# E·XFL

## Intel - 1SX250LN2F43E2LG Datasheet



Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

**Embedded - System On Chip (SoC)** refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

#### What are Embedded - System On Chip (SoC)?

**System On Chip (SoC)** integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

#### Details

| Product Status          | Active                                                                     |  |  |
|-------------------------|----------------------------------------------------------------------------|--|--|
| Architecture            | MCU, FPGA                                                                  |  |  |
| Core Processor          | Quad ARM® Cortex®-A53 MPCore <sup>™</sup> with CoreSight <sup>™</sup>      |  |  |
| Flash Size              | -                                                                          |  |  |
| RAM Size                | 256КВ                                                                      |  |  |
| Peripherals             | DMA, WDT                                                                   |  |  |
| Connectivity            | EBI/EMI, Ethernet, I <sup>2</sup> C, MMC/SD/SDIO, SPI, UART/USART, USB OTG |  |  |
| Speed                   | 1.5GHz                                                                     |  |  |
| Primary Attributes      | FPGA - 2500K Logic Elements                                                |  |  |
| Operating Temperature   | 0°C ~ 100°C (TJ)                                                           |  |  |
| Package / Case          | 1760-BBGA, FCBGA                                                           |  |  |
| Supplier Device Package | 1760-FBGA, FC (42.5x42.5)                                                  |  |  |
| Purchase URL            | https://www.e-xfl.com/product-detail/intel/1sx250ln2f43e2lg                |  |  |
|                         |                                                                            |  |  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **1.** Intel<sup>®</sup> Stratix<sup>®</sup> **10** GX/SX Device Overview

Intel's 14-nm Intel<sup>®</sup> Stratix<sup>®</sup> 10 GX FPGAs and SX SoCs deliver 2X the core performance and up to 70% lower power over previous generation high-performance FPGAs.

Featuring several groundbreaking innovations, including the all new HyperFlex<sup>™</sup> core architecture, this device family enables you to meet the demand for ever-increasing bandwidth and processing performance in your most advanced applications, while meeting your power budget.

With an embedded hard processor system (HPS) based on a quad-core 64-bit ARM<sup>®</sup> Cortex<sup>®</sup>-A53, the Intel Stratix 10 SoC devices deliver power efficient, application-class processing and allow designers to extend hardware virtualization into the FPGA fabric. Intel Stratix 10 SoC devices demonstrate Intel's commitment to high-performance SoCs and extend Intel's leadership in programmable devices featuring an ARM-based processor system.

Important innovations in Intel Stratix 10 FPGAs and SoCs include:

- All new HyperFlex core architecture delivering 2X the core performance compared to previous generation high-performance FPGAs
- Industry leading Intel 14-nm Tri-Gate (FinFET) technology
- Heterogeneous 3D System-in-Package (SiP) technology
- Monolithic core fabric with up to 5.5 million logic elements (LEs)
- Up to 96 full duplex transceiver channels on heterogeneous 3D SiP transceiver tiles
- Transceiver data rates up to 28.3 Gbps chip-to-chip/module and backplane performance
- M20K (20 kbit) internal SRAM memory blocks
- Fractional synthesis and ultra-low jitter LC tank based transmit phase locked loops (PLLs)
- Hard PCI Express<sup>®</sup> Gen3 x16 intellectual property (IP) blocks
- Hard 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) in every transceiver channel
- Hard memory controllers and PHY supporting DDR4 rates up to 2666 Mbps per pin
- Hard fixed-point and IEEE 754 compliant hard floating-point variable precision digital signal processing (DSP) blocks with up to 10 TFLOPS compute performance with a power efficiency of 80 GFLOPS per Watt
- Quad-core 64-bit ARM Cortex-A53 embedded processor running up to 1.5 GHz in SoC family variants
- Programmable clock tree synthesis for flexible, low power, low skew clock trees

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.





