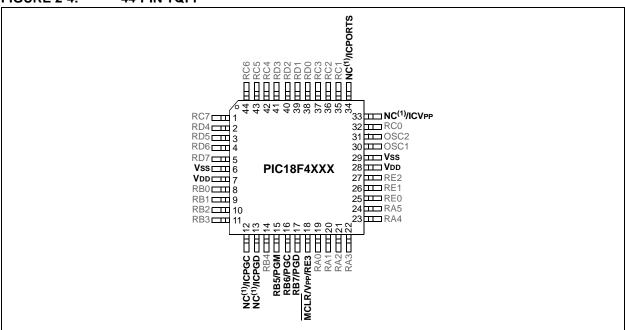


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

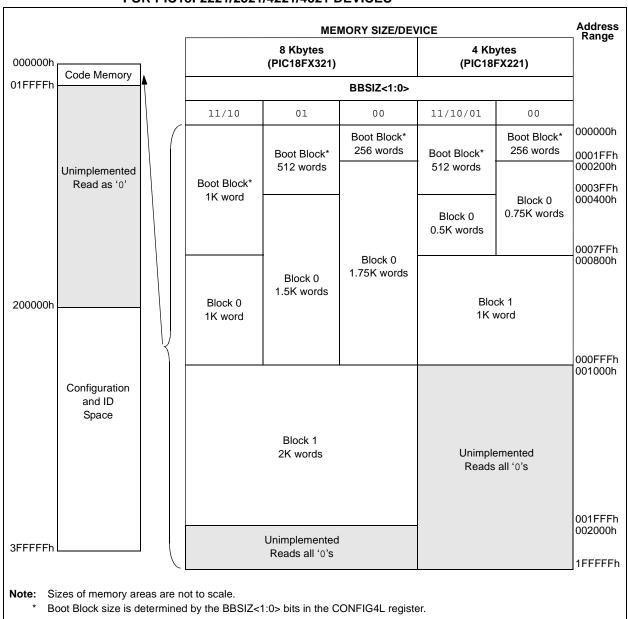

D.L.U.	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4610-i-pt

The following devices are included in 44-pin TQFP parts:

- PIC18F4221
- PIC18F4321
- PIC18F4410
- PIC18F4420
- PIC18F4423
- PIC18F4450
- PIC18F4455
- PIC18F4458PIC18F4480
- PIC18F4510
- PIC18F4520
- PIC18F4515

- PIC18F4523
- PIC18F4525
- PIC18F4550
- PIC18F4553
- PIC18F4580
- 1 10 101 1000
- PIC18F4585PIC18F4610
- PIC18F4620
- PIC18F4680
- PIC18F4682
- PIC18F4685

FIGURE 2-4: 44-PIN TQFP


Note 1: These pins are NC (No Connect) for all devices listed above with the exception of the PIC18F4450, PIC18F4455, PIC18F4458 and the PIC18F4553 devices (see Section 2.8 "Dedicated ICSP/ICD Port (44-Pin TQFP Only)" for more information on programming these pins in these devices).

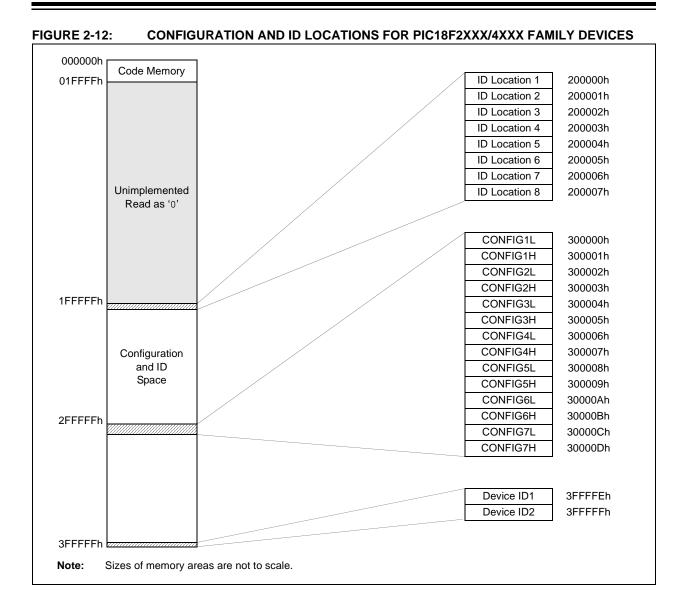
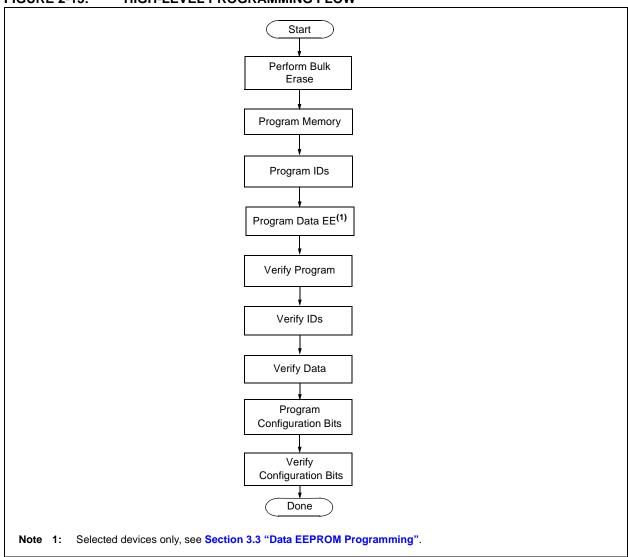

