

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4510t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

D ¹ M	During Programming			
Pin Name	Pin Name	Pin Type	Pin Description	
MCLR/Vpp/RE3	Vpp	Р	Programming Enable	
VDD ⁽²⁾	Vdd	Р	Power Supply	
VSS ⁽²⁾	Vss	Р	Ground	
RB5	PGM	I	Low-Voltage ICSP [™] Input when LVP Configuration bit equals '1' ⁽¹⁾	
RB6	PGC	I	Serial Clock	
RB7	PGD	I/O	Serial Data	

Legend: I = Input, O = Output, P = Power

Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
-

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

• PIC18F2610

- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

MCLR/VPP/RE3	°	28 RB7/PGD
RAO	2	27 RB6/PGC
RA1	3	26 RB5/PGM
RA2	4	25 RB4
RA3	0 6 8 2 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	24 🗌 RB3
RA4	6 🎗	23 RB2
RA5	7 🖸	22 RB1
	8 8	21 RB0
OSC1	9 <u>0</u>	
OSC2	10 L	
RC0	11	18 RC7
RC1	12	17 🗌 RC6
RC2	13	16 RC5
RC3	14	15 RC4

The following devices are included in 44-pin QFN parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458
- PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

PIC18F4553
 PIC18F4580
 PIC18F4585
 PIC18F4610
 PIC18F4620
 PIC18F4680

• PIC18F4523

PIC18F4525

PIC18F4550

- PIC18F4682
- PIC18F4685

FIGURE 2-5: 44-PIN QFN RD2 RD1 VUSB VUSB RC1 RC1 RC1 RC1 33 OSC2 32 OSC1 RD4 2 RD5 3 RD6 4 31 Vss 30 AVss RD7 5 29 VDD PIC18F4XXX 28 AVDD Vss 6 AVDD 7 27 RE2 **VDD** 8 RB0 9 26 RE1 25 RE0 24 RA5 RB1 10 RB2 RA4 23 11 ទទ RA3 S S G^RB4 RA2 ш RB5/P RB6/P RB7/P MCLR/VPP/R

2.3 Memory Maps

For PIC18FX6X0 devices, the code memory space extends from 0000h to 0FFFFh (64 Kbytes) in four 16-Kbyte blocks. For PIC18FX5X5 devices, the code memory space extends from 0000h to 0BFFFFh (48 Kbytes) in three 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2585/2680/4585/4680 devices can be configured as 1, 2 or 4K words (see Figure 2-6). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)	
PIC18F2221		
PIC18F4221	— 000000h-000FFFh (4K)	
PIC18F2321	000000b 001EEEb (0K)	
PIC18F4321	000000h-001FFFh (8K)	

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES

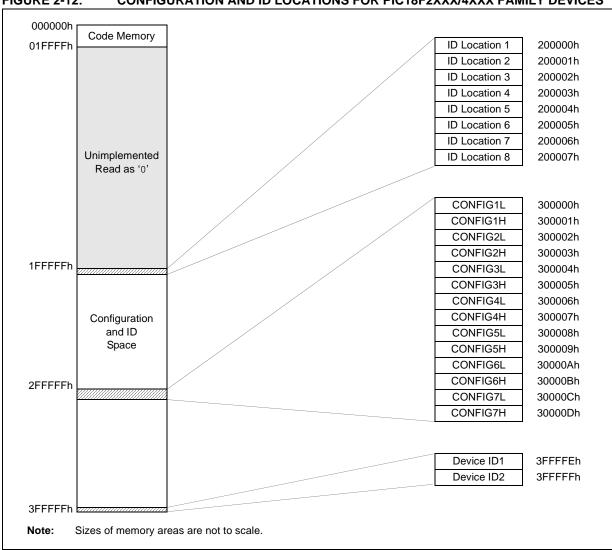
00000h Code Me	mory		8 Kbytes (PIC18FX321)	MORY SIZE/DEV	4 Kb	oytes FX221)	Ra
IFFFFh				BBSIZ<1:0>			
		11/10	01	00	11/10/01	00	
Unimplem Read a		Boot Block*	Boot Block* 512 words	Boot Block* 256 words	Boot Block* 512 words	Boot Block* 256 words	000
incau a	3 0	1K word			Block 0 0.5K words	Block 0 0.75K words	000
00000h		Block 0 1K word	Block 0 1.5K words	Block 0 1.75K words	-	ock 1 word	000
Configur and I Spac	D		Block 1 2K words			emented s all '0's	000
FFFFh			Unimplemented Reads all '0's				001 002 1FF

