
E·XFL

Intel - 1SX250LH3F55I2VG Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active			
Architecture	MCU, FPGA			
Core Processor	Quad ARM® Cortex®-A53 MPCore [™] with CoreSight [™]			
Flash Size	-			
RAM Size	256KB			
Peripherals	DMA, WDT			
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG			
Speed	1.5GHz			
Primary Attributes	FPGA - 2500K Logic Elements			
Operating Temperature	-40°C ~ 100°C (TJ)			
Package / Case	2912-BBGA, FCBGA			
Supplier Device Package	2912-FBGA, FC (55x55)			
Purchase URL	https://www.e-xfl.com/product-detail/intel/1sx250lh3f55i2vg			

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1.	Intel [®] Stratix [®] 10 GX/SX Device Overview	3
	1.1. Intel Stratix 10 Family Variants	4
	1.1.1. Available Options	6
	1.2. Innovations in Intel Stratix 10 FPGAs and SoCs	6
	1.3. FPGA and SoC Features Summary	8
	1.4. Intel Stratix 10 Block Diagram	11
	1.5. Intel Stratix 10 FPGA and SoC Family Plan	11
	1.6. HyperFlex Core Architecture	
	1.7. Heterogeneous 3D SiP Transceiver Tiles	
	1.8. Intel Stratix 10 Transceivers	
	1.8.1. PMA Features	18
	1.8.2. PCS Features	
	1.9. PCI Express Gen1/Gen2/Gen3 Hard IP	
	1.10. Interlaken PCS Hard IP	
	1.11. 10G Ethernet Hard IP	
	1.12. External Memory and General Purpose I/O	
	1.13. Adaptive Logic Module (ALM)	
	1.14. Core Clocking	
	1.15. Fractional Synthesis PLLs and I/O PLLs	
	1.16. Internal Embedded Memory	
	1.17. Variable Precision DSP Block	-
	1.18. Hard Processor System (HPS)	
	1.18.1. Key Features of the Intel Stratix 10 HPS	
	1.19. Power Management	
	1.20. Device Configuration and Secure Device Manager (SDM)	
	1.21. Device Security	
	1.22. Configuration via Protocol Using PCI Express	
	1.23. Partial and Dynamic Reconfiguration	
	1.24. Fast Forward Compile	
	1.25. Single Event Upset (SEU) Error Detection and Correction	
	1.26. Document Revision History for the Intel Stratix 10 GX/SX Device Overview	36

- Dedicated secure device manager (SDM) for:
 - Enhanced device configuration and security
 - AES-256, SHA-256/384 and ECDSA-256/384 encrypt/decrypt accelerators and authentication
 - Multi-factor authentication
 - Physically Unclonable Function (PUF) service and software programmable device configuration capability
- Comprehensive set of advanced power saving features delivering up to 70% lower power compared to previous generation high-performance FPGAs
- Non-destructive register state readback and writeback, to support ASIC prototyping and other applications

With these capabilities, Intel Stratix 10 FPGAs and SoCs are ideally suited for the most demanding applications in diverse markets such as:

- Compute and Storage—for custom servers, cloud computing and data center acceleration
- **Networking**—for Terabit, 400G and multi-100G bridging, aggregation, packet processing and traffic management
- Optical Transport Networks—for OTU4, 2xOTU4, 4xOTU4
- **Broadcast**—for high-end studio distribution, headend encoding/decoding, edge quadrature amplitude modulation (QAM)
- Military—for radar, electronic warfare, and secure communications
- Medical—for diagnostic scanners and diagnostic imaging
- Test and Measurement—for protocol and application testers
- Wireless—for next-generation 5G networks
- **ASIC Prototyping**—for designs that require the largest monolithic FPGA fabric with the highest I/O count

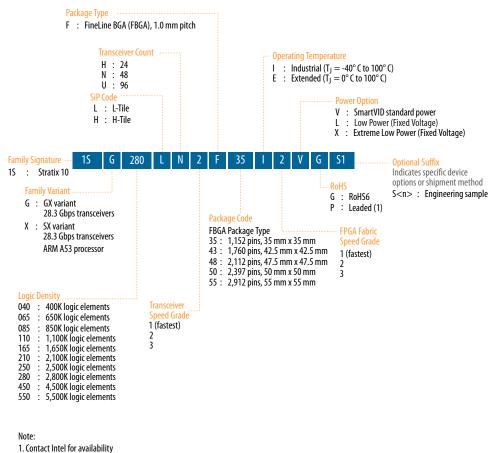
1.1. Intel Stratix 10 Family Variants

Intel Stratix 10 devices are available in FPGA (GX) and SoC (SX) variants.

- Intel Stratix 10 GX devices deliver up to 1 GHz core fabric performance and contain up to 5.5 million LEs in a monolithic fabric. They also feature up to 96 general purpose transceivers on separate transceiver tiles, and 2666 Mbps DDR4 external memory interface performance. The transceivers are capable of up to 28.3 Gbps short reach and across the backplane. These devices are optimized for FPGA applications that require the highest transceiver bandwidth and core fabric performance, with the power efficiency of Intel's industry-leading 14-nm Tri-Gate process technology.
- Intel Stratix 10 SX devices have a feature set that is identical to Intel Stratix 10 GX devices, with the addition of an embedded quad-core 64-bit ARM Cortex A53 hard processor system.

