




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                            |
|----------------------------|----------------------------------------------------------------------------|
| Product Status             | Active                                                                     |
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 40MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                |
| Number of I/O              | 36                                                                         |
| Program Memory Size        | 64KB (32K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 3.8K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                  |
| Data Converters            | A/D 13x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 44-QFN (8x8)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4610-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F2XXX/4XXX FAMILY

| - N                | During Programming |          |                                                                  |  |  |  |
|--------------------|--------------------|----------|------------------------------------------------------------------|--|--|--|
| Pin Name           | Pin Name           | Pin Type | Pin Description                                                  |  |  |  |
| MCLR/VPP/RE3       | VPP                | Р        | Programming Enable                                               |  |  |  |
| VDD(2)             | VDD                | Р        | Power Supply                                                     |  |  |  |
| VSS <sup>(2)</sup> | Vss                | Р        | Ground                                                           |  |  |  |
| RB5                | PGM                | I        | Low-Voltage ICSP™ Input when LVP Configuration bit equals '1'(1) |  |  |  |
| RB6                | PGC                | Ţ        | Serial Clock                                                     |  |  |  |
| RB7                | PGD                | I/O      | Serial Data                                                      |  |  |  |

**Legend:** I = Input, O = Output, P = Power **Note 1:** See Figure 5-1 for more information.

2: All power supply (VDD) and ground (VSS) pins must be connected.

The following devices are included in 28-pin SPDIP, PDIP and SOIC parts:

• PIC18F2221

• PIC18F2480

• PIC18F2580

• PIC18F2321

• PIC18F2510

• PIC18F2585

• PIC18F2410

• PIC18F2515

• PIC18F2610

PIC18F2420

• PIC18F2520

• PIC18F2620

PIC18F2423

• PIC18F2523

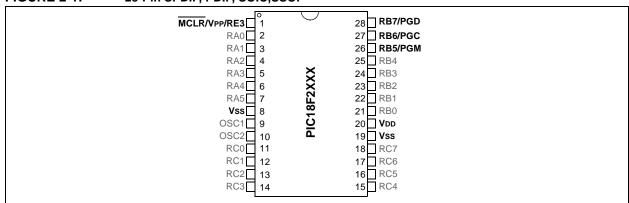
• PIC18F2680

• PIC18F2450

• PIC18F2525

• PIC18F2682

PIC18F2455PIC18F2458


PIC18F2550PIC18F2553

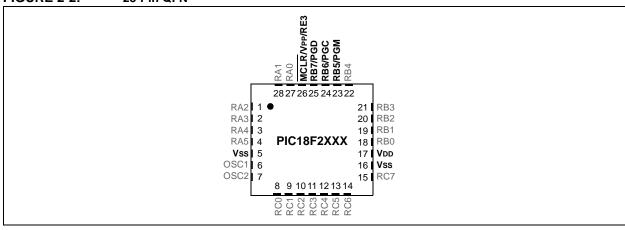
PIC18F2685

The following devices are included in 28-pin SSOP parts:

PIC18F2221
 PIC18F2321

### FIGURE 2-1: 28-Pin SPDIP, PDIP, SOIC, SSOP




The following devices are included in 28-pin QFN parts:

- PIC18F2221
- PIC18F2423
- PIC18F2510
- PIC18F2580

- PIC18F2321
- PIC18F2450
- PIC18F2520
- PIC18F2682

- PIC18F2410 • PIC18F2420
- PIC18F2480
- PIC18F2523
- PIC18F2685

#### **FIGURE 2-2:** 28-Pin QFN

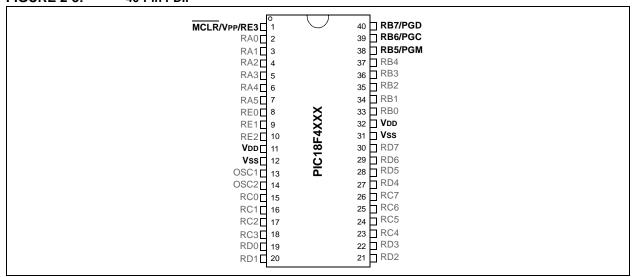


The following devices are included in 40-pin PDIP parts:

- PIC18F4221
- PIC18F4455
- PIC18F4523
- PIC18F4610

- PIC18F4321
- PIC18F4458
- PIC18F4525

- PIC18F4410
- PIC18F4480
- PIC18F4620


- PIC18F4550

- PIC18F4420
- PIC18F4510
- PIC18F4553
- PIC18F4680

- PIC18F4423
- PIC18F4515
- PIC18F4580
- PIC18F4682 PIC18F4685

- PIC18F4450 • PIC18F4520
- PIC18F4585

#### FIGURE 2-3: 40-Pin PDIP

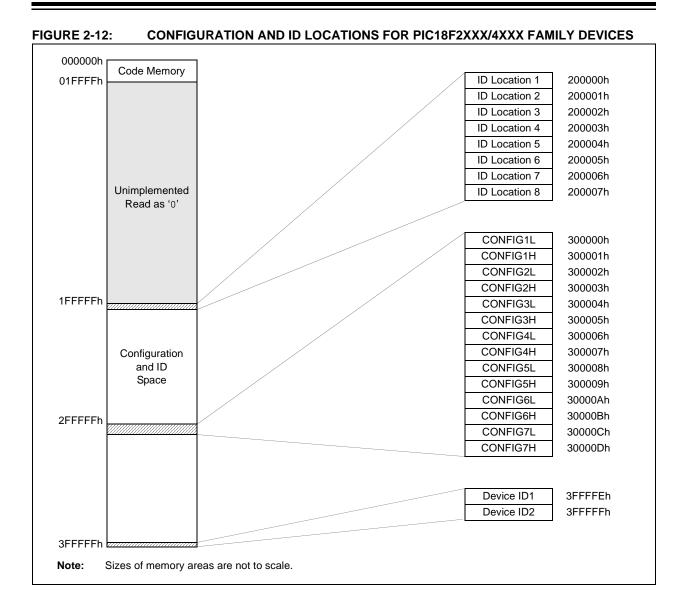


In addition to the code memory space, there are three blocks that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-12.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses, 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations, 300000h through 30000Dh, are reserved for the Configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These Configuration bits read out normally, even after code protection.

Locations, 3FFFFEh and 3FFFFFh, are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These Device ID bits read out normally, even after code protection.


### 2.3.1 MEMORY ADDRESS POINTER

Memory in the address space, 0000000h to 3FFFFFh, is addressed via the Table Pointer register, which is comprised of three pointer registers:

- TBLPTRU at RAM address 0FF8h
- TBLPTRH at RAM address 0FF7h
- · TBLPTRL at RAM address 0FF6h

| TBLPTRU     | TBLPTRH    | TBLPTRL   |
|-------------|------------|-----------|
| Addr[21:16] | Addr[15:8] | Addr[7:0] |

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.



### 2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

### 2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

### 2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

| Description                                         | 4-Bit Command |
|-----------------------------------------------------|---------------|
| Core Instruction (Shift in16-bit instruction)       | 0000          |
| Shift Out TABLAT Register                           | 0010          |
| Table Read                                          | 1000          |
| Table Read, Post-Increment                          | 1001          |
| Table Read, Post-Decrement                          | 1010          |
| Table Read, Pre-Increment                           | 1011          |
| Table Write                                         | 1100          |
| Table Write, Post-Increment by 2                    | 1101          |
| Table Write, Start Programming, Post-Increment by 2 | 1110          |
| Table Write, Start Programming                      | 1111          |

### TABLE 2-9: SAMPLE COMMAND SEQUENCE

| 4-Bit Command | Data Payload | Core Instruction    |
|---------------|--------------|---------------------|
| 1101          | 3C 40        | Table Write,        |
|               |              | post-increment by 2 |

### 2.8 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

The PIC18F4455/4458/4550/4553 44-pin TQFP devices are designed to support an alternate programming input: the dedicated ICSP/ICD port. The primary purpose of this port is to provide an alternate In-Circuit Debugging (ICD) option and free the pins (RB6, RB7 and  $\overline{MCLR}$ ) that would normally be used for debugging the application. In conjunction with ICD capability, however, the dedicated ICSP/ICD port also provides an alternate port for ICSP.

Setting the ICPRT Configuration bit enables the dedicated ICSP/ICD port. The dedicated ICSP/ICD port functions the same as the default ICSP/ICD port; however, alternate pins are used instead of the default pins. Table 2-10 identifies the functionally equivalent pins for ICSP purposes:

The dedicated ICSP/ICD port is an alternate port. Thus, ICSP is still available through the default port even though the ICPRT Configuration bit is set. When the VIH is seen on the MCLR/VPP/RE3 pin prior to applying VIH to the ICRST/ICVPP pin, then the state of the ICRST/ICVPP pin is ignored. Likewise, when the VIH is seen on ICRST/ICVPP prior to applying VIH to MCLR/VPP/RE3, then the state of the MCLR/VPP/RE3 pin is ignored.

**Note:** The ICPRT Configuration bit can only be programmed through the default ICSP port. Chip Erase functions through the dedicated ICSP/ICD port do not affect this bit.

When the ICPRT Configuration bit is set (dedicated ICSP/ICD port enabled), the NC/ICPORTS pin must be tied to either VDD or VSS.