In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

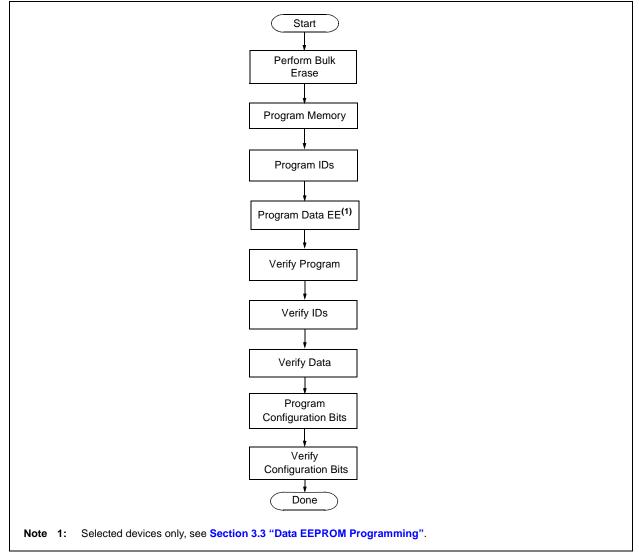
Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0** "Configuration Word". These Device ID bits read out normally, even after code protection.


2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

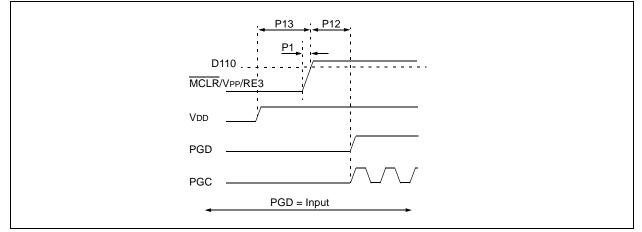
- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- TBLPTRL at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

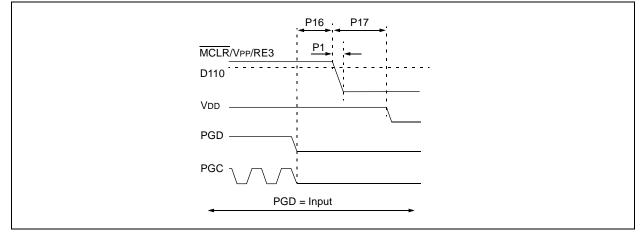

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see Section 3.3 "Data EEPROM Programming"). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.



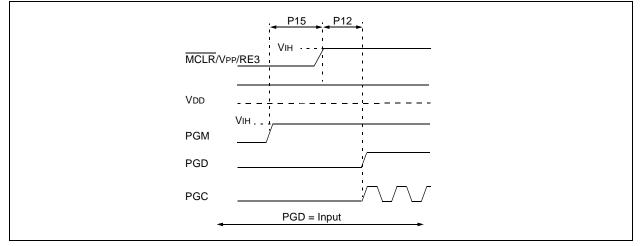
2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode


As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

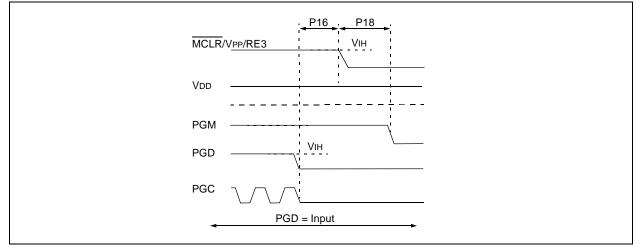
The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE



2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode


When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

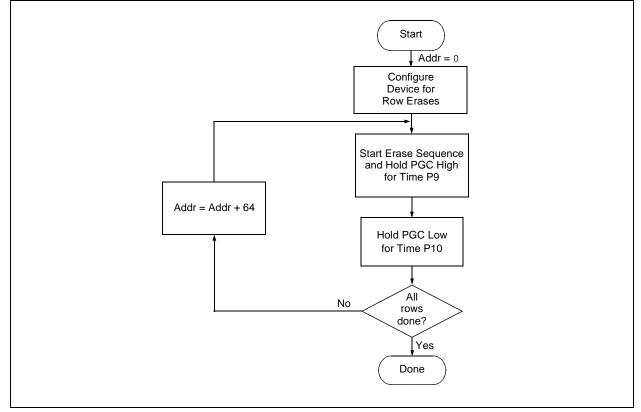
Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

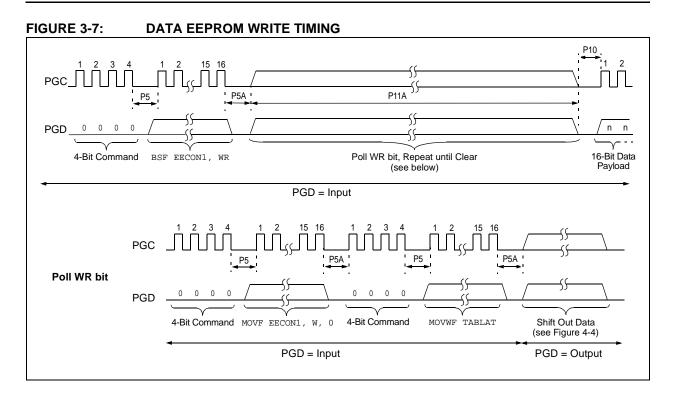
Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

TABLE 3-1: BULK ERASE OPTIONS

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

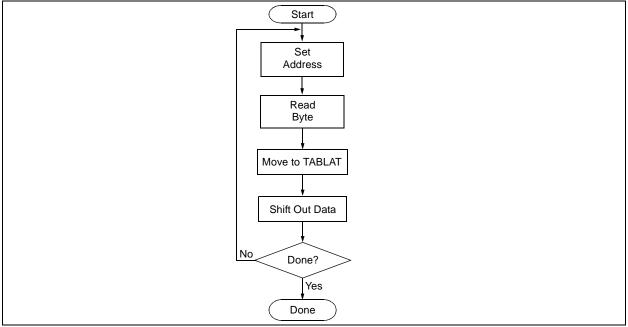
The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.


The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.


Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

4-Bit Command	Data Payload	Core Instruction		
Step 1: Direct ac	cess to code memory an	d enable writes.		
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN		
Step 2: Point to f	irst row in code memory.	·		
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL		
Step 3: Enable e	Step 3: Enable erase and erase single row.			
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.		
Step 4: Repeat S	Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.			

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE



4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

TABLE 4-2: READ DATA EEPROM MEMORY

4-Bit Command	Data Payload	Core Instruction		
Step 1: Direct acc	cess to data EEPROM.			
0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS		
Step 2: Set the da	ata EEPROM Address Pointe	er.		
0000 0000 0000 0000 Step 3: Initiate a	0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>		
0000	80 A6	BSF EECON1, RD		
Step 4: Load data	Step 4: Load data into the Serial Data Holding register.			
0000 0000 0000 0010	50 A8 6E F5 00 00 <msb><lsb></lsb></msb>	MOVF EEDATA, W, O MOVWF TABLAT NOP Shift Out Data ⁽¹⁾		

Note 1: The <LSB> is undefined. The <MSB> is the data.

