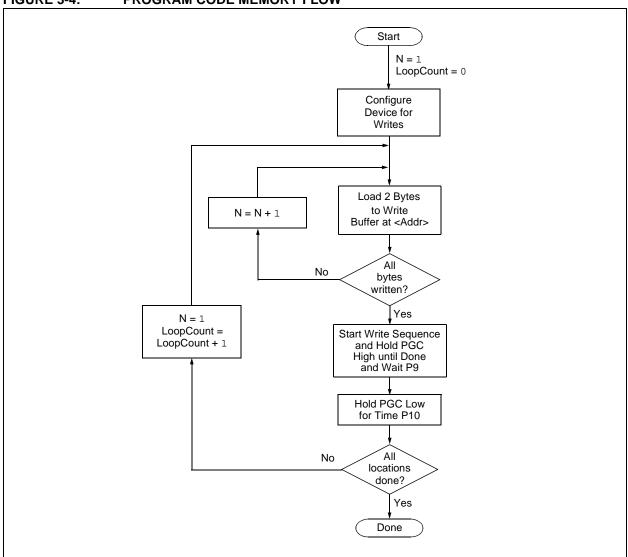
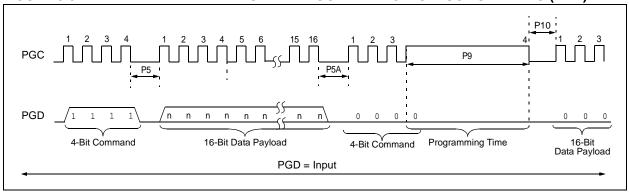
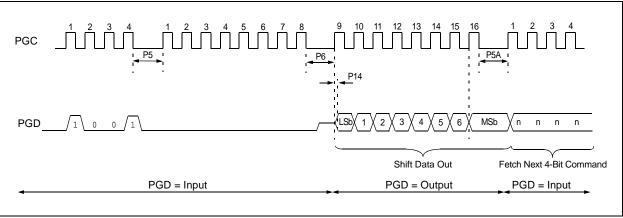



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Set Table	Pointer.		
0000	OE <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 2: Read mer	Step 2: Read memory and then shift out on PGD, LSb to MSb.		
1001	00 00	TBLRD *+	

5.0 CONFIGURATION WORD

The PIC18F2XXX/4XXX Family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting the Configuration Words. These bits may be read out normally, even after read or code protection. See Table 5-1 for a list of Configuration bits and Device IDs, and Table 5-3 for the Configuration bit descriptions.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations, mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a NOP.

5.2 Device ID Word

The Device ID Word for the PIC18F2XXX/4XXX Family devices is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

In some cases, devices may share the same DEVID values. In such cases, the Most Significant bit of the device revision, REV4 (DEVID1<4>), will need to be examined to completely determine the device being accessed.

See Table 5-2 for a complete list of Device ID values.

FIGURE 5-1: READ DEVICE ID WORD FLOW

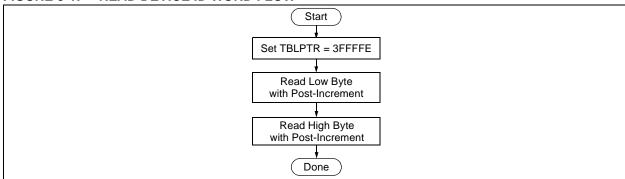


TABLE 5-2: DEVICE ID VALUES

Device -	Device	e ID Value
Device	DEVID2	DEVID1
PIC18F2221	21h	011x xxxx
PIC18F2321	21h	001x xxxx
PIC18F2410	11h	011x xxxx
PIC18F2420	11h	010x xxxx ⁽¹⁾
PIC18F2423	11h	010x xxxx ⁽²⁾
PIC18F2450	24h	001x xxxx
PIC18F2455	12h	011x xxxx
PIC18F2458	2Ah	011x xxxx
PIC18F2480	1Ah	111x xxxx
PIC18F2510	11h	001x xxxx
PIC18F2515	0Ch	111x xxxx
PIC18F2520	11h	000x xxxx(1)
PIC18F2523	11h	000x xxxx ⁽²⁾
PIC18F2525	0Ch	110x xxxx
PIC18F2550	12h	010x xxxx
PIC18F2553	2Ah	010x xxxx
PIC18F2580	1Ah	110x xxxx
PIC18F2585	0Eh	111x xxxx
PIC18F2610	0Ch	101x xxxx
PIC18F2620	0Ch	100x xxxx
PIC18F2680	0Eh	110x xxxx
PIC18F2682	27h	000x xxxx
PIC18F2685	27h	001x xxxx
PIC18F4221	21h	010x xxxx
PIC18F4321	21h	000x xxxx
PIC18F4410	10h	111x xxxx
PIC18F4420	10h	110x xxxx(1)
PIC18F4423	10h	110x xxxx ⁽²⁾
PIC18F4450	24h	000x xxxx
PIC18F4455	12h	001x xxxx
PIC18F4458	2Ah	001x xxxx
PIC18F4480	1Ah	101x xxxx
PIC18F4510	10h	101x xxxx
PIC18F4515	0Ch	011x xxxx
PIC18F4520	10h	100x xxxx ⁽¹⁾
PIC18F4523	10h	100x xxxx ⁽²⁾
PIC18F4525	0Ch	010x xxxx
PIC18F4550	12h	000x xxxx
PIC18F4553	2Ah	000x xxxx
PIC18F4580	1Ah	100x xxxx

