


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 40MHz                                                                      |
| Connectivity               | I²C, SPI, UART/USART                                                       |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                |
| Number of I/O              | 36                                                                         |
| Program Memory Size        | 48KB (24K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 3.8K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                  |
| Data Converters            | A/D 13x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-TQFP                                                                    |
| Supplier Device Package    | 44-TQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4515-i-pt |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

| <b>D</b> : 11      | During Programming |          |                                                                                          |
|--------------------|--------------------|----------|------------------------------------------------------------------------------------------|
| Pin Name           | Pin Name           | Pin Type | Pin Description                                                                          |
| MCLR/Vpp/RE3       | Vpp                | Р        | Programming Enable                                                                       |
| VDD <sup>(2)</sup> | Vdd                | Р        | Power Supply                                                                             |
| VSS <sup>(2)</sup> | Vss                | Р        | Ground                                                                                   |
| RB5                | PGM                | I        | Low-Voltage ICSP <sup>™</sup> Input when LVP Configuration bit equals '1' <sup>(1)</sup> |
| RB6                | PGC                | I        | Serial Clock                                                                             |
| RB7                | PGD                | I/O      | Serial Data                                                                              |

Legend: I = Input, O = Output, P = Power

**Note 1:** See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

- PIC18F2221
- PIC18F2321
- PIC18F2410
- PIC18F2420
- PIC18F2423
- PIC18F2450
- PIC18F2455
- PIC18F2458

- PIC18F2480
- PIC18F2510
- PIC18F2515PIC18F2520
- PIC18F2523
- PIC18F2525
- PIC18F2550
- PIC18F2553
- . ....

• PIC18F2321

PIC18F2620PIC18F2680

• PIC18F2580

PIC18F2585

• PIC18F2610

- PIC18F2682
- PIC18F2685

The following devices are included in 28-pin SSOP parts:

• PIC18F2221

### FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP

| MCLR/VPP/RE3 | °                                             | 28 RB7/PGD |
|--------------|-----------------------------------------------|------------|
| RAO          | 2                                             | 27 RB6/PGC |
| RA1          | 3                                             | 26 RB5/PGM |
| RA2          | 4                                             | 25 RB4     |
| RA3          | 0 6 8 2 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 | 24 🗌 RB3   |
| RA4          | 6 🎗                                           | 23 RB2     |
| RA5          | 7 🖸                                           | 22 RB1     |
|              | 8 8                                           | 21 RB0     |
| OSC1         | 9 <u>0</u>                                    |            |
| OSC2         | 10 <b>L</b>                                   |            |
| RC0          | 11                                            | 18 RC7     |
| RC1          | 12                                            | 17 🗌 RC6   |
| RC2          | 13                                            | 16 RC5     |
| RC3          | 14                                            | 15 RC4     |
|              |                                               |            |

The following devices are included in 28-pin QFN parts:

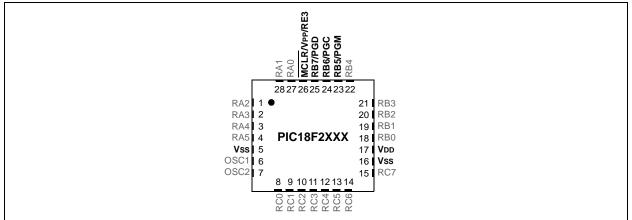
PIC18F2221PIC18F2321

• PIC18F2410

• PIC18F2420

PIC18F2423PIC18F2450

.


• PIC18F2480

- PIC18F2510
   DIC18F2520
  - PIC18F2520

.

- PIC18F2523
- PIC18F2580
- PIC18F2682
- PIC18F2685

FIGURE 2-2: 28-Pin QFN



The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4458PIC18F4480PIC18F4510

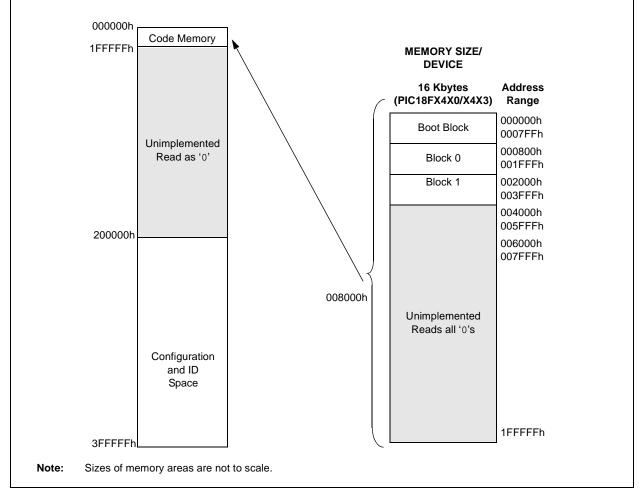
• PIC18F4455

- PIC18F4515PIC18F4520
- PIC18F4523PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- PIC18F4585

- PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

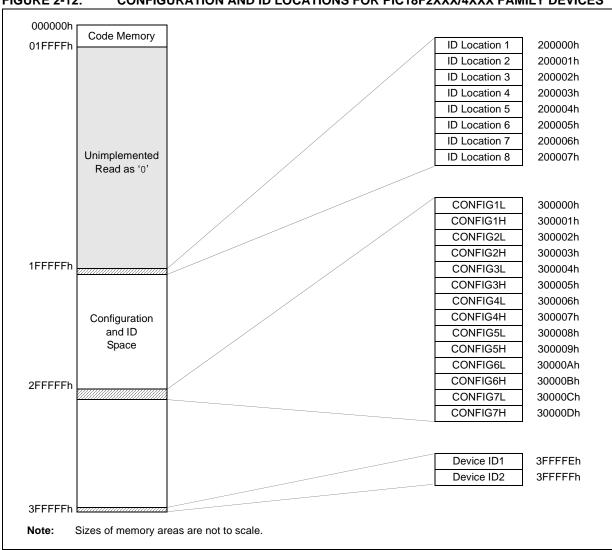
•

FIGURE 2-3: 40-P


40-Pin PDIP

| MCLR/Vpp/RE3 | °           | 40 <b>RB7/PGD</b>   |
|--------------|-------------|---------------------|
| RAO          |             | 39 <b>B RB6/PGC</b> |
| RA1          |             | 38 🗖 RB5/PGM        |
| RA2          |             | 37 🗖 RB4            |
| RA3          |             | 36 🗖 RB3            |
| RA4          | 6           | 35 🗖 RB2            |
| RA5          | 7           | 34 🗖 RB1            |
| RE0          | 8 🎽         | 33 🗖 RB0            |
| RE1          | 9 🗙         | 32 🗍 VDD            |
| RE2          |             | 31 🗖 <b>Vss</b>     |
| VDD          | 11 8        | 30 🗌 RD7            |
| Vss          | 12 <b>Ú</b> | 29 🗖 RD6            |
| OSC1         |             | 28 RD5              |
| OSC2         |             | 27 🗖 RD4            |
| RC0          |             | 26 🗖 RC7            |
| RC1          |             | 25 RC6              |
| RC2          |             | 24 C5               |
| RC3          |             | 23 RC4              |
| RD0          |             | 22 RD3              |
| RD1          | 20          | 21 RD2              |
|              |             |                     |

### TABLE 2-5: IMPLEMENTATION OF CODE MEMORY

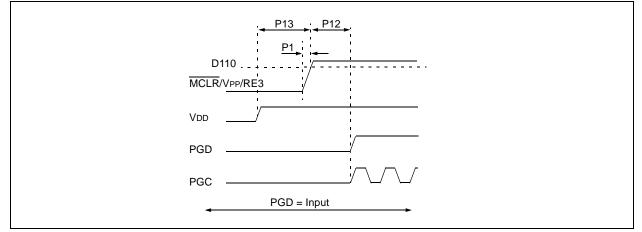

| Device     | Code Memory Size (Bytes) |
|------------|--------------------------|
| PIC18F2410 |                          |
| PIC18F2420 |                          |
| PIC18F2423 |                          |
| PIC18F2450 | 000000h-003FFFh (16K)    |
| PIC18F4410 |                          |
| PIC18F4420 |                          |
| PIC18F4450 |                          |

#### FIGURE 2-9: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX4X0/X4X3 DEVICES

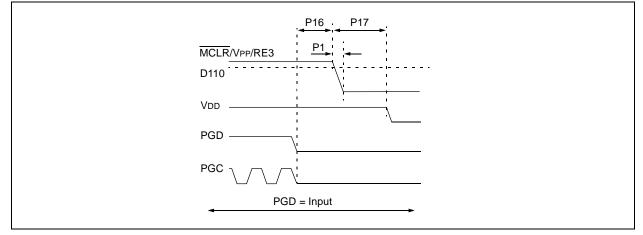


For PIC18F2480/4480 devices, the code memory space extends from 0000h to 03FFFh (16 Kbytes) in one 16-Kbyte block. For PIC18F2580/4580 devices, the code memory space extends from 0000h to 07FFFh (32 Kbytes) in two 16-Kbyte blocks. Addresses, 0000h through 07FFh, however, define a "Boot Block" region that is treated separately from Block 0. All of these blocks define code protection boundaries within the code memory space.

The size of the Boot Block in PIC18F2480/2580/4480/4580 devices can be configured as 1 or 2K words (see Figure 2-10). This is done through the BBSIZ<0> bit in the Configuration register, CONFIG4L. It is important to note that increasing the size of the Boot Block decreases the size of Block 0.




# 2.5 Entering and Exiting High-Voltage ICSP Program/Verify Mode

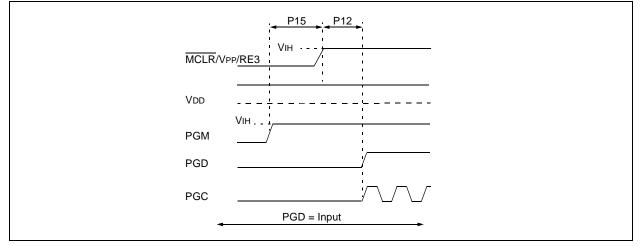

As shown in <u>Figure 2-14</u>, the High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP/RE3 to VIHH (high voltage). Once in this mode, the code memory, data EEPROM (selected devices only, see **Section 3.3 "Data EEPROM Programming"**), ID locations and Configuration bits can be accessed and programmed in serial fashion. Figure 2-15 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

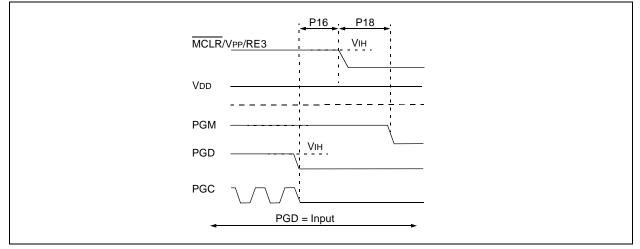
### FIGURE 2-14: ENTERING HIGH-VOLTAGE PROGRAM/VERIFY MODE



### FIGURE 2-15: EXITING HIGH-VOLTAGE PROGRAM/VERIFY MODE




# 2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode


When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising MCLR/VPP/RE3 to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

### FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE



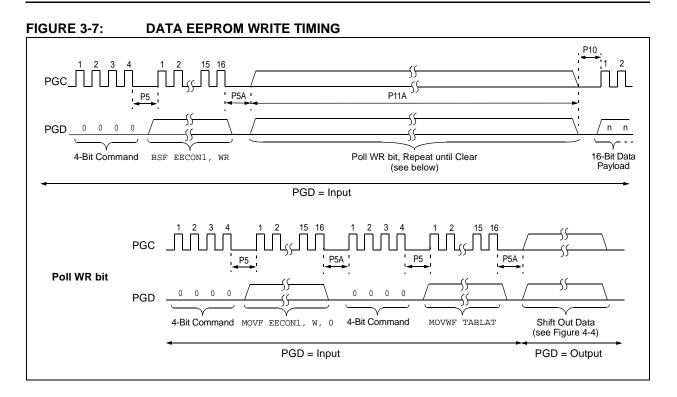
### FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE



# 3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the write buffer and then initiating a programming sequence. The write and erase buffer sizes, shown in Table 3-4, can be mapped to any location of the same size, beginning at 000000h. The actual memory write sequence takes the contents of this buffer and programs the proper amount of code memory that contains the Table Pointer.