TABLE 5-2: DEVICE ID VALUES

Device	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F2221	21h	011x xxxx	
PIC18F2321	21h	001x xxxx	
PIC18F2410	11h	011x xxxx	
PIC18F2420	11h	010x xxxx(1)	
PIC18F2423	11h	010x xxxx (2)	
PIC18F2450	24h	001x xxxx	
PIC18F2455	12h	011x xxxx	
PIC18F2458	2Ah	011x xxxx	
PIC18F2480	1Ah	111x xxxx	
PIC18F2510	11h	001x xxxx	
PIC18F2515	0Ch	111x xxxx	
PIC18F2520	11h	000x xxxx(1)	
PIC18F2523	11h	000x xxxx (2)	
PIC18F2525	0Ch	110x xxxx	
PIC18F2550	12h	010x xxxx	
PIC18F2553	2Ah	010x xxxx	
PIC18F2580	1Ah	110x xxxx	
PIC18F2585	0Eh	111x xxxx	
PIC18F2610	0Ch	101x xxxx	
PIC18F2620	0Ch	100x xxxx	
PIC18F2680	0Eh	110x xxxx	
PIC18F2682	27h	000x xxxx	
PIC18F2685	27h	001x xxxx	
PIC18F4221	21h	010x xxxx	
PIC18F4321	21h	000x xxxx	
PIC18F4410	10h	111x xxxx	
PIC18F4420	10h	110x xxxx(1)	
PIC18F4423	10h	110x xxxx(2)	
PIC18F4450	24h	000x xxxx	
PIC18F4455	12h	001x xxxx	
PIC18F4458	2Ah	001x xxxx	
PIC18F4480	1Ah	101x xxxx	
PIC18F4510	10h	101x xxxx	
PIC18F4515	0Ch	011x xxxx	
PIC18F4520	10h	100x xxxx(1)	
PIC18F4523	10h	100x xxxx (2)	
PIC18F4525	0Ch	010x xxxx	
PIC18F4550	12h	000x xxxx	
PIC18F4553	2Ah	000x xxxx	
PIC18F4580	1Ah	100x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F4585	0Eh	101x xxxx	
PIC18F4610	0Ch	001x xxxx	
PIC18F4620	0Ch	000x xxxx	
PIC18F4680	0Eh	100x xxxx	
PIC18F4682	27h	010x xxxx	
PIC18F4685	27h	011x xxxx	

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide – oscillator used directly (4 MHz input)
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled
BORV<1:0>	CONFIG2L	0 = USB voltage regulator is disabled Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2
		0000 = 1:1 000 = 1:1

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

Bit Name	Configuration Words	n Description						
WDTEN	CONFIG2H	Watchdog Timer Enable bit						
		1 = WDT is enabled						
		0 = WDT is disabled (control is placed on the SWDTEN bit)						
MCLRE	CONFIG3H	MCLR Pin Enable bit						
		$1 = \overline{MCLR}$ pin is enabled, RE3 input pin is disabled						
		0 = RE3 input pin is enabled, MCLR pin is disabled						
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit						
		1 = Timer1 is configured for low-power operation						
		0 = Timer1 is configured for high-power operation						
PBADEN	CONFIG3H	PORTB A/D Enable bit						
		1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset						
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset						
PBADEN	CONFIG3H	PORTB A/D Enable bit (PIC18FXX8X devices only)						
		1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset						
		0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset						
CCP2MX	CONFIG3H	CCP2 MUX bit						
		1 = CCP2 input/output is multiplexed with RC1 ⁽²⁾						
		0 = CCP2 input/output is multiplexed with RB3						
DEBUG	CONFIG4L	Background Debugger Enable bit						
		1 = Background debugger is disabled, RB6 and RB7 are configured as general						
		purpose I/O pins						
		0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit						
		Debug						
XINST	CONFIG4L	Extended Instruction Set Enable bit						
		 1 = Instruction set extension and Indexed Addressing mode are enabled 0 = Instruction set extension and Indexed Addressing mode are disabled 						
		(Legacy mode)						
ICPRT	CONFIG4L	Dedicated In-Circuit (ICD/ICSP™) Port Enable bit						
		(PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and						
		PIC18F2450/4450 devices only)						
		1 = ICPORT is enabled						
		0 = ICPORT is disabled						
BBSIZ<1:0> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)						
		11 = 4K words (8 Kbytes) Boot Block						
		10 = 4K words (8 Kbytes) Boot Block						
		01 = 2K words (4 Kbytes) Boot Block 00 = 1K word (2 Kbytes) Boot Block						
BBSIZ<2:1> ⁽¹⁾	CONFIG4L	Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only)						
		11 = 4K words (8 Kbytes) Boot Block						
		10 = 4K words (8 Kbytes) Boot Block						
		01 = 2K words (4 Kbytes) Boot Block						
		00 = 1K word (2 Kbytes) Boot Block						