The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

TABLE 2-10: ICSP™ EQUIVALENT PINS

| Pin Name     |                   |     | During P       | rogramming         |
|--------------|-------------------|-----|----------------|--------------------|
| Pili Name    | Pin Name Pin Type |     | Dedicated Pins | Pin Description    |
| MCLR/Vpp/RE3 | VPP               | Р   | NC/ICRST/ICVPP | Programming Enable |
| RB6          | PGC               | I   | NC/ICCK/ICPGC  | Serial Clock       |
| RB7          | PGD               | I/O | NC/ICDT/ICPGD  | Serial Data        |

**Legend:** I = Input, O = Output, P = Power

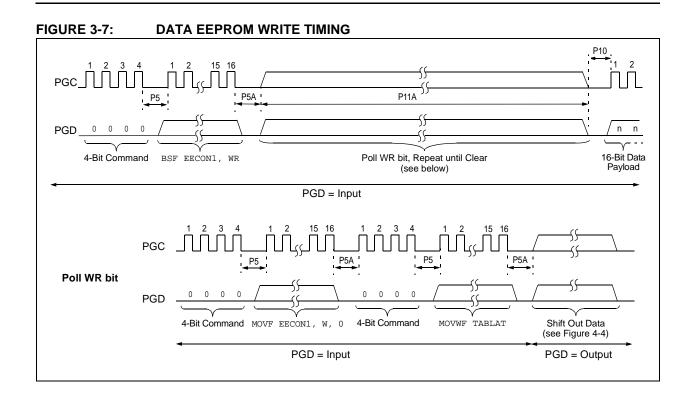
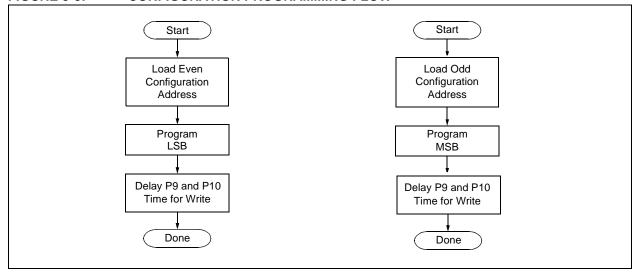




TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION

| 4-Bit<br>Command  | Data Payload                      | Core Instruction                                          |
|-------------------|-----------------------------------|-----------------------------------------------------------|
| Step 1: Enable wr | ites and direct access to cor     | nfiguration memory.                                       |
| 0000              | 8E A6<br>8C A6                    | BSF EECON1, EEPGD BSF EECON1, CFGS                        |
|                   |                                   | e to be written. Write even/odd addresses. <sup>(1)</sup> |
| 0000              | 0E 30                             | MOVLW 30h                                                 |
| 0000              | 6E F8                             | MOVWF TBLPTRU                                             |
| 0000              | 0E 00                             | MOVLW 00h                                                 |
| 0000              | 6E F7                             | MOVWF TBLPRTH                                             |
| 0000              | 0E 00                             | MOVLW 00h                                                 |
| 0000              | 6E F6                             | MOVWF TBLPTRL                                             |
| 1111              | <msb ignored=""><lsb></lsb></msb> | Load 2 bytes and start programming.                       |
| 0000              | 00 00                             | NOP - hold PGC high for time P9 and low for time P10.     |
| 0000              | 0E 01                             | MOVLW 01h                                                 |
| 0000              | 6E F6                             | MOVWF TBLPTRL                                             |
| 1111              | <msb><lsb ignored=""></lsb></msb> | Load 2 bytes and start programming.                       |
| 0000              | 00 00                             | NOP - hold PGC high for time P9 and low for time P10.     |

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

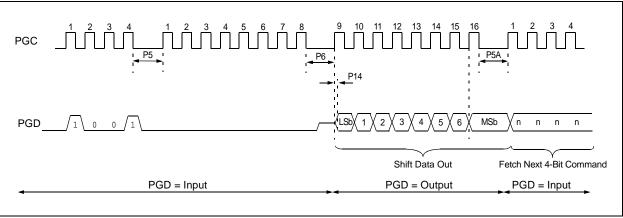
### FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW



### 4.0 READING THE DEVICE

### 4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed, one byte at a time, via the 4-bit command, '1001' (Table Read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH) are serially output on PGD.


The 4-bit command is shifted in, LSb first. The read is executed during the next eight clocks, then shifted out on PGD during the last eight clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1: READ CODE MEMORY SEQUENCE

| 4-Bit<br>Command  | Data Payload                   | Core Instruction                |
|-------------------|--------------------------------|---------------------------------|
| Step 1: Set Table | Pointer.                       |                                 |
| 0000              | OE <addr[21:16]></addr[21:16]> | MOVLW Addr[21:16]               |
| 0000              | 6E F8                          | MOVWF TBLPTRU                   |
| 0000              | 0E <addr[15:8]></addr[15:8]>   | MOVLW <addr[15:8]></addr[15:8]> |
| 0000              | 6E F7                          | MOVWF TBLPTRH                   |
| 0000              | 0E <addr[7:0]></addr[7:0]>     | MOVLW <addr[7:0]></addr[7:0]>   |
| 0000              | 6E F6                          | MOVWF TBLPTRL                   |
| Step 2: Read mer  | nory and then shift out on P   | GD, LSb to MSb.                 |
| 1001              | 00 00                          | TBLRD *+                        |





#### 4.2 **Verify Code Memory and ID Locations**

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the Table Read 4-bit command may not be used to increment the Table Pointer beyond the code memory space. In a 64-Kbyte device, for example, a post-increment read of address, FFFFh, will wrap the Table Pointer back to 000000h, rather than point to the unimplemented address, 010000h.