Common to all Intel Stratix 10 family variants is a high-performance fabric based on the new HyperFlex core architecture that includes additional Hyper-Registers throughout the interconnect routing and at the inputs of all functional blocks. The core fabric also contains an enhanced logic array utilizing Intel's adaptive logic module (ALM) and a rich set of high performance building blocks including:

- M20K (20 kbit) embedded memory blocks
- Variable precision DSP blocks with hard IEEE 754 compliant floating-point units
- Fractional synthesis and integer PLLs
- Hard memory controllers and PHY for external memory interfaces
- General purpose IO cells


To clock these building blocks, Intel Stratix 10 devices use programmable clock tree synthesis, which uses dedicated clock tree routing to synthesize only those branches of the clock trees required for the application. All devices support in-system, fine-grained partial reconfiguration of the logic array, allowing logic to be added and subtracted from the system while it is operating.

All family variants also contain high speed serial transceivers, containing both the physical medium attachment (PMA) and the physical coding sublayer (PCS), which can be used to implement a variety of industry standard and proprietary protocols. In addition to the hard PCS, Intel Stratix 10 devices contain multiple instantiations of PCI Express hard IP that supports Gen1/Gen2/Gen3 rates in x1/x2/x4/x8/x16 lane configurations, and hard 10GBASE-KR/40GBASE-KR4 FEC for every transceiver. The hard PCS, FEC, and PCI Express IP free up valuable core logic resources, save power, and increase your productivity.

1.1.1. Available Options

Figure 1. Sample Ordering Code and Available Options for Intel Stratix 10 Devices

1.2. Innovations in Intel Stratix 10 FPGAs and SoCs

Intel Stratix 10 FPGAs and SoCs deliver many significant improvements over the previous generation high-performance Stratix V FPGAs.

Table 1. Key Features of Intel Stratix 10 Devices Compared to Stratix V Devices

Feature	Stratix V FPGAs	Intel Stratix 10 FPGAs and SoCs	
Process technology	28-nm TSMC (planar transistor)	14 nm Intel Tri-Gate (FinFET)	
Hard processor core	None	Quad-core 64-bit ARM Cortex-A53 (SoC only)	
Core architecture	Conventional core architecture with conventional interconnect	HyperFlex core architecture with Hyper-Registers in the interconnect	
Core performance	500 MHz	1 GHz	
Power dissipation	1x	As low as 0.3x	

Feature	Stratix V FPGAs	Intel Stratix 10 FPGAs and SoCs
Logic density	952 KLE (monolithic)	5,500 KLE (monolithic)
Embedded memory (M20K)	52 Mbits	229 Mbits
18x19 multipliers	3,926 <i>Note:</i> Multiplier is 18x18 in Stratix V devices.	11,520 Note: Multiplier is 18x19 in Intel Stratix 10 devices.
Floating point DSP capability	Up to 1 TFLOP, requires soft floating point adder and multiplier	Up to 10 TFLOPS, hard IEEE 754 compliant single precision floating point adder and multiplier
Maximum transceivers	66	96
Maximum transceiver data rate (chip-to- chip)	28.05 Gbps	28.3 Gbps L-Tile 28.3 Gbps H-Tile
Maximum transceiver data rate (backplane)	12.5 Gbps	12.5 Gbps L-Tile 28.3 Gbps H-Tile
Hard memory controller	None	DDR4 @ 1333 MHz/2666 Mbps DDR3 @ 1067 MHz/2133 Mbps
Hard protocol IP	PCIe Gen3 x8 (up to 4 instances)	PCIe Gen3 x16 (up to 4 instances) SR-IOV (4 physical functions / 2k virtual functions) on H-Tile devices 10GBASE-KR/40GBASE-KR4 FEC
Core clocking and PLLs	Global, quadrant and regional clocks supported by fractional- synthesis fPLLs	Programmable clock tree synthesis supported by fractional synthesis fPLLs and integer IO PLLs
Register state readback and writeback	Not available	Non-destructive register state readback and writeback for ASIC prototyping and other applications

These innovations result in the following improvements:

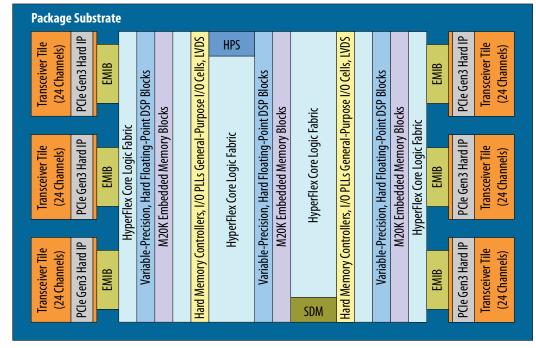
- **Improved Core Logic Performance**: The HyperFlex core architecture combined with Intel's 14-nm Tri-Gate technology allows Intel Stratix 10 devices to achieve 2X the core performance compared to the previous generation
- **Lower Power**: Intel Stratix 10 devices use up to 70% lower power compared to the previous generation, enabled by 14-nm Intel Tri-Gate technology, the HyperFlex core architecture, and optional power saving features built into the architecture
- Higher Density: Intel Stratix 10 devices offer over five times the level of integration, with up to 5,500K logic elements (LEs) in a monolithic fabric, over 229 Mbits of embedded memory blocks (M20K), and 11,520 18x19 multipliers
- **Embedded Processing**: Intel Stratix 10 SoCs feature a Quad-Core 64-bit ARM Cortex-A53 processor optimized for power efficiency and software compatible with previous generation Arria and Cyclone SoC devices
- **Improved Transceiver Performance**: With up to 96 transceiver channels implemented in heterogeneous 3D SiP transceiver tiles, Intel Stratix 10 GX and SX devices support data rates up to 28.3 Gbps chip-to-chip and 28.3 Gbps across the backplane with signal conditioning circuits capable of equalizing over 30 dB of system loss
- **Improved DSP Performance**: The variable precision DSP block in Intel Stratix 10 devices features hard fixed and floating point capability, with up to 10 TeraFLOPS IEEE754 single-precision floating point performance

- Additional Hard IP: Intel Stratix 10 devices include many more hard IP blocks than previous generation devices, with a hard memory controller included in each bank of 48 general purpose IOs, a hard PCIe Gen3 x16 full protocol stack in each transceiver tile, and a hard 10GBASE-KR/40GBASE-KR4 FEC in every transceiver channel
- **Enhanced Core Clocking**: Intel Stratix 10 devices feature programmable clock tree synthesis; clock trees are only synthesized where needed, increasing the flexibility and reducing the power dissipation of the clocking solution
- **Additional Core PLLs**: The core fabric in Intel Stratix 10 devices is supported by both integer IO PLLs and fractional synthesis fPLLs, resulting in a greater total number of PLLs available than the previous generation

1.3. FPGA and SoC Features Summary

Table 2. Intel Stratix 10 FPGA and SoC Common Device Features

Feature	Description
Technology	 14-nm Intel Tri-Gate (FinFET) process technology SmartVID controlled core voltage, standard power devices 0.85-V fixed core voltage, low static power devices available
Low power serial transceivers	 Up to 96 total transceivers available Continuous operating range of 1 Gbps to 28.3 Gbps for Intel Stratix 10 GX/SX devices Backplane support up to 28.3 Gbps for Intel Stratix 10 GX/SX devices Extended range down to 125 Mbps with oversampling ATX transmit PLLs with user-configurable fractional synthesis capability XFP, SFP+, QSFP/QSFP28, CFP/CFP2/CFP4 optical module support Adaptive linear and decision feedback equalization Transmit pre-emphasis and de-emphasis Dynamic partial reconfiguration of individual transceiver channels On-chip instrumentation (Eye Viewer non-intrusive data eye monitoring)
General purpose I/Os	 Up to 1640 total GPIO available 1.6 Gbps LVDS—every pair can be configured as an input or output 1333 MHz/2666 Mbps DDR4 external memory interface 1067 MHz/2133 Mbps DDR3 external memory interface 1.2 V to 3.0 V single-ended LVCMOS/LVTTL interfacing On-chip termination (OCT)
Embedded hard IP	 PCIe Gen1/Gen2/Gen3 complete protocol stack, x1/x2/x4/x8/x16 end point and root port DDR4/DDR3/LPDDR3 hard memory controller (RLDRAM3/QDR II+/QDR IV using soft memory controller) Multiple hard IP instantiations in each device Single Root I/O Virtualization (SR-IOV)
Transceiver hard IP	 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) 10G Ethernet PCS PCI Express PIPE interface Interlaken PCS Gigabit Ethernet PCS Deterministic latency support for Common Public Radio Interface (CPRI) PCS Fast lock-time support for Gigabit Passive Optical Networking (GPON) PCS 8B/10B, 64B/66B, 64B/67B encoders and decoders Custom mode support for proprietary protocols
	continued


1. Intel[®] Stratix[®] 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08

SoC Subsystem	Feature	Description
	NAND flash controller	• 1 ONFI 1.0, 8- and 16-bit support
	General-purpose I/O (GPIO)	Maximum of 48 software programmable GPIO
	Timers	 4 general-purpose timers 4 watchdog timers
Secure Device Manager	Security	 Secure boot Advanced Encryption Standard (AES) and authentication (SHA/ECDSA)
External Memory Interface	External Memory Interface	Hard Memory Controller with DDR4 and DDR3, and LPDDR3

1.4. Intel Stratix 10 Block Diagram

Figure 2. Intel Stratix 10 FPGA and SoC Architecture Block Diagram

HPS: Quad ARM Cortex-A53 Hard Processor System SDM: Secure Device Manager EMIB: Embedded Multi-Die Interconnect Bridge

1.5. Intel Stratix 10 FPGA and SoC Family Plan

⁽¹⁾ The number of 27x27 multipliers is one-half the number of 18x19 multipliers.