The size of the Boot Block in PIC18F2221/2321/4221/4321 devices can be configured as 256, 512 or 1024 words (see Figure 2-11). This is done through the BBSIZ<1:0> bits in the Configuration register, CONFIG4L (see Figure 2-11). It is important to note that increasing the size of the Boot Block decreases the size of Block 0.

TABLE 2-7: IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)
PIC18F2221	000000h-000FFFh (4K)
PIC18F4221	00000011-000FFF11 (4K)
PIC18F2321	000000h 001EEEh (9K)
PIC18F4321	000000h-001FFFh (8K)

FIGURE 2-11: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18F2221/2321/4221/4321 DEVICES



2.4 High-Level Overview of the Programming Process

Figure 2-13 shows the high-level overview of the programming process. First, a Bulk Erase is performed. Next, the code memory, ID locations and data EEPROM are programmed (selected devices only, see **Section 3.3 "Data EEPROM Programming"**). These memories are then verified to ensure that programming was successful. If no errors are detected, the Configuration bits are then programmed and verified.

FIGURE 2-13: HIGH-LEVEL PROGRAMMING FLOW

2.6 Entering and Exiting Low-Voltage ICSP Program/Verify Mode

When the LVP Configuration bit is '1' (see Section 5.3 "Single-Supply ICSP Programming"), the Low-Voltage ICSP mode is enabled. As shown in Figure 2-16, Low-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low, placing a logic high on PGM and then raising $\overline{\text{MCLR}/\text{VPP/RE3}}$ to VIH. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. Figure 2-17 shows the exit sequence.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-16: ENTERING LOW-VOLTAGE PROGRAM/VERIFY MODE

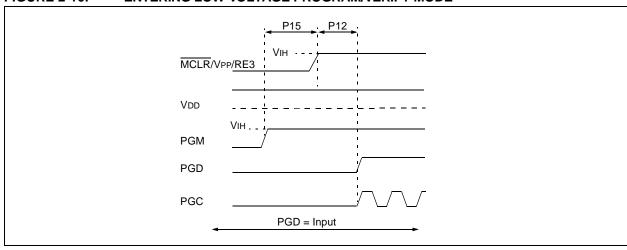
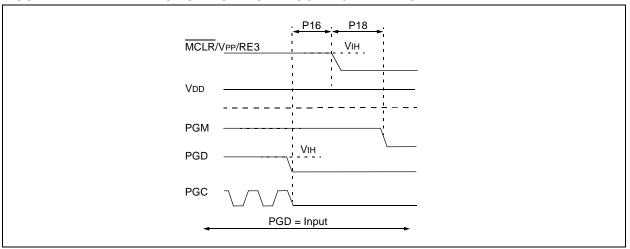



FIGURE 2-17: EXITING LOW-VOLTAGE PROGRAM/VERIFY MODE

2.7 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.7.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-8.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-9. The 4-bit command is shown Most Significant bit (MSb) first. The command operand, or "Data Payload", is shown as <MSB><LSB>. Figure 2-18 demonstrates how to serially present a 20-bit command/operand to the device.

2.7.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-8: COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift Out TABLAT Register	0010
Table Read	1000
Table Read, Post-Increment	1001
Table Read, Post-Decrement	1010
Table Read, Pre-Increment	1011
Table Write	1100
Table Write, Post-Increment by 2	1101
Table Write, Start Programming, Post-Increment by 2	1110
Table Write, Start Programming	1111

TABLE 2-9: SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write,
		post-increment by 2

3.0 DEVICE PROGRAMMING

Programming includes the ability to erase or write the various memory regions within the device.