Start Set TBLPTR = 200000h Set TBLPTR = 0 Read Low Byte Read Low Byte with Post-Increment with Post-Increment Read High Byte Increment Read High Byte with Post-Increment Pointer with Post-Increment Does Does No Word = Expect Failure, Word = Expect Failure, Data? Report Data? Report Error Error Yes Yes ΑII No No **ID** locations code memory verified? verified? Yes Yes Done

FIGURE 4-2: VERIFY CODE MEMORY FLOW

#### 4.3 **Verify Configuration Bits**

A configuration address may be read and output on PGD via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

### 4.4 Read Data EEPROM Memory

Data EEPROM is accessed, one byte at a time, via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is read by loading EEADRH:EEADR with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on PGD via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Table 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

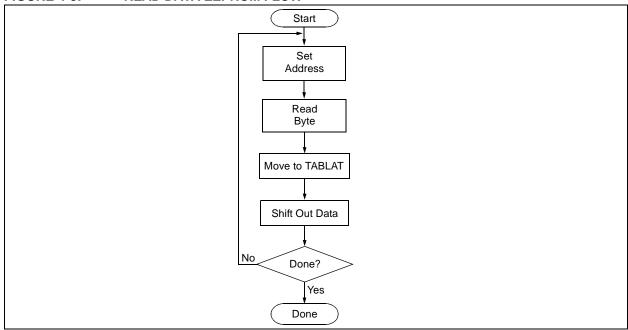



TABLE 4-2: READ DATA EEPROM MEMORY

| 4-Bit<br>Command             | Data Payload                                      | Core Instruction                                                   |
|------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
| Step 1: Direct ac            | cess to data EEPROM.                              |                                                                    |
| 0000                         | 9E A6<br>9C A6                                    | BCF EECON1, EEPGD<br>BCF EECON1, CFGS                              |
| Step 2: Set the d            | ata EEPROM Address Pointe                         | er.                                                                |
| 0000<br>0000<br>0000<br>0000 | 0E <addr> 6E A9 0E <addrh> 6E AA</addrh></addr>   | MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr> |
| Step 3: Initiate a           | memory read.                                      |                                                                    |
| 0000                         | 80 A6                                             | BSF EECON1, RD                                                     |
| Step 4: Load data            | a into the Serial Data Holding                    | register.                                                          |
| 0000<br>0000<br>0000<br>0010 | 50 A8<br>6E F5<br>00 00<br><msb><lsb></lsb></msb> | MOVF EEDATA, W, 0 MOVWF TABLAT NOP Shift Out Data <sup>(1)</sup>   |

Note 1: The <LSB> is undefined. The <MSB> is the data.