The programming duration is externally timed and is controlled by PGC. After a Start Programming command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.


After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F2XXX/4XXX Family device is shown in Table 3-5. The flowchart, shown in Figure 3-4, depicts the logic necessary to completely write a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

**Note:** The TBLPTR register must point to the same region when initiating the programming sequence as it did when the write buffers were loaded.

### TABLE 3-4: WRITE AND ERASE BUFFER SIZES

| Devices (Arranged by Family)                   | Write Buffer Size (Bytes) | Erase Buffer Size (Bytes) |
|------------------------------------------------|---------------------------|---------------------------|
| PIC18F2221, PIC18F2321, PIC18F4221, PIC18F4321 | 8                         | 64                        |
| PIC18F2450, PIC18F4450                         | 16                        | 64                        |
| PIC18F2410, PIC18F2510, PIC18F4410, PIC18F4510 |                           |                           |
| PIC18F2420, PIC18F2520, PIC18F4420, PIC18F4520 |                           | 64                        |
| PIC18F2423, PIC18F2523, PIC18F4423, PIC18F4523 | 22                        |                           |
| PIC18F2480, PIC18F2580, PIC18F4480, PIC18F4580 | 32                        |                           |
| PIC18F2455, PIC18F2550, PIC18F4455, PIC18F4550 |                           |                           |
| PIC18F2458, PIC18F2553, PIC18F4458, PIC18F4553 |                           |                           |
| PIC18F2515, PIC18F2610, PIC18F4515, PIC18F4610 |                           |                           |
| PIC18F2525, PIC18F2620, PIC18F4525, PIC18F4620 | 64                        | 64                        |
| PIC18F2585, PIC18F2680, PIC18F4585, PIC18F4680 | 64 64                     |                           |
| PIC18F2682, PIC18F2685, PIC18F4682, PIC18F4685 |                           |                           |



# TABLE 3-7: PROGRAMMING DATA MEMORY

| 4-Bit<br>Command                   | Data Payload                                                | Core Instruction                                                               |  |
|------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Step 1: Direct acc                 | cess to data EEPROM.                                        |                                                                                |  |
| 0000<br>0000                       | 9E A6<br>9C A6                                              | BCF EECON1, EEPGD<br>BCF EECON1, CFGS                                          |  |
| Step 2: Set the da                 | ata EEPROM Address Pointe                                   | er.                                                                            |  |
| 0000<br>0000<br>0000<br>0000       | OE <addr><br/>6E A9<br/>OE <addrh><br/>6E AA</addrh></addr> | MOVLW <addr><br/>MOVWF EEADR<br/>MOVLW <addrh><br/>MOVWF EEADRH</addrh></addr> |  |
| Step 3: Load the                   | data to be written.                                         |                                                                                |  |
| 0000<br>0000                       | OE <data><br/>6E A8</data>                                  | MOVLW <data><br/>MOVWF EEDATA</data>                                           |  |
| Step 4: Enable m                   | emory writes.                                               |                                                                                |  |
| 0000                               | 84 A6                                                       | BSF EECON1, WREN                                                               |  |
| Step 5: Initiate wi                | rite.                                                       |                                                                                |  |
| 0000                               | 82 A6                                                       | BSF EECON1, WR                                                                 |  |
| Step 6: Poll WR b                  | pit, repeat until the bit is clear                          | r.                                                                             |  |
| 0000<br>0000<br>0000<br>0010       | 50 A6<br>6E F5<br>00 00<br><msb><lsb></lsb></msb>           | MOVF EECON1, W, O<br>MOVWF TABLAT<br>NOP<br>Shift out data <sup>(1)</sup>      |  |
| Step 7: Hold PGC low for time P10. |                                                             |                                                                                |  |
| Step 8: Disable w                  | vrites.                                                     |                                                                                |  |
| 0000                               | 94 A6                                                       | BCF EECON1, WREN                                                               |  |
| Repeat Steps 2 th                  | Repeat Steps 2 through 8 to write more data.                |                                                                                |  |

**Note 1:** See Figure 4-4 for details on shift out data timing.

# 3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses, 200000h through 200007h. These locations read out normally even after code protection.

Note: The user only needs to fill the first 8 bytes of the write buffer in order to write the ID locations.

Table 3-8 demonstrates the code sequence required to write the ID locations.

In order to modify the ID locations, refer to the methodology described in **Section 3.2.1** "**Modifying Code Memory**". As with code memory, the ID locations must be erased before being modified.

