

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

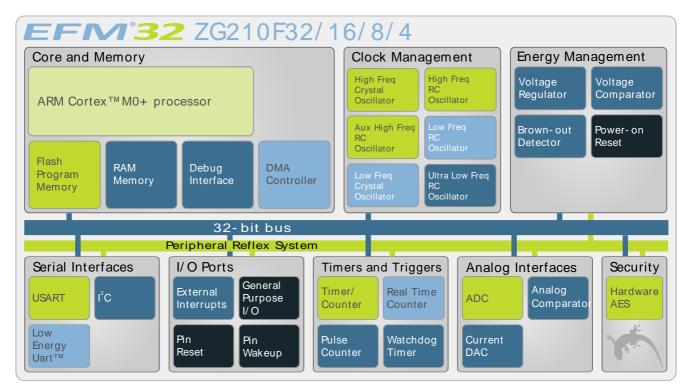
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 4x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VQFN Exposed Pad
Supplier Device Package	32-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32zg210f8-qfn32

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 System Summary

2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32ZG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32ZG210 devices. For a complete feature set and indepth information on the modules, the reader is referred to the *EFM32ZG Reference Manual*.

A block diagram of the EFM32ZG210 is shown in Figure 2.1 (p. 3) .

Figure 2.1. Block Diagram

2.1.1 ARM Cortex-M0+ Core

The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EFM32 implementation of the Cortex-M0+ is described in detail in *ARM Cortex-M0+ Devices Generic User Guide*.

2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface .

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32ZG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.12 Pre-Programmed UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

2.1.14 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output.

2.1.15 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

2.1.16 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

2.1.17 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.18 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.19 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals.

2.1.20 Current Digital to Analog Converter (IDAC)

The current digital to analog converter can source or sink a configurable constant current, which can be output on, or sinked from pin or ADC. The current is configurable with several ranges of various step sizes.

3 Electrical Characteristics

3.1 Test Conditions

3.1.1 Typical Values

The typical data are based on $T_{AMB}=25^{\circ}C$ and $V_{DD}=3.0$ V, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisation unless otherwise specified.

3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 8).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{STG}	Storage tempera- ture range		-40		150 ¹	°C
Τ _S	Maximum soldering temperature	Latest IPC/JEDEC J-STD-020 Standard			260	°C
V _{DDMAX}	External main sup- ply voltage		0		3.8	V
V _{IOPIN}	Voltage on any I/O pin		-0.3		V _{DD} +0.3	V

Table 3.1. Absolute Maximum Ratings

¹Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

3.3 General Operating Conditions

3.3.1 General Operating Conditions

Table 3.2. General Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit
T _{AMB}	Ambient temperature range	-40		85	°C
V _{DDOP}	Operating supply voltage	1.98		3.8	V
f _{APB}	Internal APB clock frequency			24	MHz
f _{AHB}	Internal AHB clock frequency			24	MHz

3.4 Current Consumption

Table 3.3. Current Consumption

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		115	132	μΑ/ MHz
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		117	136	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		114	128	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		116	132	μΑ/ MHz
		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		117	131	μΑ/ MHz
I _{EMO}	EM0 current. No prescaling. Running prime number cal- culation code from	14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		118	133	μΑ/ MHz
'EM0	Flash. (Production test condition = 14 MHz)	11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		118	133	μΑ/ MHz
		11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		120	135	µA/ MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		124	139	μΑ/ MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		125	142	μΑ/ MHz
		1.2 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		155	177	μΑ/ MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		162	181	μΑ/ MHz
		24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		48	57	μΑ/ MHz
	EM1 current (Pro-	24 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		49	59	μΑ/ MHz
I _{EM1}	duction test condi- tion = 14 MHz)	21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		48	52	μΑ/ MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		49	53	μΑ/ MHz