TABLE 5-1: CONFIGURATION BITS AND DEVICE IDS

| File N                   | lame                  | Bit 7 | Bit 6 | Bit 5                   | Bit 4                 | Bit 3                | Bit 2                | Bit 1   | Bit 0                 | Default/<br>Unprogrammed<br>Value  |              |
|--------------------------|-----------------------|-------|-------|-------------------------|-----------------------|----------------------|----------------------|---------|-----------------------|------------------------------------|--------------|
| 300000h <sup>(1,8)</sup> | CONFIG1L              | _     | -     | USBDIV                  | CPUDIV1               | CPUDIV0              | PLLDIV2              | PLLDIV1 | PLLDIV0               | 00 0000                            |              |
| 300001h                  | CONFIG1H              | IESO  | FCMEN | _                       | _                     | FOSC3                | FOSC2                | FOSC1   | FOSC0                 | 00 0111                            |              |
|                          |                       |       |       |                         |                       |                      |                      |         |                       | 00 0101 <sup>(1,8)</sup>           |              |
| 300002h                  | CONFIG2L              | _     | _     | VREGEN <sup>(1,8)</sup> | BORV1                 | BORV0                | BOREN1               | BOREN0  | PWRTEN                | 1 1111<br>01 1111 <sup>(1,8)</sup> |              |
| 300003h                  | CONFIG2H              |       |       | - VREGEN                | WDTPS3                | WDTPS2               | WDTPS1               | WDTPS0  | WDTEN                 | 1 1111                             |              |
| -                        |                       |       |       |                         |                       |                      |                      |         | CCP2MX <sup>(7)</sup> | 1011(7)                            |              |
| 300005h                  | CONFIG3H              | MCLRE | _     | _                       | _                     | _                    | LPT1OSC              | PBADEN  | _                     | 101-                               |              |
|                          |                       |       |       | ICPRT <sup>(1)</sup>    | _                     | _                    |                      |         |                       | 1001-1(1)                          |              |
|                          |                       |       |       | BBSIZ1                  | BBSIZ0                | -                    |                      |         |                       | 1000 -1-1                          |              |
| 300006h                  | CONFIG4L              | DEBUG | XINST | _                       | BBSIZ <sup>(3)</sup>  | _                    | LVP                  | _       | STVREN                | 10-0 -1-1(3)                       |              |
|                          |                       |       |       |                         | ICPRT <sup>(8)</sup>  | _                    | BBSIZ <sup>(8)</sup> |         |                       |                                    | 100- 01-1(8) |
|                          |                       |       |       | BBSIZ1 <sup>(2)</sup>   | BBSIZ2 <sup>(2)</sup> | ı                    |                      |         |                       | 1000 -1-1 <b>(2)</b>               |              |
| 300008h                  | CONFIG5L              | _     | -     | CP5 <sup>(10)</sup>     | CP4 <sup>(9)</sup>    | CP3 <sup>(4)</sup>   | CP2 <sup>(4)</sup>   | CP1     | CP0                   | 11 1111                            |              |
| 300009h                  | CONFIG5H              | CPD   | СРВ   | l                       | _                     | I                    | -                    | I       |                       | 11                                 |              |
| 30000Ah                  | CONFIG6L              | _     |       | WRT5 <sup>(10)</sup>    | WRT4 <sup>(9)</sup>   | WRT3 <sup>(4)</sup>  | WRT2 <sup>(4)</sup>  | WRT1    | WRT0                  | 11 1111                            |              |
| 30000Bh                  | CONFIG6H              | WRTD  | WRTB  | WRTC <sup>(5)</sup>     | _                     | _                    | _                    | _       |                       | 111                                |              |
| 30000Ch                  | CONFIG7L              | _     | _     | EBTR5 <sup>(10)</sup>   | EBTR4 <sup>(9)</sup>  | EBTR3 <sup>(4)</sup> | EBTR2 <sup>(4)</sup> | EBTR1   | EBTR0                 | 11 1111                            |              |
| 30000Dh                  | CONFIG7H              | _     | EBTRB | -                       | _                     | -                    |                      | _       | _                     | -1                                 |              |
| 3FFFFEh                  | DEVID1 <sup>(6)</sup> | DEV2  | DEV1  | DEV0                    | REV4                  | REV3                 | REV2                 | REV1    | REV0                  | See Table 5-2                      |              |
| 3FFFFFh                  | DEVID2 <sup>(6)</sup> | DEV10 | DEV9  | DEV8                    | DEV7                  | DEV6                 | DEV5                 | DEV4    | DEV3                  | See Table 5-2                      |              |

**Legend:** - = unimplemented. Shaded cells are unimplemented, read as '0'.

- Note 1: Implemented only on PIC18F2455/2550/4455/4550 and PIC18F2458/2553/4458/4553 devices.
  - 2: Implemented on PIC18F2585/2680/4585/4680, PIC18F2682/2685 and PIC18F4682/4685 devices only.
  - 3: Implemented on PIC18F2480/2580/4480/4580 devices only.
  - 4: These bits are only implemented on specific devices based on available memory. Refer to Section 2.3 "Memory Maps".
  - 5: In PIC18F2480/2580/4480/4580 devices, this bit is read-only in Normal Execution mode; it can be written only in Program mode.
  - **6:** DEVID registers are read-only and cannot be programmed by the user.
  - 7: Implemented on all devices with the exception of the PIC18FXX8X and PIC18F2450/4450 devices.
  - 8: Implemented on PIC18F2450/4450 devices only.
  - 9: Implemented on PIC18F2682/2685 and PIC18F4682/4685 devices only.
  - 10: Implemented on PIC18F2685/4685 devices only.

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

| Device     | Device ID Value |           |  |  |
|------------|-----------------|-----------|--|--|
| Device     | DEVID2          | DEVID1    |  |  |
| PIC18F4585 | 0Eh             | 101x xxxx |  |  |
| PIC18F4610 | 0Ch             | 001x xxxx |  |  |
| PIC18F4620 | 0Ch             | 000x xxxx |  |  |
| PIC18F4680 | 0Eh             | 100x xxxx |  |  |
| PIC18F4682 | 27h             | 010x xxxx |  |  |
| PIC18F4685 | 27h             | 011x xxxx |  |  |