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB[®] IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

	Memory Size (Bytes)	Pins	Ending Address							Size (Bytes)				
Device			Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total	
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	—	2048	6144	16384	24576	
PIC18F4480	16K	40	0007FF	001FFF	003FFF	_	_	_		2048	6144	8192	16384	
PIC 10F4400		40	000FFF						_	4096	4096	0192	10304	
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	14336	16384	32768	
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	—	2048	14336	32768	49152	
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	—	2048	6144	24576	32768	
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	—	—	2048	6144	24576	32768	
	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768	
PIC18F4580			000FFF							4096	4096	24576		
	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152	
PIC18F4585			000FFF							4096	12288			
			001FFF							8192	8192			
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	—	_	2048	14336	49152	65536	
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	—	2048	14336	49152	65536	
	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536	
PIC18F4680			000FFF							4096	12288			
			001FFF							8192	8192			
PIC18F4682	80K	40	0007FF		007FFF	00BFFF	00FFFF	013FFF	_	2048	14336	65536	81920	
			000FFF	003FFF						4096	12288			
			001FFF							8192	8192			
	96K	44	0007FF		007FFF	00BFFF	00FFFF	013FFF	017FFF	2048	14336	81920	98304	
PIC18F4685			000FFF	003FFF						4096	12288			
			001FFF							8192	8192			

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

Legend: — = unimplemented.

	•••													
	Configuration Word (CONFIGxx)													
Device	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Param No.	Sym	Characteristic	Min	Max	Units	Conditions		
D110	Vihh	High-Voltage Programming Voltage on MCLR/VPP/RE3	VDD + 4.0	12.5	V	(Note 2)		
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)		
D111	Vdd	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes		
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)		
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μA	(Note 2)		
D113	IDDP	Supply Current During Programming	_	10	mA			
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V			
D041	Viн	Input High Voltage	0.8 Vdd	Vdd	V			
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V		
D090	Vон	Output High Voltage	Vdd - 0.7	_	V	IOH = -3.0 mA @ 4.5V		
D012	Сю	Capacitive Loading on I/O pin (PGD)		50	pF	To meet AC specifications		
P1	Tr	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	-	1.0	μS	(Notes 1, 2)		
P2 TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V			
			1		μS	VDD = 2.0V		
P2A TPGCL	TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V		
			400	_	ns	VDD = 2.0V		
P3	TSET1	Input Data Setup Time to Serial Clock \downarrow	15	—	ns			
P4	THLD1	Input Data Hold Time from PGC \downarrow	15		ns			
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	—	ns			
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns			
P6	TDLY2	Delay Between Last PGC \downarrow of Command Byte to First PGC \uparrow of Read of Data Word	20	_	ns			
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed		
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	—	μS			
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms			

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.