In all cases, except high-voltage ICSP Bulk Erase, the EECON1 register must be configured in order to operate on a particular memory region.

When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and the CFGS bit must be cleared (EECON1<6> = 0). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort (e.g., erases) and this must be done prior to initiating a write sequence. The FREE bit must be set (EECON1<4> = 1) in order to erase the program space being pointed to by the Table Pointer. The erase or write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit only be set immediately prior to a program erase.

3.1 ICSP Erase

3.1.1 HIGH-VOLTAGE ICSP BULK ERASE

Erasing code or data EEPROM is accomplished by configuring two Bulk Erase Control registers located at 3C0004h and 3C0005h. Code memory may be erased, portions at a time, or the user may erase the entire device in one action. Bulk Erase operations will also clear any code-protect settings associated with the memory block being erased. Erase options are detailed in Table 3-1. If data EEPROM is code-protected (CPD = 0), the user must request an erase of data EEPROM (e.g., 0084h as shown in Table 3-1).

TABLE 3-1: BULK ERASE OPTIONS

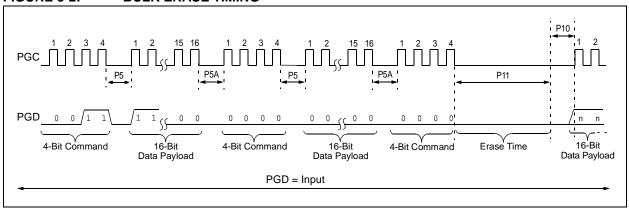
Description	Data (3C0005h:3C0004h)
Chip Erase	3F8Fh
Erase Data EEPROM ⁽¹⁾	0084h
Erase Boot Block	0081h
Erase Configuration Bits	0082h
Erase Code EEPROM Block 0	0180h
Erase Code EEPROM Block 1	0280h
Erase Code EEPROM Block 2	0480h
Erase Code EEPROM Block 3	0880h
Erase Code EEPROM Block 4	1080h
Erase Code EEPROM Block 5	2080h

Note 1: Selected devices only, see Section 3.3 "Data EEPROM Programming".

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP command), serial execution will cease until the erase completes (Parameter P11). During this time, PGC may continue to toggle but PGD must be held low.

The code sequence to erase the entire device is shown in Table and the flowchart is shown in Figure 3-1.

Note: A Bulk Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.


3.1.2 LOW-VOLTAGE ICSP BULK ERASE

When using low-voltage ICSP, the part must be supplied by the voltage specified in Parameter D111 if a Bulk Erase is to be executed. All other Bulk Erase details, as described above, apply.

If it is determined that a program memory erase must be performed at a supply voltage below the Bulk Erase limit, refer to the erase methodology described in **Section 3.1.3** "**ICSP Row Erase**" and **Section 3.2.1** "**Modifying Code Memory**".

If it is determined that a data EEPROM erase (selected devices only, see **Section 3.3 "Data EEPROM Programming"**) must be performed at a supply voltage below the Bulk Erase limit, follow the methodology described in **Section 3.3 "Data EEPROM Programming"** and write '1's to the array.

FIGURE 3-2: BULK ERASE TIMING

3.1.3 ICSP ROW ERASE

Regardless of whether high or low-voltage ICSP is used, it is possible to erase one row (64 bytes of data), provided the block is not code or write-protected. Rows are located at static boundaries, beginning at program memory address, 000000h, extending to the internal program memory limit (see **Section 2.3 "Memory Maps"**).

The Row Erase duration is externally timed and is controlled by PGC. After the WR bit in EECON1 is set, a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9.

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to Row Erase a PIC18F2XXX/4XXX Family device is shown in Table 3-3. The flowchart, shown in Figure 3-3, depicts the logic necessary to completely erase a PIC18F2XXX/4XXX Family device. The timing diagram that details the Start Programming command and Parameters P9 and P10 is shown in Figure 3-5.

Note: The TBLPTR register can point to any byte within the row intended for erase.