### TABLE 3-8: WRITE ID SEQUENCE

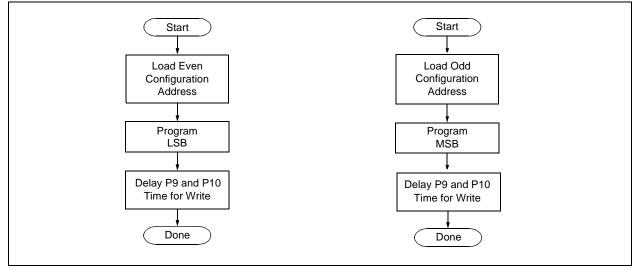
| 4-Bit<br>Command                                                     | Data Payload                                                                                                                                                  | Core Instruction                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Step 1: Direct acc                                                   | ess to code memory and en                                                                                                                                     | able writes.                                                                                                                                                                                                                                                                                                                         |  |
| 0000                                                                 | 8E A6<br>9C A6                                                                                                                                                | BSF EECON1, EEPGD<br>BCF EECON1, CFGS                                                                                                                                                                                                                                                                                                |  |
| Step 2: Load write                                                   | Step 2: Load write buffer with 8 bytes and write.                                                                                                             |                                                                                                                                                                                                                                                                                                                                      |  |
| 0000<br>0000<br>0000<br>0000<br>1101<br>1101<br>1101<br>1111<br>0000 | 0E 20<br>6E F8<br>0E 00<br>6E F7<br>0E 00<br>6E F6<br><msb><lsb><br/><msb><lsb><br/><msb><lsb><br/><msb><lsb></lsb></msb></lsb></msb></lsb></msb></lsb></msb> | MOVLW 20h<br>MOVWF TBLPTRU<br>MOVWF TBLPTRH<br>MOVWF TBLPTRH<br>MOVWF TBLPTRL<br>Write 2 bytes and post-increment address by 2.<br>Write 2 bytes and post-increment address by 2.<br>Write 2 bytes and post-increment address by 2.<br>Write 2 bytes and start programming.<br>NOP - hold PGC high for time P9 and low for time P10. |  |

# 3.5 Boot Block Programming

The code sequence detailed in Table 3-5 should be used, except that the address used in "Step 2" will be in the range of 000000h to 0007FFh.

### 3.6 Configuration Bits Programming

Unlike code memory, the Configuration bits are programmed a byte at a time. The Table Write, Begin Programming 4-bit command ('1111') is used, but only eight bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-9.


**Note:** The address must be explicitly written for each byte programmed. The addresses can not be incremented in this mode.

### TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

| 4-Bit<br>Command                             | Data Payload                                                                            | Core Instruction                                                                                                                                                                    |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Step 1: Enable w                             | ites and direct access to co                                                            | nfiguration memory.                                                                                                                                                                 |  |
| 0000<br>0000                                 | 8E A6<br>8C A6                                                                          | BSF EECON1, EEPGD<br>BSF EECON1, CFGS                                                                                                                                               |  |
| Step 2: Set Table                            | Pointer for configuration byt                                                           | e to be written. Write even/odd addresses. <sup>(1)</sup>                                                                                                                           |  |
| 0000<br>0000<br>0000<br>0000<br>0000<br>1111 | 0E 30<br>6E F8<br>0E 00<br>6E F7<br>0E 00<br>6E F6<br><msb ignored=""><lsb></lsb></msb> | MOVLW 30h<br>MOVWF TBLPTRU<br>MOVLW 00h<br>MOVWF TBLPRTH<br>MOVLW 00h<br>MOVWF TBLPTRL<br>Load 2 bytes and start programming.                                                       |  |
| 0000<br>0000<br>1111<br>0000                 | 00 00<br>0E 01<br>6E F6<br><msb><lsb ignored=""><br/>00 00</lsb></msb>                  | NOP - hold PGC high for time P9 and low for time P10.<br>MOVLW 01h<br>MOVWF TBLPTRL<br>Load 2 bytes and start programming.<br>NOP - hold PGC high for time P9 and low for time P10. |  |

**Note 1:** Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

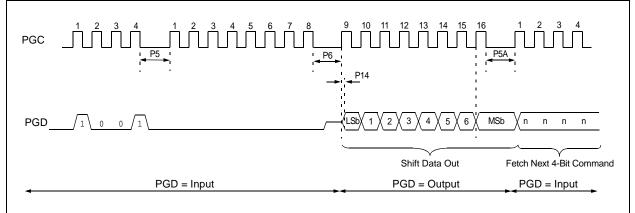
### FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW



# 4.0 READING THE DEVICE

# 4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) are serially output on PGD.

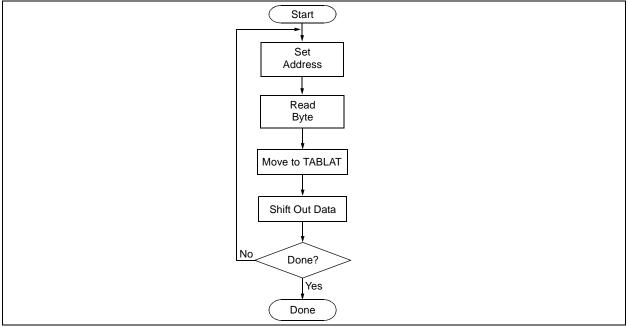

The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

| 4-Bit<br>Command                             | Data Payload                                                                                                        | Core Instruction                                                                                                                            |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 1: Set Table                            | Pointer.                                                                                                            |                                                                                                                                             |  |  |
| 0000<br>0000<br>0000<br>0000<br>0000<br>0000 | <pre>0E <addr[21:16]> 6E F8 0E <addr[15:8]> 6E F7 0E <addr[7:0]> 6E F6</addr[7:0]></addr[15:8]></addr[21:16]></pre> | MOVLW Addr[21:16]<br>MOVWF TBLPTRU<br>MOVLW <addr[15:8]><br/>MOVWF TBLPTRH<br/>MOVLW <addr[7:0]><br/>MOVWF TBLPTRL</addr[7:0]></addr[15:8]> |  |  |
| Step 2: Read mer                             | Step 2: Read memory and then shift out on PGD, LSb to MSb.                                                          |                                                                                                                                             |  |  |
| 1001                                         | 00 00                                                                                                               | TBLRD *+                                                                                                                                    |  |  |