Common to all Intel Stratix 10 family variants is a high-performance fabric based on the new HyperFlex core architecture that includes additional Hyper-Registers throughout the interconnect routing and at the inputs of all functional blocks. The core fabric also contains an enhanced logic array utilizing Intel's adaptive logic module (ALM) and a rich set of high performance building blocks including:

- M20K (20 kbit) embedded memory blocks
- Variable precision DSP blocks with hard IEEE 754 compliant floating-point units
- Fractional synthesis and integer PLLs
- Hard memory controllers and PHY for external memory interfaces
- General purpose IO cells

To clock these building blocks, Intel Stratix 10 devices use programmable clock tree synthesis, which uses dedicated clock tree routing to synthesize only those branches of the clock trees required for the application. All devices support in-system, fine-grained partial reconfiguration of the logic array, allowing logic to be added and subtracted from the system while it is operating.

All family variants also contain high speed serial transceivers, containing both the physical medium attachment (PMA) and the physical coding sublayer (PCS), which can be used to implement a variety of industry standard and proprietary protocols. In addition to the hard PCS, Intel Stratix 10 devices contain multiple instantiations of PCI Express hard IP that supports Gen1/Gen2/Gen3 rates in x1/x2/x4/x8/x16 lane configurations, and hard 10GBASE-KR/40GBASE-KR4 FEC for every transceiver. The hard PCS, FEC, and PCI Express IP free up valuable core logic resources, save power, and increase your productivity.



| Feature                                          | Stratix V FPGAs                                                                     | Intel Stratix 10 FPGAs and SoCs                                                                                                              |
|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Logic density                                    | 952 KLE (monolithic)                                                                | 5,500 KLE (monolithic)                                                                                                                       |
| Embedded memory (M20K)                           | 52 Mbits                                                                            | 229 Mbits                                                                                                                                    |
| 18x19 multipliers                                | 3,926<br><i>Note:</i> Multiplier is 18x18 in<br>Stratix V devices.                  | 11,520<br>Note: Multiplier is 18x19 in Intel<br>Stratix 10 devices.                                                                          |
| Floating point DSP capability                    | Up to 1 TFLOP, requires soft floating point adder and multiplier                    | Up to 10 TFLOPS, hard IEEE 754<br>compliant single precision floating<br>point adder and multiplier                                          |
| Maximum transceivers                             | 66                                                                                  | 96                                                                                                                                           |
| Maximum transceiver data rate (chip-to-<br>chip) | 28.05 Gbps                                                                          | 28.3 Gbps L-Tile<br>28.3 Gbps H-Tile                                                                                                         |
| Maximum transceiver data rate (backplane)        | 12.5 Gbps                                                                           | 12.5 Gbps L-Tile<br>28.3 Gbps H-Tile                                                                                                         |
| Hard memory controller                           | None                                                                                | DDR4 @ 1333 MHz/2666 Mbps<br>DDR3 @ 1067 MHz/2133 Mbps                                                                                       |
| Hard protocol IP                                 | PCIe Gen3 x8 (up to 4 instances)                                                    | PCIe Gen3 x16 (up to 4 instances)<br>SR-IOV (4 physical functions / 2k<br>virtual functions) on H-Tile devices<br>10GBASE-KR/40GBASE-KR4 FEC |
| Core clocking and PLLs                           | Global, quadrant and regional<br>clocks supported by fractional-<br>synthesis fPLLs | Programmable clock tree synthesis<br>supported by fractional synthesis<br>fPLLs and integer IO PLLs                                          |
| Register state readback and writeback            | Not available                                                                       | Non-destructive register state<br>readback and writeback for ASIC<br>prototyping and other applications                                      |

These innovations result in the following improvements:

- **Improved Core Logic Performance**: The HyperFlex core architecture combined with Intel's 14-nm Tri-Gate technology allows Intel Stratix 10 devices to achieve 2X the core performance compared to the previous generation
- **Lower Power**: Intel Stratix 10 devices use up to 70% lower power compared to the previous generation, enabled by 14-nm Intel Tri-Gate technology, the HyperFlex core architecture, and optional power saving features built into the architecture
- Higher Density: Intel Stratix 10 devices offer over five times the level of integration, with up to 5,500K logic elements (LEs) in a monolithic fabric, over 229 Mbits of embedded memory blocks (M20K), and 11,520 18x19 multipliers
- **Embedded Processing**: Intel Stratix 10 SoCs feature a Quad-Core 64-bit ARM Cortex-A53 processor optimized for power efficiency and software compatible with previous generation Arria and Cyclone SoC devices
- **Improved Transceiver Performance**: With up to 96 transceiver channels implemented in heterogeneous 3D SiP transceiver tiles, Intel Stratix 10 GX and SX devices support data rates up to 28.3 Gbps chip-to-chip and 28.3 Gbps across the backplane with signal conditioning circuits capable of equalizing over 30 dB of system loss
- **Improved DSP Performance**: The variable precision DSP block in Intel Stratix 10 devices features hard fixed and floating point capability, with up to 10 TeraFLOPS IEEE754 single-precision floating point performance