FIGURE 3-4: PROGRAM CODE MEMORY FLOW

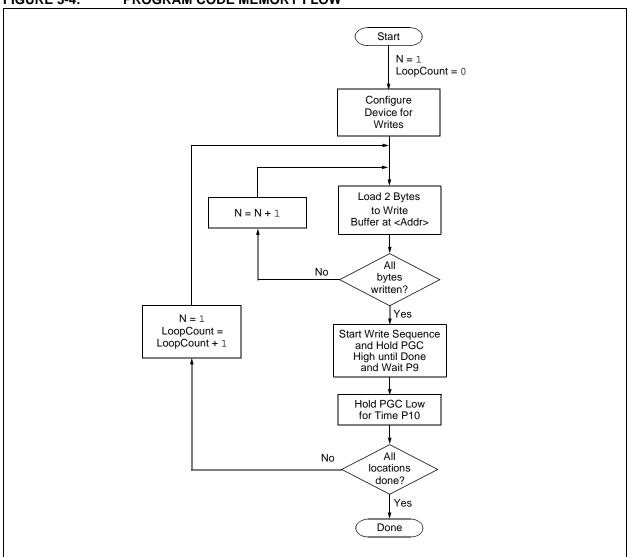
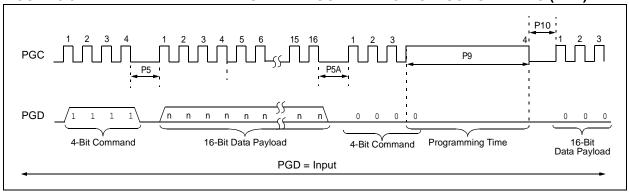



FIGURE 3-5: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.3 Data EEPROM Programming

Note: Data EEPROM programming is not available or	Data EEPROM programming is not available on the following devices:									
PIC18F2410	PIC18F4410									
PIC18F2450	PIC18F4450									
PIC18F2510	PIC18F4510									
PIC18F2515	PIC18F4515									
PIC18F2610	PIC18F4610									

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair: EEADRH:EEADR) and a data latch (EEDATA). Data EEPROM is written by loading EEADRH:EEADR with the desired memory location, EEDATA, with the data to be written and initiating a memory write by appropriately configuring the EECON1 register. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1).

The write begins on the falling edge of the 4th PGC after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, PGC must still be held low for the time specified by Parameter P10 to allow high-voltage discharge of the memory array.

FIGURE 3-6: PROGRAM DATA FLOW

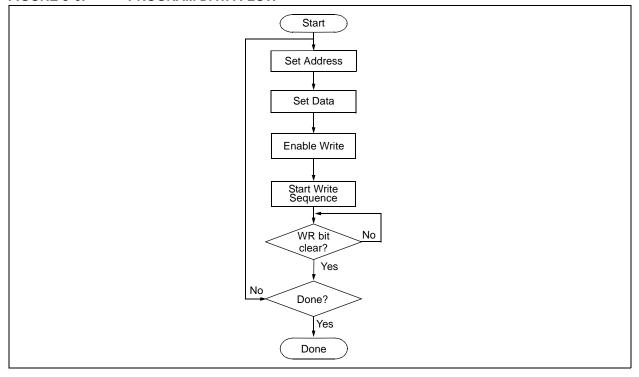
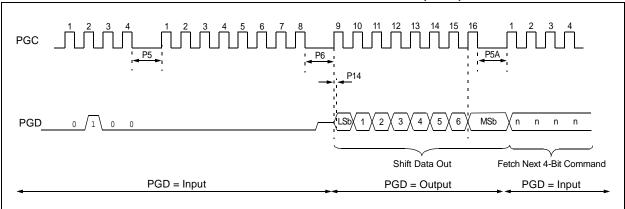


TABLE 3-9: SET ADDRESS POINTER TO CONFIGURATION LOCATION


4-Bit Command	Data Payload	Core Instruction								
Step 1: Enable writes and direct access to configuration memory.										
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS								
		e to be written. Write even/odd addresses. ⁽¹⁾								
0000	0E 30	MOVLW 30h								
0000	6E F8	MOVWF TBLPTRU								
0000	0E 00	MOVLW 00h								
0000	6E F7	MOVWF TBLPRTH								
0000	0E 00	MOVLW 00h								
0000	6E F6	MOVWF TBLPTRL								
1111	<msb ignored=""><lsb></lsb></msb>	Load 2 bytes and start programming.								
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.								
0000	0E 01	MOVLW 01h								
0000	6E F6	MOVWF TBLPTRL								
1111	<msb><lsb ignored=""></lsb></msb>	Load 2 bytes and start programming.								
0000	00 00	NOP - hold PGC high for time P9 and low for time P10.								