Intel Stratix 10 GX/SX Device Name	Logic Elements (KLE)	M20K Blocks	M20K Mbits	MLAB Counts	MLAB Mbits	18x19 Multi- pliers ⁽¹⁾
GX 400/ SX 400	378	1,537	30	3,204	2	1,296
GX 650/ SX 650	612	2,489	49	5,184	3	2,304
GX 850/ SX 850	841	3,477	68	7,124	4	4,032
GX 1100/ SX 1100	1,092	4,401	86	9,540	6	5,040
GX 1650/ SX 1650	1,624	5,851	114	13,764	8	6,290
GX 2100/ SX 2100	2,005	6,501	127	17,316	11	7,488
GX 2500/ SX 2500	2,422	9,963	195	20,529	13	10,022
GX 2800/ SX 2800	2,753	11,721	229	23,796	15	11,520
GX 4500/ SX 4500	4,463	7,033	137	37,821	23	3,960
GX 5500/ SX 5500	5,510	7,033	137	47,700	29	3,960

Table 4. Intel Stratix 10 GX/SX FPGA and SoC Family Plan—FPGA Core (part 1)

Table 5.Intel Stratix 10 GX/SX FPGA and SoC Family Plan—Interconnects, PLLs and
Hard IP (part 2)

Intel Stratix 10	Interco	onnects	PLLs		Hard IP
GX/SX Device Name	Maximum GPIOs	Maximum XCVR	fPLLs	I/O PLLs	PCIe Hard IP Blocks
GX 400/ SX 400	392	24	8	8	1
GX 650/ SX 650	400	48	16	8	2
GX 850/ SX 850	736	48	16	15	2
GX 1100/ SX 1100	736	48	16	15	2
GX 1650/ SX 1650	704	96	32	14	4
GX 2100/ SX 2100	704	96	32	14	4
GX 2500/ SX 2500	1160	96	32	24	4
					continued

Intel Stratix 10	Interconnects		PLLs		Hard IP	
GX/SX Device Name	Maximum GPIOs	Maximum XCVR	fPLLs	I/O PLLs	PCIe Hard IP Blocks	
GX 2800/ SX 2800	1160	96	32	24	4	
GX 4500/ SX 4500	1640	24	8	34	1	
GX 5500/ SX 5500	1640	24	8	34	1	

Table 6.Intel Stratix 10 GX/SX FPGA and SoC Family Package Plan, part 1

Cell legend: General Purpose I/Os, High-Voltage I/Os, LVDS Pairs, Transceivers (2) (3) (4) (5) (6) (7)

Intel Stratix 10 GX/SX Device Name	F1152 HF35 (35x35 mm ²)	F1760 NF43 (42.5x42.5 mm ²)	F1760 NF43 (42.5x42.5 mm ²)
GX 400/ SX 400	392, 8, 192, 24		
GX 650/ SX 650	392, 8, 192, 24	400, 16, 192, 48	
GX 850/ SX 850			688, 16, 336, 48
GX 1100/ SX 1100			688, 16, 336, 48
GX 1650/ SX 1650			688, 16, 336, 48
GX 2100/ SX 2100			688, 16, 336, 48
GX 2500/ SX 2500			688, 16, 336, 48
GX 2800/			688, 16, 336, 48 continued.

⁽²⁾ All packages are ball grid arrays with 1.0 mm pitch.

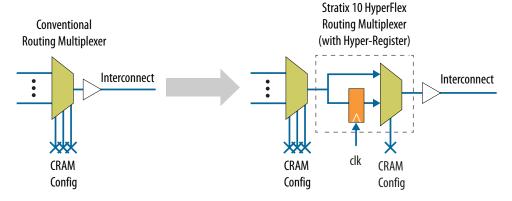
- ⁽³⁾ High-Voltage I/O pins are used for 3 V and 2.5 V interfacing.
- ⁽⁴⁾ Each LVDS pair can be configured as either a differential input or a differential output.
- ⁽⁵⁾ High-Voltage I/O pins and LVDS pairs are included in the General Purpose I/O count. Transceivers are counted separately.
- ⁽⁶⁾ Each package column offers pin migration (common circuit board footprint) for all devices in the column.
- ⁽⁷⁾ Intel Stratix 10 GX devices are pin migratable with Intel Stratix 10 SX devices in the same package.