#### 1. Intel<sup>®</sup> Stratix<sup>®</sup> 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08



| Feature                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power management                           | <ul> <li>SmartVID controlled core voltage, standard power devices</li> <li>0.85-V fixed core voltage, low static power devices available</li> <li>Intel Quartus<sup>®</sup> Prime Pro Edition integrated power analysis</li> </ul>                                                                                                                                                                                                                                                                                          |  |
| High performance monolithic<br>core fabric | <ul> <li>HyperFlex core architecture with Hyper-Registers throughout the interconnect routing and at the inputs of all functional blocks</li> <li>Monolithic fabric minimizes compile times and increases logic utilization</li> <li>Enhanced adaptive logic module (ALM)</li> <li>Improved multi-track routing architecture reduces congestion and improves compile times</li> <li>Hierarchical core clocking architecture with programmable clock tree synthesis</li> <li>Fine-grained partial reconfiguration</li> </ul> |  |
| Internal memory blocks                     | <ul> <li>M20K—20-Kbit with hard ECC support</li> <li>MLAB—640-bit distributed LUTRAM</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Variable precision DSP<br>blocks           | <ul> <li>IEEE 754-compliant hard single-precision floating point capability</li> <li>Supports signal processing with precision ranging from 18x19 up to 54x54</li> <li>Native 27x27 and 18x19 multiply modes</li> <li>64-bit accumulator and cascade for systolic FIRs</li> <li>Internal coefficient memory banks</li> <li>Pre-adder/subtractor improves efficiency</li> <li>Additional pipeline register increases performance and reduces power</li> </ul>                                                                |  |
| Phase locked loops (PLL)                   | <ul> <li>Fractional synthesis PLLs (fPLL) support both fractional and integer modes</li> <li>Fractional mode with third-order delta-sigma modulation</li> <li>Precision frequency synthesis</li> <li>Integer PLLs adjacent to general purpose I/Os, support external memory, and LVDS interfaces, clock delay compensation, zero delay buffering</li> </ul>                                                                                                                                                                 |  |
| Core clock networks                        | <ul> <li>1 GHz fabric clocking</li> <li>667 MHz external memory interface clocking, supports 2666 Mbps DDR4 interface</li> <li>800 MHz LVDS interface clocking, supports 1600 Mbps LVDS interface</li> <li>Programmable clock tree synthesis, backwards compatible with global, regional and peripheral clock networks</li> <li>Clocks only synthesized where needed, to minimize dynamic power</li> </ul>                                                                                                                  |  |





| Feature            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration      | <ul> <li>Dedicated Secure Device Manager</li> <li>Software programmable device configuration</li> <li>Serial and parallel flash interface</li> <li>Configuration via protocol (CvP) using PCI Express Gen1/Gen2/Gen3</li> <li>Fine-grained partial reconfiguration of core fabric</li> <li>Dynamic reconfiguration of transceivers and PLLs</li> <li>Comprehensive set of security features including AES-256, SHA-256/384, and ECDSA-256/384 accelerators, and multi-factor authentication</li> <li>Physically Unclonable Function (PUF) service</li> </ul> |
| Packaging          | <ul> <li>Intel Embedded Multi-die Interconnect Bridge (EMIB) packaging technology</li> <li>Multiple devices with identical package footprints allows seamless migration across different device densities</li> <li>1.0 mm ball-pitch FBGA packaging</li> <li>Lead and lead-free package options</li> </ul>                                                                                                                                                                                                                                                   |
| Software and tools | <ul> <li>Intel Quartus Prime Pro Edition design suite with new compiler and Hyper-Aware design flow</li> <li>Fast Forward compiler to allow HyperFlex architecture performance exploration</li> <li>Transceiver toolkit</li> <li>Platform designer integration tool</li> <li>DSP Builder advanced blockset</li> <li>OpenCL<sup>™</sup> support</li> <li>SoC Embedded Design Suite (EDS)</li> </ul>                                                                                                                                                           |