**Legend:** The 'x's in DEVID1 contain the device revision code.

**Note 1:** DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS

| Bit Name    | Configuration Words | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IESO        | CONFIG1H            | Internal External Switchover bit  1 = Internal External Switchover mode is enabled  0 = Internal External Switchover mode is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FCMEN       | CONFIG1H            | Fail-Safe Clock Monitor Enable bit  1 = Fail-Safe Clock Monitor is enabled  0 = Fail-Safe Clock Monitor is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FOSC<3:0>   | CONFIG1H            | Oscillator Selection bits  11xx = External RC oscillator, CLKO function on RA6  101x = External RC oscillator, CLKO function on RA6  1001 = Internal RC oscillator, CLKO function on RA6, port function on RA7  1000 = Internal RC oscillator, port function on RA6, port function on RA7  0111 = External RC oscillator, port function on RA6  0110 = HS oscillator, PLL is enabled (Clock Frequency = 4 x FOSC1)  0101 = EC oscillator, port function on RA6  0100 = EC oscillator, CLKO function on RA6  0011 = External RC oscillator, CLKO function on RA6  0010 = HS oscillator  0001 = XT oscillator  0000 = LP oscillator                                                                                                                                                                                                              |
| FOSC<3:0>   | CONFIG1H            | Oscillator Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)  111x = HS oscillator, PLL is enabled, HS is used by USB 110x = HS oscillator, HS is used by USB 1011 = Internal oscillator, HS is used by USB 1010 = Internal oscillator, XT is used by USB 1001 = Internal oscillator, CLKO function on RA6, EC is used by USB 1000 = Internal oscillator, port function on RA6, EC is used by USB 0111 = EC oscillator, PLL is enabled, CLKO function on RA6, EC is used by USB 0110 = EC oscillator, PLL is enabled, port function on RA6, EC is used by USB 0101 = EC oscillator, CLKO function on RA6, EC is used by USB 0100 = EC oscillator, port function on RA6, EC is used by USB 010x = XT oscillator, PLL is enabled, XT is used by USB 000x = XT oscillator, XT is used by USB |
| USBDIV      | CONFIG1L            | USB Clock Selection bit (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only) Selects the clock source for full-speed USB operation:  1 = USB clock source comes from the 96 MHz PLL divided by 2  0 = USB clock source comes directly from the OSC1/OSC2 oscillator block; no divide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CPUDIV<1:0> | CONFIG1L            | CPU System Clock Selection bits (PIC18F2455/2550/4455/4550, PIC18F2458/2553/4458/4553 and PIC18F2450/4450 devices only)  11 = CPU system clock divided by 4  10 = CPU system clock divided by 3  01 = CPU system clock divided by 2  00 = No CPU system clock divide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**Note 1:** The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

2: Not available in PIC18FXX8X and PIC18F2450/4450 devices.

### 5.6.3 ID LOCATIONS

Normally, the contents of these locations are defined by the user, but MPLAB® IDE provides the option of writing the device's unprotected 16-bit checksum in the 16 Most Significant bits of the ID locations (see MPLAB IDE Configure/ID Memory" menu). The lower 16 bits are not used and remain clear. This is the sum of all program memory contents and Configuration Words (appropriately masked) before any code protection is enabled.

If the user elects to define the contents of the ID locations, nothing about protected blocks can be known. If the user uses the preprotected checksum, provided by MPLAB IDE, an indirect characteristic of the programmed code is provided.

### 5.6.4 CODE PROTECTION

Blocks that are code-protected read back as all '0's and have no effect on checksum calculations. If any block is code-protected, then the contents of the ID locations are included in the checksum calculation.

All Configuration Words and the ID locations can always be read out normally, even when the device is fully code-protected. Checking the code protection settings in Configuration Words can direct which, if any, of the program memory blocks can be read, and if the ID locations should be used for checksum calculations.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

|             | Memory<br>Size<br>(Bytes) | Pins | Ending Address |         |         |         |         |           |         | Size (Bytes)  |         |                     |                 |
|-------------|---------------------------|------|----------------|---------|---------|---------|---------|-----------|---------|---------------|---------|---------------------|-----------------|
| Device      |                           |      | Boot<br>Block  | Block 0 | Block 1 | Block 2 | Block 3 | Block 4   | Block 5 | Boot<br>Block | Block 0 | Remaining<br>Blocks | Device<br>Total |
| PIC18F4455  | 24K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | _       | _         | _       | 2048          | 6144    | 16384               | 24576           |
| PIC18F4458  | 24K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | _       | _         | _       | 2048          | 6144    | 16384               | 24576           |
| PIC18F4480  | 16K                       | 40   | 0007FF         | 001FFF  | 003FFF  | _       | -       | _         | _       | 2048          | 6144    | 8192                | 16384           |
| PIC 18F4480 |                           |      | 000FFF         |         |         |         |         |           |         | 4096          | 4096    |                     |                 |
| PIC18F4510  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 6144    | 24576               | 32768           |
| PIC18F4515  | 48K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | _       | _         | _       | 2048          | 14336   | 32768               | 49152           |
| PIC18F4520  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 14336   | 16384               | 32768           |
| PIC18F4523  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 14336   | 16384               | 32768           |
| PIC18F4525  | 48K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | _       | _         | _       | 2048          | 14336   | 32768               | 49152           |
| PIC18F4550  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 6144    | 24576               | 32768           |
| PIC18F4553  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 6144    | 24576               | 32768           |
| PIC18F4580  | 32K                       | 40   | 0007FF         | 001FFF  | 003FFF  | 005FFF  | 007FFF  | _         | _       | 2048          | 6144    | 24576               | 32768           |
| PIC 10F4500 |                           |      | 000FFF         |         |         |         |         |           |         | 4096          | 4096    |                     |                 |
|             | 48K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | _       | _         | _       | 2048          | 14336   | 32768               | 49152           |
| PIC18F4585  |                           |      | 000FFF         |         |         |         |         |           |         | 4096          | 12288   |                     |                 |
|             |                           |      | 001FFF         |         |         |         |         |           |         | 8192          | 8192    |                     |                 |
| PIC18F4610  | 64K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | 00FFFF  | _         | _       | 2048          | 14336   | 49152               | 65536           |
| PIC18F4620  | 64K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | 00FFFF  | _         | _       | 2048          | 14336   | 49152               | 65536           |
|             | 64K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | 00FFFF  | _         | _       | 2048          | 14336   | 49152               | 65536           |
| PIC18F4680  |                           |      | 000FFF         |         |         |         |         |           |         | 4096          | 12288   |                     |                 |
|             |                           |      | 001FFF         |         |         |         |         |           |         | 8192          | 8192    |                     |                 |
| PIC18F4682  | 80K                       | 40   | 0007FF         | 003FFF  | 007FFF  | 00BFFF  | 00FFFF  | 013FFF    | _       | 2048          | 14336   | 65536               | 81920           |
|             |                           |      | 000FFF         |         |         |         |         |           |         | 4096          | 12288   |                     |                 |
|             |                           |      | 001FFF         |         |         |         |         |           |         | 8192          | 8192    |                     |                 |
|             | 96K                       | 44   | 0007FF         |         |         |         | 00FFFF  | FF 013FFF | 017FFF  | 2048          | 14336   | 81920               | 98304           |
| PIC18F4685  |                           |      | 000FFF         | 003FFF  | 007FFF  | 00BFFF  |         |           |         | 4096          | 12288   |                     |                 |
|             |                           |      | 001FFF         |         |         |         |         |           |         | 8192          | 8192    |                     |                 |