Note 1: Enabling the write protection of Configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of the Configuration bits. Always write all the Configuration bits before enabling the write protection for Configuration bits.

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

FIGURE 4-4: SHIFT OUT DATA HOLDING REGISTER TIMING (0010)

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on PGD via the 4-bit command, '0010' (TABLAT register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to **Section 4.4 "Read Data EEPROM Memory"** for implementation details of reading data EEPROM.

4.6 Blank Check

The term Blank Check means to verify that the device has no programmed memory cells. All memories must be verified: code memory, data EEPROM, ID locations and Configuration bits. The Device ID registers (3FFFFEh:3FFFFh) should be ignored.

A "blank" or "erased" memory cell will read as '1'. Therefore, Blank Checking a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Figure 4-5 for blank configuration expect data for the various PIC18F2XXX/4XXX Family devices.

Given that Blank Checking is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 "Read Data EEPROM Memory" and Section 4.2 "Verify Code Memory and ID Locations" for implementation details.

FIGURE 4-5: BLANK CHECK FLOW



TABLE 5-2: DEVICE ID VALUES

Device -	Device	e ID Value
Device	DEVID2	DEVID1
PIC18F2221	21h	011x xxxx
PIC18F2321	21h	001x xxxx
PIC18F2410	11h	011x xxxx
PIC18F2420	11h	010x xxxx ⁽¹⁾
PIC18F2423	11h	010x xxxx ⁽²⁾
PIC18F2450	24h	001x xxxx
PIC18F2455	12h	011x xxxx
PIC18F2458	2Ah	011x xxxx
PIC18F2480	1Ah	111x xxxx
PIC18F2510	11h	001x xxxx
PIC18F2515	0Ch	111x xxxx
PIC18F2520	11h	000x xxxx(1)
PIC18F2523	11h	000x xxxx ⁽²⁾
PIC18F2525	0Ch	110x xxxx
PIC18F2550	12h	010x xxxx
PIC18F2553	2Ah	010x xxxx
PIC18F2580	1Ah	110x xxxx
PIC18F2585	0Eh	111x xxxx
PIC18F2610	0Ch	101x xxxx
PIC18F2620	0Ch	100x xxxx
PIC18F2680	0Eh	110x xxxx
PIC18F2682	27h	000x xxxx
PIC18F2685	27h	001x xxxx
PIC18F4221	21h	010x xxxx
PIC18F4321	21h	000x xxxx
PIC18F4410	10h	111x xxxx
PIC18F4420	10h	110x xxxx(1)
PIC18F4423	10h	110x xxxx ⁽²⁾
PIC18F4450	24h	000x xxxx
PIC18F4455	12h	001x xxxx
PIC18F4458	2Ah	001x xxxx
PIC18F4480	1Ah	101x xxxx
PIC18F4510	10h	101x xxxx
PIC18F4515	0Ch	011x xxxx
PIC18F4520	10h	100x xxxx ⁽¹⁾
PIC18F4523	10h	100x xxxx ⁽²⁾
PIC18F4525	0Ch	010x xxxx
PIC18F4550	12h	000x xxxx
PIC18F4553	2Ah	000x xxxx
PIC18F4580	1Ah	100x xxxx

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-2: DEVICE ID VALUES (CONTINUED)

Device	Device ID Value						
Device	DEVID2	DEVID1					
PIC18F4585	0Eh	101x xxxx					
PIC18F4610	0Ch	001x xxxx					
PIC18F4620	0Ch	000x xxxx					
PIC18F4680	0Eh	100x xxxx					
PIC18F4682	27h	010x xxxx					
PIC18F4685	27h	011x xxxx					

Legend: The 'x's in DEVID1 contain the device revision code.

Note 1: DEVID1 bit 4 is used to determine the device type (REV4 = 0).

2: DEVID1 bit 4 is used to determine the device type (REV4 = 1).

TABLE 5-3: PIC18F2XXX/4XXX FAMILY BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description
EBTR0	CONFIG7L	Table Read Protection bit (Block 0 code memory area)
		 1 = Block 0 is not protected from Table Reads executed in other blocks 0 = Block 0 is protected from Table Reads executed in other blocks
EBTRB	CONFIG7H	Table Read Protection bit (Boot Block memory area)
		 1 = Boot Block is not protected from Table Reads executed in other blocks 0 = Boot Block is protected from Table Reads executed in other blocks
DEV<10:3>	DEVID2	Device ID bits
		These bits are used with the DEV<2:0> bits in the DEVID1 register to identify part number.
DEV<2:0>	DEVID1	Device ID bits
		These bits are used with the DEV<10:3> bits in the DEVID2 register to identify part number.
REV<4:0>	DEVID1	Revision ID bits
		These bits are used to indicate the revision of the device. The REV4 bit is sometimes used to fully specify the device type.