# Table 3. Intel Stratix 10 SoC Specific Device Features

| SoC Subsystem            | Feature                                      | Description                                                                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hard Processor<br>System | Multi-processor unit (MPU) core              | <ul> <li>Quad-core ARM Cortex-A53 MPCore processor with ARM<br/>CoreSight debug and trace technology</li> <li>Scalar floating-point unit supporting single and double<br/>precision</li> <li>ARM NEON media processing engine for each processor</li> </ul> |
|                          | System Controllers                           | <ul><li>System Memory Management Unit (SMMU)</li><li>Cache Coherency Unit (CCU)</li></ul>                                                                                                                                                                   |
|                          | Layer 1 Cache                                | <ul><li> 32 KB L1 instruction cache with parity</li><li> 32 KB L1 data cache with ECC</li></ul>                                                                                                                                                             |
|                          | Layer 2 Cache                                | • 1 MB Shared L2 Cache with ECC                                                                                                                                                                                                                             |
|                          | On-Chip Memory                               | • 256 KB On-Chip RAM                                                                                                                                                                                                                                        |
|                          | Direct memory access (DMA) controller        | 8-Channel DMA                                                                                                                                                                                                                                               |
|                          | Ethernet media access controller<br>(EMAC)   | Three 10/100/1000 EMAC with integrated DMA                                                                                                                                                                                                                  |
|                          | USB On-The-Go controller (OTG)               | • 2 USB OTG with integrated DMA                                                                                                                                                                                                                             |
|                          | UART controller                              | 2 UART 16550 compatible                                                                                                                                                                                                                                     |
|                          | Serial Peripheral Interface (SPI) controller | • 4 SPI                                                                                                                                                                                                                                                     |
|                          | I <sup>2</sup> C controller                  | • 5 I <sup>2</sup> C controllers                                                                                                                                                                                                                            |
|                          | SD/SDIO/MMC controller                       | <ul> <li>1 eMMC version 4.5 with DMA and CE-ATA support</li> <li>SD, including eSD, version 3.0</li> <li>SDIO, including eSDIO, version 3.0</li> <li>CE-ATA - version 1.1</li> </ul>                                                                        |
|                          |                                              | continued                                                                                                                                                                                                                                                   |



| Intel Stratix 10     | Interconnects |              | PLLs  |          | Hard IP                |  |
|----------------------|---------------|--------------|-------|----------|------------------------|--|
| GX/SX Device<br>Name | Maximum GPIOs | Maximum XCVR | fPLLs | I/O PLLs | PCIe Hard IP<br>Blocks |  |
| GX 2800/<br>SX 2800  | 1160          | 96           | 32    | 24       | 4                      |  |
| GX 4500/<br>SX 4500  | 1640          | 24           | 8     | 34       | 1                      |  |
| GX 5500/<br>SX 5500  | 1640          | 24           | 8     | 34       | 1                      |  |

#### Table 6.Intel Stratix 10 GX/SX FPGA and SoC Family Package Plan, part 1

Cell legend: General Purpose I/Os, High-Voltage I/Os, LVDS Pairs, Transceivers (2) (3) (4) (5) (6) (7)

| Intel Stratix 10 GX/SX<br>Device Name | F1152<br>HF35<br>(35x35 mm <sup>2</sup> ) | F1760<br>NF43<br>(42.5x42.5 mm <sup>2</sup> ) | F1760<br>NF43<br>(42.5x42.5 mm <sup>2</sup> ) |
|---------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| GX 400/<br>SX 400                     | 392, 8, 192, 24                           |                                               |                                               |
| GX 650/<br>SX 650                     | 392, 8, 192, 24                           | 400, 16, 192, 48                              |                                               |
| GX 850/<br>SX 850                     |                                           |                                               | 688, 16, 336, 48                              |
| GX 1100/<br>SX 1100                   |                                           |                                               | 688, 16, 336, 48                              |
| GX 1650/<br>SX 1650                   |                                           |                                               | 688, 16, 336, 48                              |
| GX 2100/<br>SX 2100                   |                                           |                                               | 688, 16, 336, 48                              |
| GX 2500/<br>SX 2500                   |                                           |                                               | 688, 16, 336, 48                              |
| GX 2800/                              |                                           |                                               | 688, 16, 336, 48<br>continued.                |

<sup>&</sup>lt;sup>(2)</sup> All packages are ball grid arrays with 1.0 mm pitch.

