

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4515-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

D ' N	During Programming			
Pin Name	Pin Name	Pin Type	Pin Description	
MCLR/Vpp/RE3	Vpp	Р	Programming Enable	
VDD ⁽²⁾	Vdd	Р	Power Supply	
VSS ⁽²⁾	Vss	Р	Ground	
RB5	PGM	I	Low-Voltage ICSP [™] Input when LVP Configuration bit equals '1' ⁽¹⁾	
RB6	PGC	I	Serial Clock	
RB7	PGD	I/O	Serial Data	

Legend: I = Input, O = Output, P = Power

Note 1: See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
-

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

• PIC18F2610

- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

	\bigcirc	28 RB7/PGD	
RAO 2		27 RB6/PGC	
RA1 3		26 RB5/PGM	
RA2 4		25 RB4	
RA3 5	Š.	24 RB3	
RA4 6	× ×	23 RB2	
RA5 7	E	22 RB1	
Vss 8	18	21 🗌 RB0	
OSC1 9	<u></u>	20 V DD	
OSC2 10	₽.	19 🗌 Vss	
RC0 11		18 RC7	
RC1 12		17 🗌 RC6	
RC2 13		16 RC5	
RC3 14		15 🗌 RC4	

TABLE 2-4: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2455	
PIC18F2458	
PIC18F4455	0000001-003FFFI (24K)
PIC18F4458	
PIC18F2510	
PIC18F2520	
PIC18F2523	
PIC18F2550	
PIC18F2553	
PIC18F4510	0000001-007FFFI (32K)
PIC18F4520	
PIC18F4523	
PIC18F4550	
PIC18F4553	

FIGURE 2-8: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X5/X4X8/X5X0/X5X3 DEVICES

For PIC18FX4X0/X4X3 devices, the code memory space extends from 000000h to 003FFFh (16 Kbytes) in two 8-Kbyte blocks. Addresses, 000000h through 0003FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

^{© 2010-2015} Microchip Technology Inc.

TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2410	
PIC18F2420	
PIC18F2423	
PIC18F2450	000000h-003FFFh (16K)
PIC18F4410	
PIC18F4420	
PIC18F4450	

FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-9: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write, post-increment by 2

FIGURE 2-18:

2.8 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

The PIC18F4455/4458/4550/4553 44-pin TQFP devices are designed to support an alternate programming input: the dedicated ICSP/ICD port. The primary purpose of this port is to provide an alternate In-Circuit Debugging (ICD) option and free the pins (RB6, RB7 and MCLR) that would normally be used for debugging the application. In conjunction with ICD capability, however, the dedicated ICSP/ICD port also provides an alternate port for ICSP.

Setting the ICPRT Configuration bit enables the dedicated ICSP/ICD port. The dedicated ICSP/ICD port functions the same as the default ICSP/ICD port; however, alternate pins are used instead of the default pins. Table 2-10 identifies the functionally equivalent pins for ICSP purposes:

The dedicated ICSP/ICD port is an alternate port. Thus, ICSP is still available through the default port even though the ICPRT Configuration bit is set. When the VIH is seen on the MCLR/VPP/RE3 pin prior to applying VIH to the ICRST/ICVPP pin, then the state of the ICRST/ICVPP pin is ignored. Likewise, when the VIH is seen on ICRST/ICVPP prior to applying VIH to MCLR/VPP/RE3, then the state of the MCLR/VPP/RE3 pin is ignored.

The ICPRT Configuration bit can only be programmed through the default ICSP port. Chip Erase functions Note: through the dedicated ICSP/ICD port do not affect this bit. When the ICPRT Configuration bit is set (dedicated ICSP/ICD port enabled), the NC/ICPORTS pin must be tied to either VDD or VSS.

The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

Din Nama	During Programming			
Fill Name	Pin Name	Pin Type	Dedicated Pins	Pin Description
MCLR/Vpp/RE3	Vpp	Р	NC/ICRST/ICVPP	Programming Enable
RB6	PGC	I	NC/ICCK/ICPGC	Serial Clock
RB7	PGD	I/O	NC/ICDT/ICPGD	Serial Data

TABLE 2-10: ICSP™ EQUIVALENT PINS

Legend: I = Input, O = Output, P = Power

3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in Section 3.1.3 "ICSP Row Erase" and Section 3.2.1 "Modifying Code Memory".

If it is determined that a data EEPROM erase (selected devices only, see Section 3.3 "Data EEPROM Programming") must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in Section 3.3 "Data EEPROM Programming" and write '1's to the array.

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see Section 2.3 "Memory Maps").