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		50	54	μΑ/ MHz
		14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		51	56	µA/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		52	56	µA/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		53	58	μΑ/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		57	63	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		59	66	µA/ MHz
		1.2 MHz HFRCO. all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		89	99	µA/ MHz
		1.2 MHz HFRCO. all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		92	103	µA/ MHz
1	EM2 ourrent	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V_{DD} = 3.0 V, T_{AMB} =25°C		0.9	1.25	μA
I _{EM2}	EM2 current	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V_{DD} = 3.0 V, T_{AMB} =85°C		1.7	2.35	μA
I	EM3 current	EM3 current (ULFRCO en- abled, LFRCO/LFXO disabled), V_{DD} = 3.0 V, T _{AMB} =25°C		0.5	0.9	μA
I _{EM3}		EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), V _{DD} = 3.0 V, T _{AMB} =85°C		1.3	2.0	μA
	EM4 current	V _{DD} = 3.0 V, T _{AMB} =25°C		0.02	0.035	μA
I _{EM4}		V _{DD} = 3.0 V, T _{AMB} =85°C		0.29	0.700	μA

3.4.1 EM0 Current Consumption

Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24 MHz

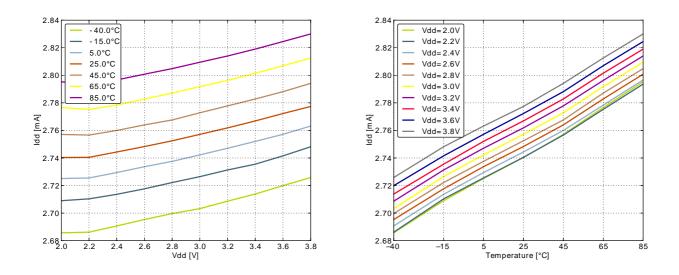
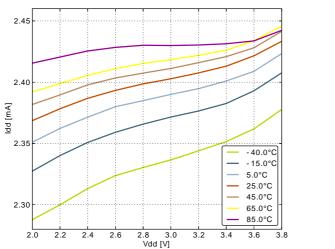
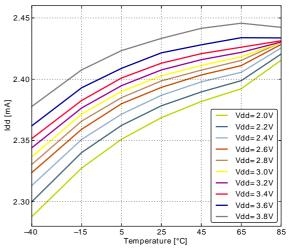




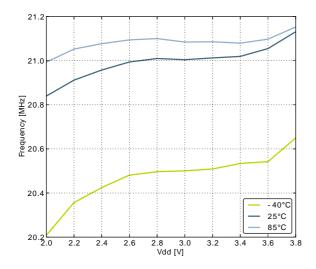
Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

3.9 Oscillators

3.9.1 LFXO

Table 3.8. LFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Supported nominal crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series re- sistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		5		25	pF
I _{LFXO}	Current consump- tion for core and buffer after startup.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		1100		ms


For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

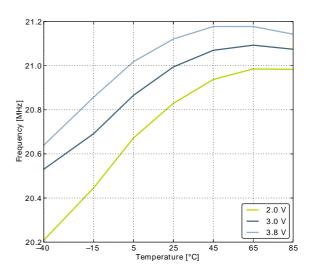

3.9.2 HFXO

Table 3.9. HFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HFXO}	Supported nominal crystal Frequency		4		24	MHz
F0D	Supported crystal	Crystal frequency 24 MHz		30	100	Ohm
	equivalent series re- sistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
9 _{mHFXO}	The transconduc- tance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
	Current consump- tion for HFXO after startup	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μΑ
IHEXO		24 MHz: ESR=30 Ohm, $C_L=10 \text{ pF}$, HFXOBOOST in CMU_CTRL equals 0b11		165		μΑ
t _{HFXO}	Startup time	24 MHz: ESR=30 Ohm, $C_L=10 \text{ pF}$, HFXOBOOST in CMU_CTRL equals 0b11		785		μs

Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

3.9.5 AUXHFRCO

Table 3.12. AUXHFRCO

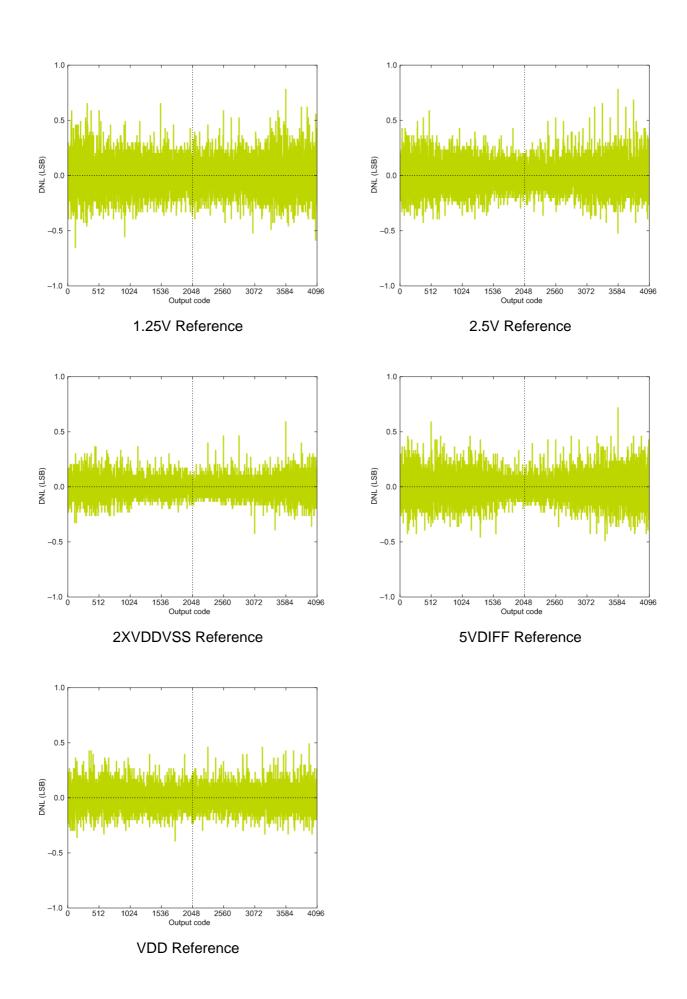
Symbol	Parameter	Condition	Min	Тур	Max	Unit
		f _{AUXHFRCO} = 21 MHz	20.37	21.0	21.63	MHz
	Oscillation frequen-	f _{AUXHFRCO} = 14 MHz	13.58	14.0	14.42	MHz
f _{AUXHFRCO}	cy, V _{DD} = 3.0 V,	f _{AUXHFRCO} = 11 MHz	10.67	11.0	11.33	MHz
	T _{AMB} =25°C	f _{AUXHFRCO} = 6.6 MHz	6.40	6.60	6.80	MHz
		f _{AUXHFRCO} = 1.2 MHz	1.15	1.20	1.25	MHz
t _{AUXHFRCO_settlir}	_g Settling time after start-up	f _{AUXHFRCO} = 14 MHz		0.6		Cycles
TUNESTEP _{AU>} HFRCO	Frequency step for LSB change in TUNING value			0.3		%

3.9.6 ULFRCO

Table 3.13. ULFRCO

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{ULFRCO}	Oscillation frequen- cy	25°C, 3V	0.70		1.75	kHz
TC _{ULFRCO}	Temperature coeffi- cient			0.05		%/°C
VC _{ULFRCO}	Supply voltage co- efficient			-18.2		%/V

3.10 Analog Digital Converter (ADC)


Table 3.14. ADC

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{ADCIN}	Input voltage range	Single ended	0		V_{REF}	V