Note 1: The BBSIZ bits, BBSIZ<1:0> and BBSIZ<2:1> bits, cannot be changed once any of the following code-protect bits are enabled: CPB or CP0, WRTB or WRT0, EBTRB or EBTR0.

^{2:} Not available in PIC18FXX8X and PIC18F2450/4450 devices.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES

	Memory				End	ing Addr	ess				Size	(Bytes)	
Device	Size (Bytes)	Pins	Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total
PIC18F2221	4K	28	0001FF	0007FF	000FFF					512	1536	2048	4096
FIC 10F2221	411	20	0003FF	0007FF	UUUFFF	_		_	_	1024	1024	2040	4090
			0001FF							512	3584		
PIC18F2321	8K	28	0003FF	000FFF	001FFF	_	_	_	_	1024	3072	4096	8192
			0007FF							2048	2048		
PIC18F2410	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2420	16K	28	0007FF	001FFF	003FFF	_			_	2048	6144	8192	16384
PIC18F2423	16K	28	0007FF	001FFF	003FFF	_	-	_	_	2048	6144	8192	16384
PIC18F2450	16K	28	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC 10F2450	ION	20	000FFF	001777	003FFF			_		4096	4096	0192	10304
PIC18F2455	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
PIC18F2458	24K	28	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576
DIO4050400	4016	-00	0007FF	004555	000555					2048	6144	0400	40004
PIC18F2480	16K	28	000FFF	001FFF	003FFF		_		_	4096	4096	8192	16384
PIC18F2510	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2515	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2520	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2523	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768
PIC18F2525	48K	28	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152
PIC18F2550	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
PIC18F2553	32K	28	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768
			0007FF							2048	6144	24576	
PIC18F2580	32K	28	000FFF	001FFF	003FFF	005FFF	007FFF	_	_	4096	4096		32768
			0007FF							2048	14336		
PIC18F2585	48K	28	000FFF	003FFF	007FFF	00BFFF	_	_	_	4096	12288	32768	49152
			001FFF							8192	8192		49132
PIC18F2610	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
PIC18F2620	64K	28	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536
			0007FF							2048	14336		
PIC18F2680	64K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	_	_	4096	12288	49152	65536
	0		001FFF			002				8192	8192	.0.02	00000
			0007FF							2048	14336		
PIC18F2682	80K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	_	4096	12288	65536	81920
	00.1		001FFF			002		0.0		8192	8192	00000	0.020
			0007FF							2048	14336		
PIC18F2685	96K	28	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	017FFF	4096	12288	81920	98304
1 10 101 2000	0011		001FFF	000111	007111	OOD! ! !	001111	010111	017111	8192	8192	01020	00001
			0001FF							512	1536		
PIC18F4221	4K	40	0003FF	0007FF	000FFF	_	_	_	_	1024	1024	2048	4096
			0000FF							512	3584		
PIC18F4321	8K	40	0003FF	000FFF	001FFF	_	_	_	_	1024	3072	4096	8192
1 10 101 4021	OIX	40	0000FF	000111	001111					2048	2048		0102
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4410	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384
PIC18F4420 PIC18F4423	16K	40	0007FF	001FFF	003FFF		_	_		2048	6144	8192	16384
1 10 10 14423	TOP	40	0007FF	JUIFFF	JUSEFF	_			_	2048	6144	0192	10304
PIC18F4450	16K	40	0007FF	001FFF	003FFF	_	_	_	_	4096	4096	8192	16384
l egend:	= unimr									4090	4090		

Legend:

— = unimplemented.