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

4-Bit Command	Data Payload	Core Instruction		
Step 1: Direct acc	ess to code memory an	d enable writes.		
0000 0000 0000	8E A6 9C A6 84 A6	BSF EECON1, EEPGD BCF EECON1, CFGS BSF EECON1, WREN		
Step 2: Point to fir	Step 2: Point to first row in code memory.			
0000 0000 0000	6A F8 6A F7 6A F6	CLRF TBLPTRU CLRF TBLPTRH CLRF TBLPTRL		
Step 3: Enable erase and erase single row.				
0000 0000 0000	88 A6 82 A6 00 00	BSF EECON1, FREE BSF EECON1, WR NOP - hold PGC high for time P9 and low for time P10.		
Step 4: Repeat Step 3, with the Address Pointer incremented by 64 until all rows are erased.				

TABLE 3-3: ERASE CODE MEMORY CODE SEQUENCE

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

TABLE 3-4: WRITE AND ERASE BUFFER SIZES

Devices (Arranged by Family)	Write Buffer Size (Bytes)	Erase Buffer Size (Bytes)
PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321	8	64
PIC18F2450, PIC18F4450	16	64
PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510		
PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520		64
PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523	20	
PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580	- 32	
PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550		
PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553		
PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610		
PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620	64	64
PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680	04	
PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685]	

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	n the following devices:
PIC18F2410	PIC18F4410
PIC18F2450	PIC18F4450
PIC18F2510	PIC18F4510
PIC18F2515	PIC18F4515
PIC18F2610	PIC18F4610

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction
Step 1: Enable wr	ites and direct access to co	nfiguration memory.
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS
Step 2: Set Table	Pointer for configuration byt	e to be written. Write even/odd addresses. ⁽¹⁾
0000 0000 0000 0000 0000 1111 0000	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <msb ignored=""><lsb> 00 00</lsb></msb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.
0000 0000 1111 0000	0E 01 6E F6 <msb><lsb ignored=""> 00 00</lsb></msb>	MOVLW 01h MOVWF TBLPTRL Load 2 bytes and start programming. NOP - hold PGC high for time P9 and low for time P10.

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

FIGURE 4-2: VERIFY CODE MEMORY FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h ^(1,8)	CONFIG1L	—	—	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	— VREGEN ^(1,8)	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111 01 1111 ^(1,8)
300003h	CONFIG2H	—	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
20000Eh									CCP2MX ⁽⁷⁾	1011 (7)
3000050	CONFIGSH	MCLRE	_	_	_	_	LPTIUSC	PBADEN	_	101-
	CONFIG4L			ICPRT ⁽¹⁾	—				STVREN	1001-1 (1)
			XINST	BBSIZ1	BBSIZ0					1000 -1-1
300006h		DEBUG			BBSIZ ⁽³⁾		LVP	—		10-0 -1-1 ⁽³⁾
				ICPRT ⁽⁸⁾	—	BBSIZ ⁽⁸⁾				100- 01-1 ⁽⁸⁾
				BBSIZ1 ⁽²⁾	BBSIZ2(2)					1000 -1-1 ⁽²⁾
300008h	CONFIG5L	—	—	CP5 ⁽¹⁰⁾	CP4 ⁽⁹⁾	CP3 ⁽⁴⁾	CP2 ⁽⁴⁾	CP1	CP0	11 1111
300009h	CONFIG5H	CPD	CPB		_		_	_	—	11
30000Ah	CONFIG6L	—	—	WRT5 ⁽¹⁰⁾	WRT4 ⁽⁹⁾	WRT3 ⁽⁴⁾	WRT2 ⁽⁴⁾	⁴⁾ WRT1 WRT0		11 1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC ⁽⁵⁾	_	_	_	_	_	111
30000Ch	CONFIG7L	_	_	EBTR5 ⁽¹⁰⁾	EBTR4 ⁽⁹⁾	EBTR3 ⁽⁴⁾	EBTR2 ⁽⁴⁾	EBTR1	EBTR0	11 1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽⁶⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	See Table 5-2
3FFFFFh	DEVID2 ⁽⁶⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	See Table 5-2

Legend: -= unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.

2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.

3: Implemented on PIC18F2480/2580/4480/4580 devices only.

4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".

5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.

6: DEVID registers are read-only and cannot be programmed by the user.

7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.

8: Implemented on PIC18F2450/4450 devices only.

9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.