Intel Stratix 10 GX/SX Device Name	F1152 HF35 (35x35 mm ²)	F1760 NF43 (42.5x42.5 mm ²)	F1760 NF43 (42.5x42.5 mm ²)
SX 2800			
GX 4500/ SX 4500			
GX 5500/ SX 5500			

Table 7. Intel Stratix 10 GX/SX FPGA and SoC Family Package Plan, part 2

Cell legend: General Purpose I/Os, High-Voltage I/Os, LVDS Pairs, Transceivers (2) (3) (4) (5) (6) (7)

Intel Stratix 10 GX/SX Device Name	F2112 NF48 (47.5x47.5 mm ²)	F2397 UF50 (50x50 mm ²)	F2912 HF55 (55x55 mm ²)
GX 400/ SX 400			
GX 650/ SX 650			
GX 850/ SX 850	736, 16, 360, 48		
GX 1100/ SX 1100	736, 16, 360, 48		
GX 1650/ SX 1650		704, 32, 336, 96	
GX 2100/ SX 2100		704, 32, 336, 96	
GX 2500/ SX 2500		704, 32, 336, 96	1160, 8, 576, 24
GX 2800/ SX 2800		704, 32, 336, 96	1160, 8, 576, 24
GX 4500/ SX 4500			1640, 8, 816, 24
GX 5500/ SX 5500			1640, 8, 816, 24

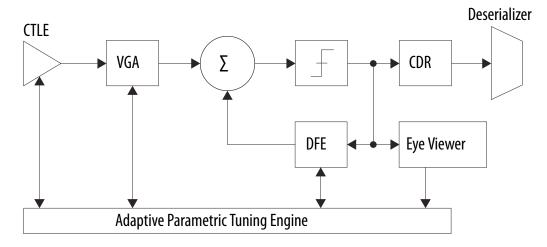

1.6. HyperFlex Core Architecture

Intel Stratix 10 FPGAs and SoCs are based on a monolithic core fabric featuring the new HyperFlex core architecture. The HyperFlex core architecture delivers 2X the clock frequency performance and up to 70% lower power compared to previous generation high-end FPGAs. Along with this performance breakthrough, the HyperFlex core architecture delivers a number of advantages including:

- Higher Throughput—Leverages 2X core clock frequency performance to obtain throughput breakthroughs
- Improved Power Efficiency—Uses reduced IP size, enabled by HyperFlex, to consolidate designs which previously spanned multiple devices into a single device, thereby reducing power by up to 70% versus previous generation devices
- Greater Design Functionality—Uses faster clock frequency to reduce bus widths and reduce IP size, freeing up additional FPGA resources to add greater functionality
- Increased Designer Productivity—Boosts performance with less routing congestion and fewer design iterations using Hyper-Aware design tools, obtaining greater timing margin for more rapid timing closure

In addition to the traditional user registers found in the Adaptive Logic Modules (ALM), the HyperFlex core architecture introduces additional bypassable registers everywhere throughout the fabric of the FPGA. These additional registers, called Hyper-Registers are available on every interconnect routing segment and at the inputs of all functional blocks.

Figure 3. Bypassable Hyper-Register


The Hyper-Registers enable the following key design techniques to achieve the 2X core performance increases:

- Fine grain Hyper-Retiming to eliminate critical paths
- Zero latency Hyper-Pipelining to eliminate routing delays
- Flexible Hyper-Optimization for best-in-class performance

By implementing these techniques in your design, the Hyper-Aware design tools automatically make use of the Hyper-Registers to achieve maximum core clock frequency.

Figure 7. Intel Stratix 10 Receiver Block Features

All link equalization parameters feature automatic adaptation using the new Advanced Digital Adaptive Parametric Tuning (ADAPT) circuit. This circuit is used to dynamically set DFE tap weights, adjust CTLE parameters, and optimize VGA gain and threshold voltage. Finally, optimal and consistent signal integrity is ensured by using the new hardened Precision Signal Integrity Calibration Engine (PreSICE) to automatically calibrate all transceiver circuit blocks on power-up. This gives the most link margin and ensures robust, reliable, and error-free operation.

Table 8.Transceiver PMA Features

Feature	Capability
Chip-to-Chip Data Rates	1 Gbps ⁽⁸⁾ to 28.3 Gbps (Intel Stratix 10 GX/SX devices)
Backplane Support	Drive backplanes at data rates up to 28.3 Gbps, including 10GBASE-KR compliance
Optical Module Support	SFP+/SFP, XFP, CXP, QSFP/QSFP28, QSFPDD, CFP/CFP2/CFP4
Cable Driving Support	SFP+ Direct Attach, PCI Express over cable, eSATA
Transmit Pre-Emphasis	5-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss
Continuous Time Linear Equalizer (CTLE)	Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss
Decision Feedback Equalizer (DFE)	15 fixed tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments
Advanced Digital Adaptive Parametric Tuning (ADAPT)	Fully digital adaptation engine to automatically adjust all link equalization parameters— including CTLE, DFE, and VGA blocks—that provide optimal link margin without intervention from user logic
Precision Signal Integrity Calibration Engine (PreSICE)	Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance
ATX Transmit PLLs	Low jitter ATX (inductor-capacitor) transmit PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols, with optional fractional frequency synthesis capability
Fractional PLLs	On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost
	continued

⁽⁸⁾ Stratix 10 transceivers can support data rates below 1 Gbps with over sampling.