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Differential	-V _{REF} /2		V _{REF} /2	V
VADCREFIN	Input range of exter- nal reference volt- age, single ended and differential		1.25		V _{DD}	V
V _{ADCREFIN_CH7}	Input range of ex- ternal negative ref- erence voltage on channel 7	See V _{ADCREFIN}	0		V _{DD} - 1.1	V
Vadcrefin_ch6	Input range of ex- ternal positive ref- erence voltage on channel 6	See V _{ADCREFIN}	0.625		V _{DD}	V
V _{ADCCMIN}	Common mode in- put range		0		V _{DD}	V
	Input current	2pF sampling capacitors		<100		nA
CMRR _{ADC}	Analog input com- mon mode rejection ratio			65		dB
	Average active cur- rent	1 MSamples/s, 12 bit, external reference		351	500	μA
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b00		67		μA
I _{ADC}		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b01		63		μΑ
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b10		64		μA
I _{ADCREF}	Current consump- tion of internal volt- age reference	Internal voltage reference		65	127	μA
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
CADCFILT	Input RC filter/de- coupling capaci- tance			250		fF
f _{ADCCLK}	ADC Clock Fre- quency				13	MHz
	Conversion time	6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles

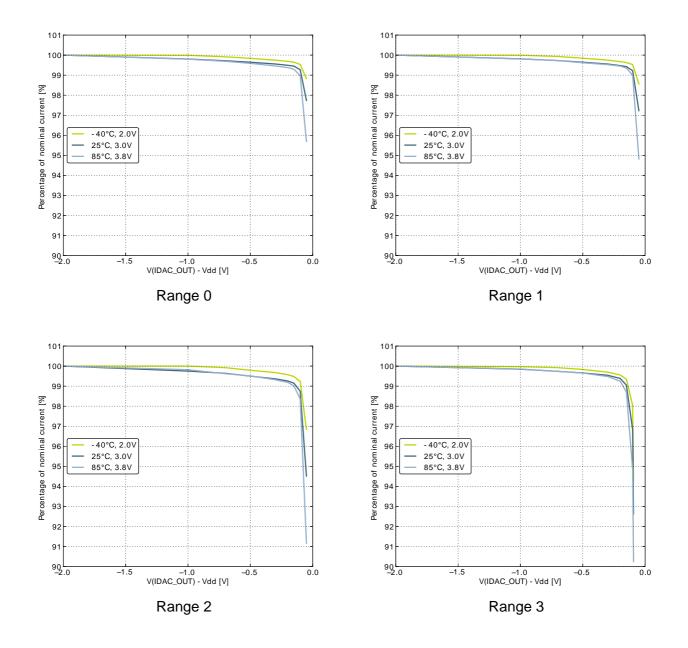
Figure 3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C

Table 3.17. IDAC Range 1 Source

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Active current with	EM0, default settings		13.0		μA
IIDAC	STEPSEL=0x10	Duty-cycled		10		nA
I _{0x10}	Nominal IDAC out- put current with STEPSEL=0x10			3.17		μΑ
I _{STEP}	Step size			0.097		μA
ID	Current drop at high impedance load	$V_{IDAC_OUT} = V_{DD} - 100mV$		0.79		%
TC _{IDAC}	Temperature coefficient	V _{DD} = 3.0 V, STEPSEL=0x10		0.7		nA/°C
VCIDAC	Voltage coefficient	T = 25 °C, STEPSEL=0x10		38.4		nA/V

Table 3.18. IDAC Range 1 Sink

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IDAC}	Active current with STEPSEL=0x10	EM0, default settings		17.9		μA
I _{0x10}	Nominal IDAC out- put current with STEPSEL=0x10			3.18		μA
I _{STEP}	Step size			0.098		μA
I _D	Current drop at high impedance load	V _{IDAC_OUT} = 200 mV		0.20		%
TC _{IDAC}	Temperature coefficient	V _{DD} = 3.0 V, STEPSEL=0x10		0.7		nA/°C
VCIDAC	Voltage coefficient	T = 25 °C, STEPSEL=0x10		40.9		nA/V