10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES

_	Device ID Value						
Device	DEVID2	DEVID1					
PIC18F2221	21h	011x xxxx					
PIC18F2321	21h	001x xxxx					
PIC18F2410	11h	011x xxxx					
PIC18F2420	11h	010x xxxx(1)					
PIC18F2423	11h	010x xxxx ⁽²⁾					
PIC18F2450	24h	001x xxxx					
PIC18F2455	12h	011x xxxx					
PIC18F2458	2Ah	011x xxxx					
PIC18F2480	1Ah	111x xxxx					
PIC18F2510	11h	001x xxxx					
PIC18F2515	0Ch	111x xxxx					
PIC18F2520	11h	000x xxxx(1)					
PIC18F2523	11h	000x xxxx ⁽²⁾					
PIC18F2525	0Ch	110x xxxx					
PIC18F2550	12h	010x xxxx					
PIC18F2553	2Ah	010x xxxx					
PIC18F2580	1Ah	110x xxxx					
PIC18F2585	0Eh	111x xxxx					
PIC18F2610	0Ch	101x xxxx					
PIC18F2620	0Ch	100x xxxx					
PIC18F2680	0Eh	110x xxxx					
PIC18F2682	27h	000x xxxx					
PIC18F2685	27h	001x xxxx					
PIC18F4221	21h	010x xxxx					
PIC18F4321	21h	000x xxxx					
PIC18F4410	10h	111x xxxx					
PIC18F4420	10h	110x xxxx(1)					
PIC18F4423	10h	110x xxxx ⁽²⁾					
PIC18F4450	24h	000x xxxx					
PIC18F4455	12h	001x xxxx					
PIC18F4458	2Ah	001x xxxx					
PIC18F4480	1Ah	101x xxxx					
PIC18F4510	10h	101x xxxx					
PIC18F4515	0Ch	011x xxxx					
PIC18F4520	10h	100x xxxx ⁽¹⁾					
PIC18F4523	10h	100x xxxx ⁽²⁾					
PIC18F4525	0Ch	010x xxxx					
PIC18F4550	12h	000x xxxx					
PIC18F4553	2Ah	000x xxxx					
PIC18F4580	1Ah	100x xxxx					

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description					
PLLDIV<2:0>	CONFIG1L	Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)					
		Divider must be selected to provide a 4 MHz input into the 96 MHz PLL: 111 = Oscillator divided by 12 (48 MHz input) 110 = Oscillator divided by 10 (40 MHz input) 101 = Oscillator divided by 6 (24 MHz input) 100 = Oscillator divided by 5 (20 MHz input) 011 = Oscillator divided by 4 (16 MHz input) 010 = Oscillator divided by 3 (12 MHz input) 001 = Oscillator divided by 2 (8 MHz input) 000 = No divide – oscillator used directly (4 MHz input)					
VREGEN	CONFIG2L	USB Voltage Regulator Enable bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) 1 = USB voltage regulator is enabled					
		0 = USB voltage regulator is disabled					
BORV<1:0>	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR is set to 2.0V 10 = VBOR is set to 2.7V 01 = VBOR is set to 4.2V 00 = VBOR is set to 4.5V					
BOREN<1:0>	CONFIG2L	 Brown-out Reset Enable bits 11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled) 10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode SBOREN is disabled) 01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software 					
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled					
WDPS<3:0>	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:2 0000 = 1:1					

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

	Configuration Word (CONFIGxx)													
Davias	1L	1H	2L	2H	3L	ЗH	4L	4H	5L	5H	6L	6H	7L	7H
Device						A	ddress	(30000x	ih)					
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F4450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

Legend: Shaded cells are unimplemented.

Device	Configuration Word (CONFIGxx)													
	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F4620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F4680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F4682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS (CONTINUED)

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended											
Param No.	Sym	Characteristic	Min	Max	Units	Conditions					
P11A	Tdrwt	Data Write Polling Time	4		ms						
P12	THLD2	Input Data Hold Time from $\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$ 1	2		μS						
P13	TSET2	VDD ↑ Setup Time to MCLR/VPP/RE3 ↑	100		ns	(Note 2)					
P14	TVALID	Data Out Valid from PGC ↑	10		ns						
P15	Tset3	PGM [↑] Setup Time to MCLR/VPP/RE3 [↑]	2		μS	(Note 2)					
P16	TDLY8	Delay Between Last PGC \downarrow and $\overline{MCLR}/VPP/RE3$ \downarrow	0		S						
P17	THLD3	MCLR/VPP/RE3 ↓ to VDD ↓	_	100	ns						
P18	THLD4	MCLR/VPP/RE3 ↓ to PGM ↓	0	_	S						

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +

2 ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and TOSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

2: When ICPRT = 1, this specification also applies to ICVPP.

3: At 0°C-50°C.