**Legend:** — = unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

| <b>TABLE 5-5:</b>        | 5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS |            |          |          |    |          |          |      |          |          |          |          |          |          |
|--------------------------|-----------------------------------------------------|------------|----------|----------|----|----------|----------|------|----------|----------|----------|----------|----------|----------|
|                          | Configuration Word (CONFIGxx)                       |            |          |          |    |          |          |      |          |          |          |          |          |          |
| Davisa                   | 1L                                                  | 1H         | 2L       | 2H       | 3L | 3H       | 4L       | 4H   | 5L       | 5H       | 6L       | 6H       | 7L       | 7H       |
| Device                   | Address (30000xh)                                   |            |          |          |    |          |          |      |          |          |          |          |          |          |
|                          | 0h                                                  | 1h         | 2h       | 3h       | 4h | 5h       | 6h       | 7h   | 8h       | 9h       | Ah       | Bh       | Ch       | Dh       |
| PIC18F2221               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | F5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2321               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | F5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2410               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2420               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2423               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2450               | 3F                                                  | CF         | 3F       | 1F       | 00 | 86       | ED       | 00   | 03       | 40       | 03       | 60       | 03       | 40       |
| PIC18F2455               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 07       | C0       | 07       | E0       | 07       | 40       |
| PIC18F2458               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 07       | C0       | 07       | E0       | 07       | 40       |
| PIC18F2480               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | D5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F2510               | 00                                                  | 1F         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2515               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2520               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2523               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2525               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2550               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2553               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2580               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | D5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2585               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2610               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2620               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2680               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
| PIC18F2682               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | C5       | 00   | 3F       | C0       | 3F       | E0       | 3F       | 40       |
| PIC18F2685               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | C5       | 00   | 3F       | C0       | 3F       | E0       | 3F       | 40       |
| PIC18F4221               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | F5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F4321               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | F5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F4410               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 03       | C0       | 03       | E0       | 03       | 40       |
| PIC18F4420               | 00                                                  | CF<br>CF   | 1F<br>1F | 1F<br>1F | 00 | 87<br>87 | C5       | 00   | 03       | C0       | 03       | E0<br>E0 | 03       | 40<br>40 |
| PIC18F4423<br>PIC18F4450 | 00<br>3F                                            | CF         | 3F       | 1F       | 00 |          | C5       | 00   | 03       | C0       | 03       |          | 03       | 40       |
| PIC18F4455               | 3F                                                  | CF         | 3F       | 1F       | 00 | 86<br>87 | ED<br>E5 | 00   | 03<br>07 | 40<br>C0 | 03<br>07 | 60<br>E0 | 03<br>07 | 40       |
| PIC18F4458               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 07       | CO       | 07       | E0       | 07       | 40       |
| PIC18F4480               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | D5       | 00   | 03       | CO       | 03       | E0       | 03       | 40       |
| PIC18F4510               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 05<br>0F | CO       | 05<br>0F | E0       | 05<br>0F | 40       |
| PIC18F4515               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4515               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4523               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4525               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4550               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4553               | 3F                                                  | CF         | 3F       | 1F       | 00 | 87       | E5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4580               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | D5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4585               | 00                                                  | CF         | 1F       | 1F       | 00 | 86       | C5       | 00   | 0F       | CO       | 0F       | E0       | 0F       | 40       |
| PIC18F4610               | 00                                                  | CF         | 1F       | 1F       | 00 | 87       | C5       | 00   | 0F       | C0       | 0F       | E0       | 0F       | 40       |
|                          |                                                     | olle ere i |          |          | 00 | L 01     | 00       | - 00 | OI.      | - 00     | _ U      |          | UI.      | 70       |