Table 3.19. IDAC Range 2 Source

Symbol	Parameter	Condition	Min	Тур	Max	Unit
l	Active current with	EM0, default settings		16.2		μA
IIDAC	STEPSEL=0x10	Duty-cycled		10		nA
I _{0x10}	Nominal IDAC out- put current with STEPSEL=0x10			8.40		μA
I _{STEP}	Step size			0.493		μA
ID	Current drop at high impedance load	$V_{IDAC_OUT} = V_{DD} - 100mV$		1.26		%
TC _{IDAC}	Temperature coefficient	V _{DD} = 3.0 V, STEPSEL=0x10		2.8		nA/°C
VCIDAC	Voltage coefficient	T = 25 °C, STEPSEL=0x10		96.6		nA/V

Table 3.20. IDAC Range 2 Sink

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
I _{IDAC}	Active current with STEPSEL=0x10	EM0, default settings		28.4		μA

Figure 3.34. IDAC Source Current as a function of voltage on IDAC_OUT

3.12 Analog Comparator (ACMP)

Table 3.24. ACMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ACMPIN}	Input voltage range		0		V _{DD}	V
V _{ACMPCM}	ACMP Common Mode voltage range		0		V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register		0.1	0.4	μA
I _{ACMP}	Active current	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register		2.87	15	μΑ
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register		195	520	μΑ
I _{ACMPREF}	Current consump- tion of internal volt- age reference	Internal voltage reference off. Using external voltage refer- ence		0		μΑ
	agereierence	Internal voltage reference		5		μA
V _{ACMPOFFSET}	Offset voltage	BIASPROG= 0b1010, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-12	0	12	mV
V _{ACMPHYST}	ACMP hysteresis	Programmable		17		mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL		39		kOhm
D	Capacitive Sense	CSRESSEL=0b01 in ACMPn_INPUTSEL		71		kOhm
R _{CSRES}	Internal Resistance	CSRESSEL=0b10 in ACMPn_INPUTSEL		104		kOhm
		CSRESSEL=0b11 in ACMPn_INPUTSEL		136		kOhm
t _{ACMPSTART}	Startup time				10	μs

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 46). $I_{ACMPREF}$ is zero if an external voltage reference is used.

Total ACMP Active Current

 $I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$

(3.1)

Table 3.27. I2C Fast-mode (Fm)

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency	0		400 ¹	kHz
t _{LOW}	SCL clock low time	1.3			μs
t _{HIGH}	SCL clock high time	0.6			μs
t _{SU,DAT}	SDA set-up time	100			ns
t _{HD,DAT}	SDA hold time	8		900 ^{2,3}	ns
t _{SU,STA}	Repeated START condition set-up time	0.6			μs
t _{HD,STA}	(Repeated) START condition hold time	0.6			μs
t _{SU,STO}	STOP condition set-up time	0.6			μs
t _{BUF}	Bus free time between a STOP and START condition	1.3			μs

¹For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32ZG Reference Manual. ²The maximum SDA hold time ($t_{HD,DAT}$) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}). ³When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10⁻⁹ [s] * f_{HFPERCLK} [Hz]) - 5).

Table 3.28. I2C Fast-mode Plus (Fm+)

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency	0		1000 ¹	kHz
t _{LOW}	SCL clock low time	0.5			μs
t _{HIGH}	SCL clock high time	0.26			μs
t _{SU,DAT}	SDA set-up time	50			ns
t _{HD,DAT}	SDA hold time	8			ns
t _{SU,STA}	Repeated START condition set-up time	0.26			μs
t _{HD,STA}	(Repeated) START condition hold time	0.26			μs
t _{SU,STO}	STOP condition set-up time	0.26			μs
t _{BUF}	Bus free time between a STOP and START condition	0.5			μs

¹For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32ZG Reference Manual.