Each I/O bank contains 48 general purpose I/Os and a high-efficiency hard memory controller capable of supporting many different memory types, each with different performance capabilities. The hard memory controller is also capable of being bypassed and replaced by a soft controller implemented in the user logic. The I/Os each have a hardened double data rate (DDR) read/write path (PHY) capable of performing key memory interface functionality such as:

- Read/write leveling
- FIFO buffering to lower latency and improve margin
- Timing calibration
- On-chip termination

The timing calibration is aided by the inclusion of hard microcontrollers based on Intel's Nios[®] II technology, specifically tailored to control the calibration of multiple memory interfaces. This calibration allows the Intel Stratix 10 device to compensate for any changes in process, voltage, or temperature either within the Intel Stratix 10 device itself, or within the external memory device. The advanced calibration algorithms ensure maximum bandwidth and robust timing margin across all operating conditions.

Table 10. External Memory Interface Performance

The listed speeds are for the 1-rank case.

Interface	Controller Type	Performance
DDR4	Hard	2666 Mbps
DDR3	Hard	2133 Mbps
QDRII+	Soft	1,100 Mtps
QDRII+ Xtreme	Soft	1,266 Mtps
QDRIV	Soft	2,133 Mtps
RLDRAM III	Soft	2400 Mbps
RLDRAM II	Soft	533 Mbps

In addition to parallel memory interfaces, Intel Stratix 10 devices support serial memory technologies such as the Hybrid Memory Cube (HMC). The HMC is supported by the Intel Stratix 10 high-speed serial transceivers, which connect up to four HMC links, with each link running at data rates of 15 Gbps (HMC short reach specification).

Intel Stratix 10 devices also feature general purpose I/Os capable of supporting a wide range of single-ended and differential I/O interfaces. LVDS rates up to 1.6 Gbps are supported, with each pair of pins having both a differential driver and a differential input buffer. This enables configurable direction for each LVDS pair.

1.13. Adaptive Logic Module (ALM)

Intel Stratix 10 devices use a similar adaptive logic module (ALM) as the previous generation Arria 10 and Stratix V FPGAs, allowing for efficient implementation of logic functions and easy conversion of IP between the devices.

The ALM block diagram shown in the following figure has eight inputs with a fracturable look-up table (LUT), two dedicated embedded adders, and four dedicated registers.

The core clock network in Intel Stratix 10 devices supports the new HyperFlex core architecture at clock rates up to 1 GHz. It also supports the hard memory controllers up to 2666 Mbps with a quarter rate transfer to the core. The core clock network is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs.

1.15. Fractional Synthesis PLLs and I/O PLLs

Intel Stratix 10 devices have up to 32 fractional synthesis PLLs (fPLL) available for use with transceivers or in the core fabric.

The fPLLs are located in the 3D SiP transceiver H-tiles, eight per tile, adjacent to the transceiver channels. The fPLLs can be used to reduce both the number of oscillators required on the board and the number of clock pins required, by synthesizing multiple clock frequencies from a single reference clock source. In addition to synthesizing reference clock frequencies for the transceiver transmit PLLs, the fPLLs can also be used directly for transmit clocking. Each fPLL can be independently configured for conventional integer mode, or enhanced fractional synthesis mode with third-order delta-sigma modulation.

In addition to the fPLLs, Intel Stratix 10 devices contain up to 34 integer I/O PLLs (IOPLLs) available for general purpose use in the core fabric and for simplifying the design of external memory interfaces and high-speed LVDS interfaces. The IOPLLs are located in each bank of 48 general purpose I/O, 1 per I/O bank, adjacent to the hard memory controllers and LVDS SerDes in each I/O bank. This makes it easier to close timing because the IOPLLs are tightly coupled with the I/Os that need to use them. The IOPLLs can be used for general purpose applications in the core such as clock network delay compensation and zero-delay clock buffering.

1.16. Internal Embedded Memory

Intel Stratix 10 devices contain two types of embedded memory blocks: M20K (20-Kbit) and MLAB (640-bit).

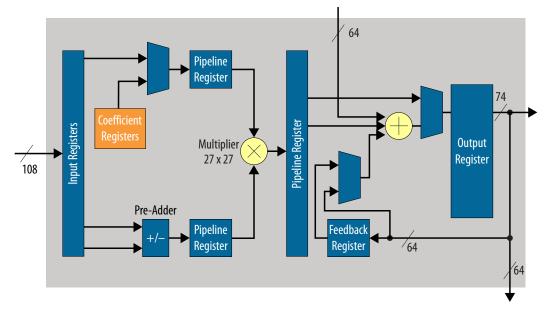
The M20K and MLAB blocks are familiar block sizes carried over from previous Intel device families. The MLAB blocks are ideal for wide and shallow memories, while the M20K blocks are intended to support larger memory configurations and include hard ECC. Both M20K and MLAB embedded memory blocks can be configured as a single-port or dual-port RAM, FIFO, ROM, or shift register. These memory blocks are highly flexible and support a number of memory configurations as shown in Table 11 on page 25.