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F4585	0Eh	101x xxxx	
PIC18F4610	0Ch	001x xxxx	
PIC18F4620	0Ch	000x xxxx	
PIC18F4680	0Eh	100x xxxx	
PIC18F4682	27h	010x xxxx	
PIC18F4685	27h	011x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

Bit Name	Configuration Words	Description
IESO	CONFIG1H	Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled
FOSC<3:0>	CONFIG1H	Oscillator Selection bits 11xx = External RC oscillator, CLKO function on RA6 101x = External RC oscillator, CLKO function on RA6 1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7 1000 = Internal RC oscillator, port function on RA6, port function on RA7 0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1) 0101 = EC oscillator, port function on RA6 0100 = EC oscillator, CLKO function on RA6 0011 = External RC oscillator, CLKO function on RA6 0010 = HS oscillator 0001 = XT oscillator 0000 = LP oscillator
FOSC<3:0>	CONFIG1H	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB
USBDIV	CONFIG1L	USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation: 1 = USB clock source comes from the 96 MHz PLL divided by 2 0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide
CPUDIV<1:0>	CONFIG1L	CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 11 = CPU system clock divided by 4 10 = CPU system clock divided by 3 01 = CPU system clock divided by 2 00 = No CPU system clock divide

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2321/4321 devices only) 11 = 1K word (2 Kbytes) Boot Block 10 = 1K word (2 Kbytes) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
		Boot Block Size Select bits (PIC18F2221/4221 devices only) 11 = 512 words (1 Kbyte) Boot Block 10 = 512 words (1 Kbyte) Boot Block 01 = 512 words (1 Kbyte) Boot Block 00 = 256 words (512 bytes) Boot Block
BBSIZ ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2480/2580/4480/4580 and PIC18F2450/4450 devices only) 1 = 2K words (4 Kbytes) Boot Block 0 = 1K word (2 Kbytes) Boot Block
LVP	CONFIG4L	Low-Voltage Programming Enable bit 1 = Low-Voltage Programming is enabled, RB5 is the PGM pin 0 = Low-Voltage Programming is disabled, RB5 is an I/O pin
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Reset on stack overflow/underflow is enabled 0 = Reset on stack overflow/underflow is disabled
CP5	CONFIG5L	Code Protection bit (Block 5 code memory area) (PIC18F2685 and PIC18F4685 devices only) 1 = Block 5 is not code-protected 0 = Block 5 is code-protected
CP4	CONFIG5L	Code Protection bit (Block 4 code memory area) (PIC18F2682/2685 and PIC18F4682/4685 devices only) 1 = Block 4 is not code-protected 0 = Block 4 is code-protected
CP3	CONFIG5L	Code Protection bit (Block 3 code memory area) 1 = Block 3 is not code-protected 0 = Block 3 is code-protected
CP2	CONFIG5L	Code Protection bit (Block 2 code memory area) 1 = Block 2 is not code-protected 0 = Block 2 is code-protected
CP1	CONFIG5L	Code Protection bit (Block 1 code memory area) 1 = Block 1 is not code-protected 0 = Block 1 is code-protected
CP0	CONFIG5L	Code Protection bit (Block 0 code memory area) 1 = Block 0 is not code-protected 0 = Block 0 is code-protected
CPD	CONFIG5H	Code Protection bit (Data EEPROM) 1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected
СРВ	CONFIG5H	Code Protection bit (Boot Block memory area) 1 = Boot Block is not code-protected 0 = Boot Block is code-protected

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

	Memory		Ending Address								Size (Bytes)				
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total		
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576		
PIC18F4480	401/	40	0007FF	001FFF	003FFF	1	1	_		2048	6144	8192	40004		
PIC 18F4480	16K	40	000FFF						_	4096	4096		16384		
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768		
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC18F4580	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768		
PIC 10F4500			000FFF							4096	4096				
	48K		0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152		
PIC18F4585		40	000FFF							4096	12288				
			001FFF							8192	8192				
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536		
			0007FF					_		2048	14336	49152	65536		
PIC18F4680	64K	40	000FFF	003FFF	007FFF	00BFFF	00FFFF			4096	12288				
			001FFF							8192	8192				
PIC18F4682			0007FF					013FFF	_	2048	14336	65536	81920		
	80K	40	000FFF	003FFF	007FFF	00BFFF	00FFFF			4096	12288				
			001FFF							8192	8192				
			0007FF					013FFF	017FFF	2048	14336		98304		
PIC18F4685	96K	44	000FFF	003FFF	007FFF	00BFFF	00FFFF			4096	12288	81920			
			001FFF							8192	8192				

Legend: — = unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

TABLE 5-5:	-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS													
	Configuration Word (CONFIGxx)													
Davisa	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF CF	1F 1F	1F 1F	00	87 87	C5	00	03	C0	03	E0 E0	03	40 40
PIC18F4423 PIC18F4450	00 3F	CF	3F	1F	00		C5	00	03	C0	03		03	40
PIC18F4455	3F	CF	3F	1F	00	86 87	ED E5	00	03 07	40 C0	03 07	60 E0	03 07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	CO	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	CO	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	05 0F	CO	05 0F	E0	05 0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	CO	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	CO	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
		olle ere i			00	L 01	00	- 00	OI.	- 00	_ U		UI.	70

Legend: Shaded cells are unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

	Configuration Word (CONFIGxx)													
Device	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	VIH	Input High Voltage	0.8 VDD	VDD	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
	•					
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1	_	μS	VDD = 2.0V
P2A	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.