TABLE 5-4: DEVICE BLOCK LOCATIONS AND SIZES (CONTINUED)

	Memory		Ending Address								Size (Bytes)											
Device	Device Size Pi (Bytes)		Boot Block	Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Boot Block	Block 0	Remaining Blocks	Device Total									
PIC18F4455	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576									
PIC18F4458	24K	40	0007FF	001FFF	003FFF	005FFF	_	_	_	2048	6144	16384	24576									
PIC18F4480	16K	40	0007FF	001FFF	003FFF					2048	6144	8192	16384									
PIC 18F4480	TON	40	000FFF	OUTFFF	003FFF	_	_	_	_	4096	4096	8192	16384									
PIC18F4510	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768									
PIC18F4515	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152									
PIC18F4520	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768									
PIC18F4523	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	14336	16384	32768									
PIC18F4525	48K	40	0007FF	003FFF	007FFF	00BFFF	_	_	_	2048	14336	32768	49152									
PIC18F4550	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768									
PIC18F4553	32K	40	0007FF	001FFF	003FFF	005FFF	007FFF	_	_	2048	6144	24576	32768									
DIO40E4500 00K	221/	32K 40	22K 40	22K 40	32K 40	٧ ١٥	22K 40	32K 40	32K 40	32K 40	32K 40	32K 40	32K 40 0007	0007FF	001FFF 003FFF	005FFF 007FFF			2048	6144	24576	32768
PIC18F4580	3∠N		000FFF	OUTEFF	003FFF	UUSFFF	007FFF		_	4096	4096	245/6	32100									
			0007FF							2048	14336		49152									
PIC18F4585	48K	48K 40	000FFF	003FFF	007FFF	00BFFF	_	_	_	4096	12288	32768										
			001FFF							8192	8192											
PIC18F4610	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536									
PIC18F4620	64K	40	0007FF	003FFF	007FFF	00BFFF	00FFFF	_	_	2048	14336	49152	65536									
			0007FF							2048	14336											
PIC18F4680	64K	40	000FFF	003FFF	007FFF	00BFFF	00FFFF	_	_	4096	12288	49152	65536									
			001FFF							8192	8192											
			0007FF							2048	14336											
PIC18F4682	80K	40	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	_	4096	12288	65536	81920									
			001FFF							8192	8192											
			0007FF							2048	14336											
PIC18F4685	96K	44	000FFF	003FFF	007FFF	00BFFF	00FFFF	013FFF	017FFF	4096	12288	81920	98304									
			001FFF							8192	8192											

Legend: — = unimplemented.

TABLE 5-5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS

TABLE 5-5:	5: CONFIGURATION WORD MASKS FOR COMPUTING CHECKSUMS													
	Configuration Word (CONFIGxx)													
Davisa	1L	1H	2L	2H	3L	3H	4L	4H	5L	5H	6L	6H	7L	7H
Device	Address (30000xh)													
	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh
PIC18F2221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2321	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F2410	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2420	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2423	00	CF	1F	1F	00	87	C5	00	03	C0	03	E0	03	40
PIC18F2450	3F	CF	3F	1F	00	86	ED	00	03	40	03	60	03	40
PIC18F2455	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2458	3F	CF	3F	1F	00	87	E5	00	07	C0	07	E0	07	40
PIC18F2480	00	CF	1F	1F	00	86	D5	00	03	C0	03	E0	03	40
PIC18F2510	00	1F	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2515	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2520	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2523	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2525	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2550	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2553	3F	CF	3F	1F	00	87	E5	00	0F	C0	0F	E0	0F	40
PIC18F2580	00	CF	1F	1F	00	86	D5	00	0F	C0	0F	E0	0F	40
PIC18F2585	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2620	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
PIC18F2680	00	CF	1F	1F	00	86	C5	00	0F	C0	0F	E0	0F	40
PIC18F2682	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F2685	00	CF	1F	1F	00	86	C5	00	3F	C0	3F	E0	3F	40
PIC18F4221	00	CF	1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4321	00	CF	1F 1F	1F	00	87	F5	00	03	C0	03	E0	03	40
PIC18F4410 PIC18F4420	00	CF CF	1F	1F	00	87	C5 C5	00	03	C0	03	E0 E0	03	40
-	00	CF	1F	1F 1F	00	87 87	C5	00	03		03	E0	03	40 40
PIC18F4423 PIC18F4450	00 3F	CF	3F	1F	00	86	ED	00	03	C0	03	_	03	40
PIC18F4455	3F	CF	3F	1F	00	87	E5		03	40 C0	03	60 E0	03	40
PIC18F4458	3F	CF	3F	1F	00	87	E5	00	07	CO	07	E0	07	40
PIC18F4480	00	CF	1F	1F	00	86	D5	00	03	CO	03	E0	03	40
PIC18F4510	00	CF	1F	1F	00	87	C5	00	05 0F	CO	05 0F	E0	05 0F	40
PIC18F4515	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4520	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4523	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4525	00	CF	1F	1F	00	87	C5	00	0F	CO	0F	E0	0F	40
PIC18F4550	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4553	3F	CF	3F	1F	00	87	E5	00	0F	CO	0F	E0	0F	40
PIC18F4580	00	CF	1F	1F	00	86	D5	00	0F	CO	0F	E0	0F	40
PIC18F4585	00	CF	1F	1F	00	86	C5	00	0F	CO	0F	E0	0F	40
PIC18F4610	00	CF	1F	1F	00	87	C5	00	0F	C0	0F	E0	0F	40
		olle ere i			- 50		- 55	00	OI.	50			_ J	70