Table 11. Internal Embedded Memory Block Configurations

MLAB (640 bits)	M20K (20 Kbits)
64 x 10 (supported through emulation) 32 x 20	2K x 10 (or x8) 1K x 20 (or x16) 512 x 40 (or x32)

1.17. Variable Precision DSP Block

The Intel Stratix 10 DSP blocks are based upon the Variable Precision DSP Architecture used in Intel's previous generation devices. They feature hard fixed point and IEEE-754 compliant floating point capability.



The DSP blocks can be configured to support signal processing with precision ranging from 18x19 up to 54x54. A pipeline register has been added to increase the maximum operating frequency of the DSP block and reduce power consumption.

Figure 10. DSP Block: Standard Precision Fixed Point Mode

Figure 11. DSP Block: High Precision Fixed Point Mode

Feature	Description	
	 Superscalar, variable length, out-of-order pipeline with dynamic branch prediction Improved ARM NEON[™] media processing engine Single- and double-precision floating-point unit CoreSight[™] debug and trace technology 	
System Memory Management Unit	Enables a unified memory model and extends hardware virtualization into peripherals implemented in the FPGA fabric	
Cache Coherency unit	Changes in shared data stored in cache are propagated throughout the system providing bi-directional coherency for co-processing elements.	
Cache	 L1 Cache 32 KB of instruction cache w/ parity check 32 KB of L1 data cache w /ECC Parity checking L2 Cache 1MB shared 8-way set associative SEU Protection with parity on TAG ram and ECC on data RAM Cache lockdown support 	
On-Chip Memory	256 KB of scratch on-chip RAM	
External SDRAM and Flash Memory Interfaces for HPS	 Hard memory controller with support for DDR4, DDR3, LPDDR3 40-bit (32-bit + 8-bit ECC) with select packages supporting 72-bit (64-bit + 8-bit ECC) Support for up to 2666 Mbps DDR4 and 2166 Mbps DDR3 frequencies Error correction code (ECC) support including calculation, error correction, writeback correction, and error counters Software Configurable Priority Scheduling on individual SDRAM bursts Fully programmable timing parameter support for all JEDEC-specified timing parameters Multiport front-end (MPFE) scheduler interface to the hard memory controller, which supports the AXI® Quality of Service (QoS) for interface to the FPGA fabric NAND flash controller ONFI 1.0 Integrated descriptor based with DMA Programmable hardware ECC support Support for 8- and 16-bit Flash devices Secure Digital SD/SDIO/MMC controller eMMC 4.5 Integrated descriptor based DMA CE-ATA digital commands supported 50 MHz operating frequency Direct memory access (DMA) controller 8-channel Supports up to 32 peripheral handshake interface 	

1. Intel[®] Stratix[®] 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08

Feature	Description
Communication Interface Controllers	 Three 10/100/1000 Ethernet media access controls (MAC) with integrated DMA Supports RGMII and RMII external PHY Interfaces Option to support other PHY interfaces through FPGA logic GMII MII RMII (requires GMII to RMII adapter) RGMII (requires GMII to RGMII adapter) SGMII (requires GMII to SGMII adapter) SUpports IEEE 1588-2002 and IEEE 1588-2008 standards for precision networked clock synchronization Supports IEEE 802.1Q VLAN tag detection for reception frames Supports IEEE 802.1Q VLAN tag detection for reception frames Supports Ethernet AVB standard Two USB On-the-Go (OTG) controllers with DMA Dual-Role Device (device and host functions) High-speed (12 Mbps) Low-speed (1.5 Mbps) Supports for external ULPI PHY Up to 16 bidirectional endpoints, including control endpoint Up to 16 bidirectional endpoints, including control endpoint Up to 16 host channels Support both 100Kbps and 400Kbps modes Support both 7-bit and 10-bit addressing modes Support Master and Slave operating mode Two UART 16550 compatible Programmable baud rate up to 115.2Kbaud
Timers and I/O	 Timers 4 general-purpose timers 4 watchdog timers 48 HPS direct I/O allow HPS peripherals to connect directly to I/O Up to three IO48 banks may be assigned to HPS for HPS DDR access
Interconnect to Logic Core	 FPGA-to-HPS Bridge Allows IP bus masters in the FPGA fabric to access to HPS bus slaves Configurable 32-, 64-, or 128-bit AMBA AXI interface HPS-to-FPGA Bridge Allows HPS bus masters to access bus slaves in FPGA fabric Configurable 32-, 64-, or 128-bit AMBA AXI interface allows high-bandwidth HPS master transactions to FPGA fabric HPS-to-SDM and SDM-to-HPS Bridges Allows the HPS to reach the SDM block and the SDM to bootstrap the HPS Light Weight HPS-to-FPGA Bridge Light weight 32-bit AXI interface suitable for low-latency register accesses from HPS to soft peripherals in FPGA fabric FPGA-to-HPS SDRAM Bridge

1.19. Power Management

Intel Stratix 10 devices leverage the advanced Intel 14-nm Tri-Gate process technology, the all new HyperFlex core architecture to enable Hyper-Folding, power gating, and several optional power reduction techniques to reduce total power consumption by as much as 70% compared to previous generation high-performance Stratix V devices.