 TABLE 4-1:
 READ CODE MEMORY SEQUENCE

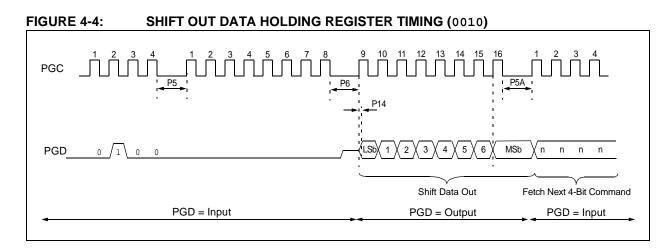





### 4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.


### FIGURE 4-3: READ DATA EEPROM FLOW



#### TABLE 4-2: READ DATA EEPROM MEMORY

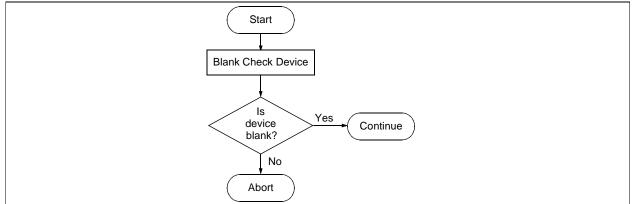
| 4-Bit<br>Command                                   | Data Payload                                                | Core Instruction                                                               |  |  |
|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Step 1: Direct acc                                 | cess to data EEPROM.                                        |                                                                                |  |  |
| 0000                                               | 9E A6<br>9C A6                                              | BCF EECON1, EEPGD<br>BCF EECON1, CFGS                                          |  |  |
| Step 2: Set the da                                 | ata EEPROM Address Pointe                                   | er.                                                                            |  |  |
| 0000<br>0000<br>0000<br>0000<br>Step 3: Initiate a | 0E <addr><br/>6E A9<br/>0E <addrh><br/>6E AA</addrh></addr> | MOVLW <addr><br/>MOVWF EEADR<br/>MOVLW <addrh><br/>MOVWF EEADRH</addrh></addr> |  |  |
| 0000                                               | 80 A6                                                       | BSF EECON1, RD                                                                 |  |  |
| Step 4: Load data                                  | Step 4: Load data into the Serial Data Holding register.    |                                                                                |  |  |
| 0000<br>0000<br>0000<br>0010                       | 50 A8<br>6E F5<br>00 00<br><msb><lsb></lsb></msb>           | MOVF EEDATA, W, O<br>MOVWF TABLAT<br>NOP<br>Shift Out Data <sup>(1)</sup>      |  |  |

Note 1: The <LSB> is undefined. The <MSB> is the data.



# 4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4** "**Read Data EEPROM Memory**" for implementation details of reading data EEPROM.


### 4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.





### TABLE 5-2: DEVICE ID VALUES (CONTINUED)

| Device     | Device ID Value |           |  |
|------------|-----------------|-----------|--|
| Device     | DEVID2          | DEVID1    |  |
| PIC18F4585 | 0Eh             | 101x xxxx |  |
| PIC18F4610 | 0Ch             | 001x xxxx |  |
| PIC18F4620 | 0Ch             | 000x xxxx |  |
| PIC18F4680 | 0Eh             | 100x xxxx |  |
| PIC18F4682 | 27h             | 010x xxxx |  |
| PIC18F4685 | 27h             | 011x xxxx |  |

**Legend:** The 'x's in DEVID1 contain the device revision code.

**Note 1:** DEVID1 bit 4 is used to determine the device type (REV4 = 0).

**2:** DEVID1 bit 4 is used to determine the device type (REV4 = 1).

| Bit Name                  | Configuration<br>Words | Description                                                                                                                                                               |  |  |  |  |  |  |
|---------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| WDTEN                     | CONFIG2H               | Watchdog Timer Enable bit                                                                                                                                                 |  |  |  |  |  |  |
|                           |                        | 1 = WDT is enabled                                                                                                                                                        |  |  |  |  |  |  |
|                           |                        | 0 = WDT is disabled (control is placed on the SWDTEN bit)                                                                                                                 |  |  |  |  |  |  |
| MCLRE                     | CONFIG3H               | MCLR Pin Enable bit                                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | $1 = \overline{MCLR}$ pin is enabled, RE3 input pin is disabled                                                                                                           |  |  |  |  |  |  |
|                           |                        | 0 = RE3 input pin is enabled, MCLR pin is disabled                                                                                                                        |  |  |  |  |  |  |
| LPT1OSC                   | CONFIG3H               | Low-Power Timer1 Oscillator Enable bit                                                                                                                                    |  |  |  |  |  |  |
|                           |                        | 1 = Timer1 is configured for low-power operation                                                                                                                          |  |  |  |  |  |  |
|                           |                        | 0 = Timer1 is configured for high-power operation                                                                                                                         |  |  |  |  |  |  |
| PBADEN                    | CONFIG3H               | PORTB A/D Enable bit                                                                                                                                                      |  |  |  |  |  |  |
|                           |                        | 1 = PORTB A/D<4:0> pins are configured as analog input channels on Reset                                                                                                  |  |  |  |  |  |  |
|                           |                        | 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset                                                                                                            |  |  |  |  |  |  |
| PBADEN                    | CONFIG3H               | PORTB A/D Enable bit (PIC18FXX8X devices only)                                                                                                                            |  |  |  |  |  |  |
|                           |                        | 1 = PORTB A/D<4:0> and PORTB A/D<1:0> pins are configured as analog input channels on Reset                                                                               |  |  |  |  |  |  |
|                           |                        | 0 = PORTB A/D<4:0> pins are configured as digital I/O on Reset                                                                                                            |  |  |  |  |  |  |
| CCP2MX                    | CONFIG3H               | CCP2 MUX bit                                                                                                                                                              |  |  |  |  |  |  |
|                           |                        | 1 = CCP2 input/output is multiplexed with RC1 <sup>(2)</sup>                                                                                                              |  |  |  |  |  |  |
|                           |                        | 0 = CCP2 input/output is multiplexed with RB3                                                                                                                             |  |  |  |  |  |  |
| DEBUG                     | CONFIG4L               | Background Debugger Enable bit                                                                                                                                            |  |  |  |  |  |  |
|                           |                        | 1 = Background debugger is disabled, RB6 and RB7 are configured as general                                                                                                |  |  |  |  |  |  |
|                           |                        | purpose I/O pins                                                                                                                                                          |  |  |  |  |  |  |
|                           |                        | 0 = Background debugger is enabled, RB6 and RB7 are dedicated to In-Circuit                                                                                               |  |  |  |  |  |  |
|                           |                        | Debug                                                                                                                                                                     |  |  |  |  |  |  |
| XINST                     | CONFIG4L               | Extended Instruction Set Enable bit                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | <ul> <li>1 = Instruction set extension and Indexed Addressing mode are enabled</li> <li>0 = Instruction set extension and Indexed Addressing mode are disabled</li> </ul> |  |  |  |  |  |  |
|                           |                        | (Legacy mode)                                                                                                                                                             |  |  |  |  |  |  |
| ICPRT                     | CONFIG4L               | Dedicated In-Circuit (ICD/ICSP™) Port Enable bit                                                                                                                          |  |  |  |  |  |  |
|                           |                        | (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and                                                                                                                 |  |  |  |  |  |  |
|                           |                        | PIC18F2450/4450 devices only)                                                                                                                                             |  |  |  |  |  |  |
|                           |                        | 1 = ICPORT is enabled                                                                                                                                                     |  |  |  |  |  |  |
|                           |                        | 0 = ICPORT is disabled                                                                                                                                                    |  |  |  |  |  |  |
| BBSIZ<1:0> <sup>(1)</sup> | CONFIG4L               | Boot Block Size Select bits (PIC18F2585/2680/4585/4680 devices only)                                                                                                      |  |  |  |  |  |  |
|                           |                        | 11 = 4K words (8 Kbytes) Boot Block                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | 10 = 4K words (8 Kbytes) Boot Block                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | 01 = 2K words (4 Kbytes) Boot Block<br>00 = 1K word (2 Kbytes) Boot Block                                                                                                 |  |  |  |  |  |  |
| BBSIZ<2:1> <sup>(1)</sup> | CONFIG4L               | Boot Block Size Select bits (PIC18F2682/2685/4582/4685 devices only)                                                                                                      |  |  |  |  |  |  |
|                           |                        | 11 = 4K words (8 Kbytes) Boot Block                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | 10 = 4K words (8 Kbytes) Boot Block                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | 01 = 2K words (4 Kbytes) Boot Block                                                                                                                                       |  |  |  |  |  |  |
|                           |                        | 00 = 1K word (2 Kbytes) Boot Block                                                                                                                                        |  |  |  |  |  |  |

### TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

| Bit Name | Configuration<br>Words | Description                                                                                                                                                            |  |  |  |  |  |  |  |
|----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| WRT5     | CONFIG6L               | Write Protection bit (Block 5 code memory area)<br>(PIC18F2685 and PIC18F4685 devices only)                                                                            |  |  |  |  |  |  |  |
|          |                        | <ul><li>1 = Block 5 is not write-protected</li><li>0 = Block 5 is write-protected</li></ul>                                                                            |  |  |  |  |  |  |  |
| WRT4     | CONFIG6L               | Write Protection bit (Block 4 code memory area)<br>(PIC18F2682/2685 and PIC18F4682/4685 devices only)                                                                  |  |  |  |  |  |  |  |
|          |                        | <ul><li>1 = Block 4 is not write-protected</li><li>0 = Block 4 is write-protected</li></ul>                                                                            |  |  |  |  |  |  |  |
| WRT3     | CONFIG6L               | Write Protection bit (Block 3 code memory area)                                                                                                                        |  |  |  |  |  |  |  |
|          |                        | 1 = Block 3 is not write-protected                                                                                                                                     |  |  |  |  |  |  |  |
|          |                        | 0 = Block 3 is write-protected                                                                                                                                         |  |  |  |  |  |  |  |
| WRT2     | CONFIG6L               | Write Protection bit (Block 2 code memory area)                                                                                                                        |  |  |  |  |  |  |  |
|          |                        | <ul><li>1 = Block 2 is not write-protected</li><li>0 = Block 2 is write-protected</li></ul>                                                                            |  |  |  |  |  |  |  |
| WRT1     | CONFIG6L               | Write Protection bit (Block 1 code memory area)                                                                                                                        |  |  |  |  |  |  |  |
|          |                        | <ul><li>1 = Block 1 is not write-protected</li><li>0 = Block 1 is write-protected</li></ul>                                                                            |  |  |  |  |  |  |  |
| WRT0     | CONFIG6L               | Write Protection bit (Block 0 code memory area)                                                                                                                        |  |  |  |  |  |  |  |
|          |                        | 1 = Block 0 is not write-protected                                                                                                                                     |  |  |  |  |  |  |  |
|          |                        | 0 = Block 0 is write-protected                                                                                                                                         |  |  |  |  |  |  |  |
| WRTD     | CONFIG6H               | Write Protection bit (Data EEPROM)                                                                                                                                     |  |  |  |  |  |  |  |
|          |                        | <ul> <li>1 = Data EEPROM is not write-protected</li> <li>0 = Data EEPROM is write-protected</li> </ul>                                                                 |  |  |  |  |  |  |  |
| WRTB     | CONFIG6H               | Write Protection bit (Boot Block memory area)                                                                                                                          |  |  |  |  |  |  |  |
|          |                        | 1 = Boot Block is not write-protected                                                                                                                                  |  |  |  |  |  |  |  |
|          |                        | 0 = Boot Block is write-protected                                                                                                                                      |  |  |  |  |  |  |  |
| WRTC     | CONFIG6H               | Write Protection bit (Configuration registers)                                                                                                                         |  |  |  |  |  |  |  |
|          |                        | 1 = Configuration registers are not write-protected                                                                                                                    |  |  |  |  |  |  |  |
|          |                        | 0 = Configuration registers are write-protected                                                                                                                        |  |  |  |  |  |  |  |
| EBTR5    | CONFIG7L               | Table Read Protection bit (Block 5 code memory area)<br>(PIC18F2685 and PIC18F4685 devices only)                                                                       |  |  |  |  |  |  |  |
|          |                        | <ul> <li>1 = Block 5 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 5 is protected from Table Reads executed in other blocks</li> </ul> |  |  |  |  |  |  |  |
| EBTR4    | CONFIG7L               | Table Read Protection bit (Block 4 code memory area)<br>(PIC18F2682/2685 and PIC18F4682/4685 devices only)                                                             |  |  |  |  |  |  |  |
|          |                        | <ul> <li>1 = Block 4 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 4 is protected from Table Reads executed in other blocks</li> </ul> |  |  |  |  |  |  |  |
| EBTR3    | CONFIG7L               | Table Read Protection bit (Block 3 code memory area)                                                                                                                   |  |  |  |  |  |  |  |
|          |                        | <ul> <li>1 = Block 3 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 3 is protected from Table Reads executed in other blocks</li> </ul> |  |  |  |  |  |  |  |
| EBTR2    | CONFIG7L               | Table Read Protection bit (Block 2 code memory area)                                                                                                                   |  |  |  |  |  |  |  |
|          |                        | 1 = Block 2 is not protected from Table Reads executed in other blocks                                                                                                 |  |  |  |  |  |  |  |
|          |                        | 0 = Block 2 is protected from Table Reads executed in other blocks                                                                                                     |  |  |  |  |  |  |  |
| EBTR1    | CONFIG7L               | Table Read Protection bit (Block 1 code memory area)                                                                                                                   |  |  |  |  |  |  |  |
|          |                        | <ul> <li>1 = Block 1 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 1 is protected from Table Reads executed in other blocks</li> </ul> |  |  |  |  |  |  |  |