Legend: Shaded cells are unimplemented.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: 25°C is recommended

Operat	ing rem	perature: 25°C is recommended	<u> </u>	1	1	i
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	VIHH	High-Voltage Programming Voltage on MCLR/Vpp/RE3	VDD + 4.0	12.5	V	(Note 2)
D110A	VIHL	Low-Voltage Programming Voltage on MCLR/VPP/RE3	2.00	5.50	V	(Note 2)
D111	VDD	Supply Voltage During Programming	2.00	5.50	V	Externally timed, Row Erases and all writes
			3.0	5.50	V	Self-timed, Bulk Erases only (Note 3)
D112	IPP	Programming Current on MCLR/VPP/RE3	_	300	μΑ	(Note 2)
D113	IDDP	Supply Current During Programming	_	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 VDD	V	
D041	VIH	Input High Voltage	0.8 VDD	Vdd	V	
D080	Vol	Output Low Voltage	_	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	VDD - 0.7	_	V	IOH = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (PGD)	_	50	pF	To meet AC specifications
	•					
P1	TR	MCLR/VPP/RE3 Rise Time to Enter Program/Verify mode	_	1.0	μS	(Notes 1, 2)
P2	TPGC	Serial Clock (PGC) Period	100	_	ns	VDD = 5.0V
			1	_	μS	VDD = 2.0V
P2A TPGCL	Serial Clock (PGC) Low Time	40	_	ns	VDD = 5.0V	
			400	_	ns	VDD = 2.0V
P2B	TPGCH	Serial Clock (PGC) High Time	40	_	ns	VDD = 5.0V
			400	_	ns	VDD = 2.0V
P3	TSET1	Input Data Setup Time to Serial Clock ↓	15	_	ns	
P4	THLD1	Input Data Hold Time from PGC ↓	15	_	ns	
P5	TDLY1	Delay Between 4-Bit Command and Command Operand	40	_	ns	
P5A	TDLY1A	Delay Between 4-Bit Command Operand and Next 4-Bit Command	40	_	ns	
P6	TDLY2	Delay Between Last PGC ↓ of Command Byte to First PGC ↑ of Read of Data Word	20	_	ns	
P9	TDLY5	PGC High Time (minimum programming time)	1	_	ms	Externally timed
P10	TDLY6	PGC Low Time After Programming (high-voltage discharge time)	100	_	μS	
P11	TDLY7	Delay to Allow Self-Timed Data Write or Bulk Erase to Occur	5	_	ms	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only) +

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

^{2:} When ICPRT = 1, this specification also applies to ICVPP.

^{3:} At 0°C-50°C.

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE (CONTINUED)

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Sym Characteristic Min Max Units **Conditions** No. P11A Data Write Polling Time **T**DRWT 4 ms Input Data Hold Time from MCLR/VPP/RE3 ↑ P12 THLD2 2 μS VDD ↑ Setup Time to MCLR/VPP/RE3 ↑ P13 TSET2 100 (Note 2) ns P14 TVALID Data Out Valid from PGC ↑ 10 ns P15 TSET3 PGM ↑ Setup Time to MCLR/VPP/RE3 ↑ 2 (Note 2) цS Delay Between Last PGC ↓ and MCLR/VPP/RE3 ↓ P16 TDLY8 0 s THLD3 MCLR/VPP/RE3 ↓ to VDD ↓ 100 ns P18 MCLR/VPP/RE3 ↓ to PGM ↓ 0 THLD4

1 TCY + TPWRT (if enabled) + 1024 ToSC (for LP, HS, HS/PLL and XT modes only) +

where TCY is the instruction cycle time, TPWRT is the Power-up Timer period and ToSC is the oscillator period. For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.

- 2: When ICPRT = 1, this specification also applies to ICVPP.
- 3: At 0°C-50°C.

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH. This can cause spurious program executions to occur. The maximum transition time is:

² ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)