3.15 Digital Peripherals

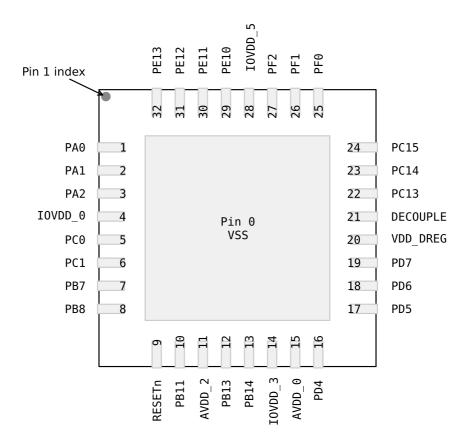
Table 3.29. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{USART}	USART current	USART idle current, clock en- abled		7.5		μΑ/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock en- abled		150		nA
I _{I2C}	I2C current	I2C idle current, clock enabled		6.25		μΑ/ MHz
I _{TIMER}	TIMER current	TIMER_0 idle current, clock enabled		8.75		μΑ/ MHz
I _{PCNT}	PCNT current	PCNT idle current, clock en- abled		100		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		100		nA

...the world's most energy friendly microcontrollers

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{AES}	AES current	AES idle current, clock enabled		2.5		µA/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled		5.31		µA/ MHz
I _{PRS}	PRS current	PRS idle current		2.81		μΑ/ MHz
I _{DMA}	DMA current	Clock enable		8.12		μΑ/ MHz

4 Pinout and Package


Note

Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32ZG210.

4.1 Pinout

The *EFM32ZG210* pinout is shown in Figure 4.1 (p. 51) and Table 4.1 (p. 51). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 4.1. EFM32ZG210 Pinout (top view, not to scale)

Table 4.1. Device Pinout

	QFN32 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
0	VSS	Ground.								
1	PA0		TIM0_CC0 #0/1/4	LEU0_RX #4 I2C0_SDA #0	PRS_CH0 #0 GPIO_EM4WU0					
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0					

Alternate			L	OCATIC	N			
Functionality	0	1	2	3	4	5	6	Description
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0		PC14					Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1		PC15					Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0		PE10					Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1		PE11					Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US1_CLK	PB7		PF0	PC15				USART1 clock input / output.
US1_CS	PB8		PF1	PC14				USART1 chip select input / output.
US1_RX	PC1		PD6	PD6				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0		PD7	PD7				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

4.3 GPIO Pinout Overview

The specific GPIO pins available in *EFM32ZG210* is shown in Table 4.3 (p. 54). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

Table 4.3. GPIO Pinout

Figure 5.2. QFN32 PCB Solder Mask

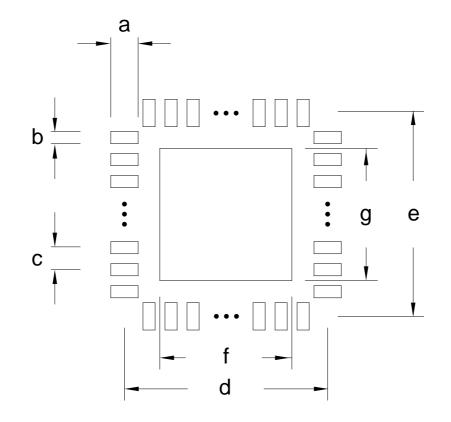


Table 5.2. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.92
b	0.47
c	0.65
d	6.00
e	6.00
f	4.52
g	4.52

Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. **7.4 Revision 0.60** October 9th, 2013 Added I2C characterization data. Added IDAC characterization data. Updated current consumption table and figures in Electrical characteristics section. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Removed Environmental information. Updated trademark, disclaimer and contact information.

Other minor corrections.

7.5 Revision 0.50

April 22nd, 2013 Updated HFCORE max frequency from 32 MHz to 24 MHz. Updated pinout. Other minor corrections.

7.6 Revision 0.40

September 11th, 2012 Updated CPU core from Cortex M0 to Cortex M0+. Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Corrected operating voltage from 1.8 V to 1.85 V. Other minor corrections.

7.7 Revision 0.30

July 16th, 2011

Updated the Electrical Characteristics section.

7.8 Revision 0.20

June 8th, 2011

Corrected all current values in Electrical Characteristics section.

Updated Cortex M0 related items in the memory map.

7.9 Revision 0.10

June 7th, 2011

Initial preliminary release.