| TABLE 5-3: | PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS ( | (CONTINUED) |
|------------|-------------------------------------------|-------------|
|            |                                           |             |

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

**2:** Not available in PIC18FXX8X and PIC18F2450/4450 devices.

| Bit Name  | Configuration<br>Words | Description                                                                                                                                                                  |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBTR0     | CONFIG7L               | Table Read Protection bit (Block 0 code memory area)                                                                                                                         |
|           |                        | <ul> <li>1 = Block 0 is not protected from Table Reads executed in other blocks</li> <li>0 = Block 0 is protected from Table Reads executed in other blocks</li> </ul>       |
| EBTRB     | CONFIG7H               | Table Read Protection bit (Boot Block memory area)                                                                                                                           |
|           |                        | <ul> <li>1 = Boot Block is not protected from Table Reads executed in other blocks</li> <li>0 = Boot Block is protected from Table Reads executed in other blocks</li> </ul> |
| DEV<10:3> | DEVID2                 | Device ID bits                                                                                                                                                               |
|           |                        | These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.                                                                                   |
| DEV<2:0>  | DEVID1                 | Device ID bits                                                                                                                                                               |
|           |                        | These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.                                                                                  |
| REV<4:0>  | DEVID1                 | Revision ID bits                                                                                                                                                             |
|           |                        | These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.                                                 |

### TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

| Device                      | Memory<br>Size<br>(Bytes) | Pins     | Ending Address   |                           |             |                  |                  |         |             | Size (Bytes)  |              |                     |                 |
|-----------------------------|---------------------------|----------|------------------|---------------------------|-------------|------------------|------------------|---------|-------------|---------------|--------------|---------------------|-----------------|
|                             |                           |          | Boot<br>Block    | Block 0                   | Block 1     | Block 2          | Block 3          | Block 4 | Block 5     | Boot<br>Block | Block 0      | Remaining<br>Blocks | Device<br>Total |
| PIC18F2221                  | 4K                        | 28       | 0001FF<br>0003FF | 0007FF                    | 000FFF      | _                | _                | _       | _           | 512<br>1024   | 1536<br>1024 | 2048                | 4096            |
|                             |                           |          | 0001FF           |                           |             |                  |                  |         |             | 512           | 3584         | <u> </u>            | -               |
| PIC18F2321 8K               | 28                        | 0003FF   | 000FFF           | 001FFF                    |             |                  |                  |         | 1024        | 3072          | 4096         | 8192                |                 |
|                             | 20                        | 0007FF   | 000111           | 001111                    |             |                  |                  |         | 2048        | 2048          |              |                     |                 |
| PIC18F2410                  | 16K                       | 28       | 0007FF           | 001FFF                    | 003FFF      |                  |                  | _       | _           | 2048          | 6144         | 8192                | 16384           |
| PIC18F2420                  | 16K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | _                |                  | _       |             | 2048          | 6144         | 8192                | 16384           |
| PIC18F2423                  | 16K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | _                |                  | _       |             | 2048          | 6144         | 8192                | 16384           |
| 1101012120                  | TOIL                      | 20       | 0007FF           | 001111                    | 000111      |                  |                  |         |             | 2048          | 6144         | 0102                | 10001           |
| PIC18F2450                  | 16K                       | 28       | 000FFF           | 001FFF                    | 003FFF      | —                | —                | —       | —           | 4096          | 4096         | 8192                | 16384           |
| PIC18F2455                  | 24K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | 005FFF           |                  | _       |             | 2048          | 6144         | 16384               | 24576           |
| PIC18F2458                  | 24K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | 005FFF           |                  |         |             | 2048          | 6144         | 16384               | 24576           |
| 1101012400                  | 241                       | 20       | 0007FF           | 001111                    | 005111      | 005111           |                  |         |             | 2040          | 6144         | 10304               | 24070           |
| PIC18F2480                  | 16K                       | 28       | 000FFF           | 001FFF                    | 003FFF      | _                | _                | _       | —           | 4096          | 4096         | 8192                | 16384           |
| PIC18F2510                  | 32K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | 005FFF           | 007FFF           |         |             | 2048          | 6144         | 24576               | 32768           |
| PIC18F2515                  | 48K                       | 28       | 0007FF           | 003FFF                    | 007FFF      | 00BFFF           | 007111           |         |             | 2040          | 14336        | 32768               | 49152           |
| PIC18F2520                  | 32K                       | 28       | 0007FF           | 003FFF                    | 003FFF      | 005FFF           | <br>007FFF       |         | _           | 2040          | 14336        | 16384               | 32768           |
| PIC18F2523                  | 32K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | 005FFF           | 007FFF           |         |             | 2048          | 14336        | 16384               | 32768           |
|                             |                           | 28<br>28 | 0007FF           | 003FFF                    | 003FFF      | 005FFF           | 007FFF           |         |             |               | 14336        |                     | 49152           |
| PIC18F2525                  | 48K                       | 28       |                  |                           |             |                  |                  |         |             | 2048          |              | 32768               |                 |
| PIC18F2550                  | 32K                       |          | 0007FF           | 001FFF                    | 003FFF      | 005FFF           | 007FFF           |         |             | 2048          | 6144         | 24576               | 32768           |
| PIC18F2553                  | 32K                       | 28       | 0007FF           | 001FFF                    | 003FFF      | 005FFF<br>005FFF | 007FFF<br>007FFF |         | _           | 2048          | 6144         | 24576<br>24576      | 32768<br>32768  |
| PIC18F2580                  | 32K                       |          | 0007FF<br>000FFF | 001FFF                    | FFF 003FFF  |                  |                  |         |             | 2048          | 6144         |                     |                 |
|                             |                           |          |                  | <u> </u>                  |             |                  |                  |         |             | 4096          | 4096         | <b> </b>            |                 |
|                             | 4016                      | 48K 28   | 0007FF           | F 003FFF                  | 007FFF      | 00BFFF           | _                | _       | _           | 2048          | 14336        | 32768               | 49152           |
| PIC18F2585                  | 48N                       |          | 000FFF           |                           |             |                  |                  |         |             | 4096          | 12288        |                     |                 |
|                             | 0.414                     | 00       | 001FFF           | 000555                    | 007555      | 000555           | 005555           |         |             | 8192          | 8192         | 40450               | 05500           |
| PIC18F2610                  | 64K                       | 28       | 0007FF           | 003FFF                    | 007FFF      | 00BFFF           | 00FFFF           |         |             | 2048          | 14336        | 49152               | 65536           |
| PIC18F2620                  | 64K                       | 28       | 0007FF           | 003FFF                    | 007FFF      | 00BFFF           | 00FFFF           |         |             | 2048          | 14336        | 49152               | 65536           |
|                             | 64K                       | 64K 28   | 0007FF           |                           | 007FFF      | 00BFFF           | 00FFFF           | _       | _           | 2048          | 14336        | 49152               | 65536           |
| PIC18F2680                  |                           |          | 000FFF           | 003FFF                    |             |                  |                  |         |             | 4096          | 12288        |                     |                 |
|                             |                           |          | 001FFF           |                           |             |                  |                  |         |             | 8192          | 8192         |                     |                 |
| <b>DIO</b> 40 <b>D</b> 0000 | 0.01/                     |          | 0007FF           |                           | 007FFF      | 00BFFF<br>00BFFF |                  |         | —<br>017FFF | 2048          | 14336        | 65536<br>81920      | 81920<br>98304  |
| PIC18F2682                  | 80K                       |          | 000FFF           | FFF<br>I7FF<br>FFF 003FFF |             |                  |                  |         |             | 4096          | 12288        |                     |                 |
|                             |                           |          | 001FFF           |                           |             |                  |                  |         |             | 8192          | 8192         |                     |                 |
|                             |                           |          | 0007FF           |                           |             |                  |                  |         |             | 2048          | 14336        |                     |                 |
| PIC18F2685                  | 96K                       |          | 000FFF           |                           | 007666      |                  |                  |         |             | 4096          | 12288        |                     |                 |
|                             |                           |          | 001FFF           |                           |             |                  |                  |         |             | 8192          | 8192         |                     |                 |
| PIC18F4221                  | 4K                        | ≺ 40     | 0001FF           | 0007FF 000FFF             | _           | _                | _                | _       | 512         | 1536          | 2048         | 4096                |                 |
|                             |                           |          | 0003FF           |                           |             |                  |                  |         |             | 1024          | 1024         |                     |                 |
| <b>DIO 405 4004</b>         | 8K                        | 8K 40    | 0001FF           |                           | OFFF 001FFF | _                | _                | _       | _           | 512           | 3584         | 4096                | 8192            |
| PIC18F4321                  |                           |          | 0003FF           | 000FFF                    |             |                  |                  |         |             | 1024          | 3072         |                     |                 |
|                             | 4014                      | 4.5      | 0007FF           | 004555                    | 000         |                  |                  |         |             | 2048          | 2048         | 0400                | 4000            |
| PIC18F4410                  | 16K                       | 40       | 0007FF           | 001FFF                    |             |                  |                  |         |             | 2048          | 6144         | 8192                | 16384           |
| PIC18F4420                  | 16K                       | 40       | 0007FF           | 001FFF                    |             |                  |                  | —       | —           | 2048          | 6144         | 8192                | 16384           |
| PIC18F4423                  | 16K                       | 40       | 0007FF           | 001FFF                    | 003FFF      |                  |                  | —       | —           | 2048          | 6144         | 8192                | 16384           |
| PIC18F4450                  | 16K                       | 40       | 0007FF           | 001FFF                    | 003FFF      | FFF —            | . —              | —       |             | 2048          | 6144         | 8192                | 16384           |
|                             |                           |          | 000FFF           |                           |             |                  |                  |         |             | 4096          | 4096         |                     |                 |

### TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

**Legend:** — = unimplemented.



# **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

**Chicago** Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Cleveland** Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

**Canada - Toronto** Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

**China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

**China - Hangzhou** Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

**China - Hong Kong SAR** Tel: 852-2943-5100 Fax: 852-2401-3431

**China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

**China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

### ASIA/PACIFIC

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

**Japan - Osaka** Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

**Japan - Tokyo** Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

**Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

**Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955

**Taiwan - Kaohsiung** Tel: 886-7-213-7828

**Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

**Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15