**Legend:** Shaded cells are unimplemented.

# 6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

**Standard Operating Conditions** 

Operating Temperature: 25°C is recommended

| Operat       | ing rem | perature: 25°C is recommended                                                | <u> </u>  | 1       | 1     | i                                              |
|--------------|---------|------------------------------------------------------------------------------|-----------|---------|-------|------------------------------------------------|
| Param<br>No. | Sym     | Characteristic                                                               | Min       | Max     | Units | Conditions                                     |
| D110         | VIHH    | High-Voltage Programming Voltage on MCLR/Vpp/RE3                             | VDD + 4.0 | 12.5    | V     | (Note 2)                                       |
| D110A        | VIHL    | Low-Voltage Programming Voltage on MCLR/VPP/RE3                              | 2.00      | 5.50    | V     | (Note 2)                                       |
| D111         | VDD     | Supply Voltage During Programming                                            | 2.00      | 5.50    | V     | Externally timed,<br>Row Erases and all writes |
|              |         |                                                                              | 3.0       | 5.50    | V     | Self-timed,<br>Bulk Erases only (Note 3)       |
| D112         | IPP     | Programming Current on MCLR/VPP/RE3                                          | _         | 300     | μΑ    | (Note 2)                                       |
| D113         | IDDP    | Supply Current During Programming                                            | _         | 10      | mA    |                                                |
| D031         | VIL     | Input Low Voltage                                                            | Vss       | 0.2 VDD | V     |                                                |
| D041         | VIH     | Input High Voltage                                                           | 0.8 VDD   | Vdd     | V     |                                                |
| D080         | Vol     | Output Low Voltage                                                           | _         | 0.6     | V     | IOL = 8.5 mA @ 4.5V                            |
| D090         | Vон     | Output High Voltage                                                          | VDD - 0.7 | _       | V     | IOH = -3.0 mA @ 4.5V                           |
| D012         | Сю      | Capacitive Loading on I/O pin (PGD)                                          | _         | 50      | pF    | To meet AC specifications                      |
|              | •       |                                                                              |           |         |       |                                                |
| P1           | TR      | MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode                          | _         | 1.0     | μS    | (Notes 1, 2)                                   |
| P2           | TPGC    | Serial Clock (PGC) Period                                                    | 100       | _       | ns    | VDD = 5.0V                                     |
|              |         |                                                                              | 1         | _       | μS    | VDD = 2.0V                                     |
| P2A          | TPGCL   | Serial Clock (PGC) Low Time                                                  | 40        | _       | ns    | VDD = 5.0V                                     |
|              |         |                                                                              | 400       | _       | ns    | VDD = 2.0V                                     |
| P2B          | TPGCH   | Serial Clock (PGC) High Time                                                 | 40        | _       | ns    | VDD = 5.0V                                     |
|              |         |                                                                              | 400       | _       | ns    | VDD = 2.0V                                     |
| P3           | TSET1   | Input Data Setup Time to Serial Clock ↓                                      | 15        | _       | ns    |                                                |
| P4           | THLD1   | Input Data Hold Time from PGC ↓                                              | 15        | _       | ns    |                                                |
| P5           | TDLY1   | Delay Between 4-Bit Command and Command Operand                              | 40        | _       | ns    |                                                |
| P5A          | TDLY1A  | Delay Between 4-Bit Command Operand and<br>Next 4-Bit Command                | 40        | _       | ns    |                                                |
| P6           | TDLY2   | Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word | 20        | _       | ns    |                                                |
| P9           | TDLY5   | PGC High Time (minimum programming time)                                     | 1         | _       | ms    | Externally timed                               |
| P10          | TDLY6   | PGC Low Time After Programming (high-voltage discharge time)                 | 100       | _       | μS    |                                                |
| P11          | TDLY7   | Delay to Allow Self-Timed Data Write or<br>Bulk Erase to Occur               | 5         | _       | ms    |                                                |

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

<sup>1</sup> TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

<sup>2</sup> ms (for HS/PLL mode only) + 1.5  $\mu$ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

<sup>2:</sup> When ICPRT = 1, this specification also applies to ICVPP.

<sup>3:</sup> At 0°C-50°C.

# 6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units **Conditions** No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s THLD3 MCLR/VPP/RE3 ↓ to VDD ↓ 100 ns P18 MCLR/VPP/RE3 ↓ to PGM ↓ 0 THLD4

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

- 2: When ICPRT = 1, this specification also applies to ICVPP.
- 3: At 0°C-50°C.

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

<sup>2</sup> ms (for HS/PLL mode only) + 1.5  $\mu$ s (for EC mode only)

### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
  intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
  knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
  Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC<sup>32</sup> logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-856-7

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.