Intel Stratix 10 standard power devices (-V) are SmartVID devices. The core voltage supplies (VCC and VCCP) for each SmartVID device must be driven by a PMBus voltage regulator dedicated to that Intel Stratix 10 device. Use of a PMBus voltage regulator for each SmartVID (-V) device is mandatory; it is not an option. A code is programmed into each SmartVID device during manufacturing that allows the PMBus voltage regulator to operate at the optimum core voltage to meet the device performance specifications.

With the new HyperFlex core architecture, designs can run 2X faster than previous generation FPGAs. With 2X performance and same required throughput, architects can cut the data path width in half to save power. This optimization is called Hyper-Folding. Additionally, power gating reduces static power of unused resources in the FPGA by powering them down. The Intel Quartus Prime software automatically powers down specific unused resource blocks such as DSP and M20K blocks, at configuration time.

The optional power reduction techniques in Intel Stratix 10 devices include:

• Available Low Static Power Devices—Intel Stratix 10 devices are available with a fixed core voltage that provides lower static power than the SmartVID standard power devices, while maintaining device performance

Furthermore, Intel Stratix 10 devices feature Intel's industry-leading low power transceivers and include a number of hard IP blocks that not only reduce logic resources but also deliver substantial power savings compared to soft implementations. In general, hard IP blocks consume up to 50% less power than the equivalent soft logic implementations.

1.20. Device Configuration and Secure Device Manager (SDM)

All Intel Stratix 10 devices contain a Secure Device Manager (SDM), which is a dedicated triple-redundant processor that serves as the point of entry into the device for all JTAG and configuration commands. The SDM also bootstraps the HPS in SoC devices ensuring that the HPS can boot using the same security features that the FPGA devices have.

The SDM enables robust, secure, fully-authenticated device configuration. It also allows for customization of the configuration scheme, which can enhance device security. For configuration and reconfiguration, this approach offers a variety of advantages:

- Dedicated secure configuration manager
- Reduced device configuration time, because sectors are configured in parallel
- Updateable configuration process
- Reconfiguration of one or more sectors independent of all other sectors
- Zeroization of individual sectors or the complete device

The SDM also provides additional capabilities such as register state readback and writeback to support ASIC prototyping and other applications.

1.21. Device Security

Building on top of the robust security features present in the previous generation devices, Intel Stratix 10 FPGAs and SoCs include a number of new and innovative security enhancements. These features are also managed by the SDM, tightly coupling device configuration and reconfiguration with encryption, authentication, key storage and anti-tamper services.

Security services provided by the SDM include:

- Bitstream encryption
- Multi-factor authentication
- Hard encryption and authentication acceleration; AES-256, SHA-256/384, ECDSA-256/384
- Volatile and non-volatile encryption key storage and management
- Boot code authentication for the HPS
- Physically Unclonable Function (PUF) service
- Updateable configuration process
- Secure device maintenance and upgrade functions
- Side channel attack protection
- Scripted response to sensor inputs and security attacks, including selective sector zeroization
- Readback, JTAG and test mode disable
- Enhanced response to single-event upsets (SEU)

The SDM and associated security services provide a robust, multi-layered security solution for your Intel Stratix 10 design.

1.22. Configuration via Protocol Using PCI Express

Configuration via protocol using PCI Express allows the FPGA to be configured across the PCI Express bus, simplifying the board layout and increasing system integration. Making use of the embedded PCI Express hard IP operating in autonomous mode before the FPGA is configured, this technique allows the PCI Express bus to be

Document Version	Changes
	Changed the features listed in the "Key Features of Stratix 10 Devices Compared to Stratix V Devices" table.
	Changed the descriptions of the following areas of the "Stratix 10 FPGA and SoC Common Device Features" table:
	- Transceiver hard IP
	 — Internal memory blocks
	- Core clock networks
	– Packaging
	• Reorganized and updated all tables in the "Stratix 10 FPGA and SoC Family Plan" section.
	Removed the "Migration Between Arria 10 FPGAs and Stratix 10 FPGAs" section.
	Removed footnotes from the "Transceiver PCS Features" table.
	Changed the HMC description in the "External Memory and General Purpose I/O" section.
	Changed the number of fPLLs in the "Fractional Synthesis PLLs and I/O PLLs" section.
	Clarified HMC data width support in the "Key Features of the Stratix 10 HPS" table.
	Changed the description in the "Internal Embedded Memory" section.
	Changed the datarate for the Standard PCS and SDI PCS features in the "Transceiver PCS Features" table.
	Added a note to the "PCI Express Gen1/Gen2/Gen3 Hard IP" section.
	Updated the "Key Features of the Stratix 10 HPS" table.
	Changed the description for the Cache coherency unit in the "Key Features of the Stratix 10 HPS" table.
	Changed the description for the external SDRAM and Flash memory interfaces for HPS in the "Key Features of the Stratix 10 HPS" table.
2015.12.04	Initial release.