- <sup>(3)</sup> High-Voltage I/O pins are used for 3 V and 2.5 V interfacing.
- <sup>(4)</sup> Each LVDS pair can be configured as either a differential input or a differential output.
- <sup>(5)</sup> High-Voltage I/O pins and LVDS pairs are included in the General Purpose I/O count. Transceivers are counted separately.
- <sup>(6)</sup> Each package column offers pin migration (common circuit board footprint) for all devices in the column.
- <sup>(7)</sup> Intel Stratix 10 GX devices are pin migratable with Intel Stratix 10 SX devices in the same package.



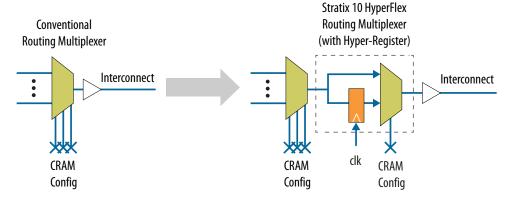
| Intel Stratix 10 GX/SX<br>Device Name | F1152<br>HF35<br>(35x35 mm <sup>2</sup> ) | F1760<br>NF43<br>(42.5x42.5 mm <sup>2</sup> ) | F1760<br>NF43<br>(42.5x42.5 mm <sup>2</sup> ) |
|---------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| SX 2800                               |                                           |                                               |                                               |
| GX 4500/<br>SX 4500                   |                                           |                                               |                                               |
| GX 5500/<br>SX 5500                   |                                           |                                               |                                               |

#### Table 7. Intel Stratix 10 GX/SX FPGA and SoC Family Package Plan, part 2

Cell legend: General Purpose I/Os, High-Voltage I/Os, LVDS Pairs, Transceivers (2) (3) (4) (5) (6) (7)

| Intel Stratix 10<br>GX/SX Device Name | F2112<br>NF48<br>(47.5x47.5 mm <sup>2</sup> ) | F2397<br>UF50<br>(50x50 mm <sup>2</sup> ) | F2912<br>HF55<br>(55x55 mm <sup>2</sup> ) |
|---------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|
| GX 400/<br>SX 400                     |                                               |                                           |                                           |
| GX 650/<br>SX 650                     |                                               |                                           |                                           |
| GX 850/<br>SX 850                     | 736, 16, 360, 48                              |                                           |                                           |
| GX 1100/<br>SX 1100                   | 736, 16, 360, 48                              |                                           |                                           |
| GX 1650/<br>SX 1650                   |                                               | 704, 32, 336, 96                          |                                           |
| GX 2100/<br>SX 2100                   |                                               | 704, 32, 336, 96                          |                                           |
| GX 2500/<br>SX 2500                   |                                               | 704, 32, 336, 96                          | 1160, 8, 576, 24                          |
| GX 2800/<br>SX 2800                   |                                               | 704, 32, 336, 96                          | 1160, 8, 576, 24                          |
| GX 4500/<br>SX 4500                   |                                               |                                           | 1640, 8, 816, 24                          |
| GX 5500/<br>SX 5500                   |                                               |                                           | 1640, 8, 816, 24                          |




# **1.6. HyperFlex Core Architecture**

Intel Stratix 10 FPGAs and SoCs are based on a monolithic core fabric featuring the new HyperFlex core architecture. The HyperFlex core architecture delivers 2X the clock frequency performance and up to 70% lower power compared to previous generation high-end FPGAs. Along with this performance breakthrough, the HyperFlex core architecture delivers a number of advantages including:

- Higher Throughput—Leverages 2X core clock frequency performance to obtain throughput breakthroughs
- Improved Power Efficiency—Uses reduced IP size, enabled by HyperFlex, to consolidate designs which previously spanned multiple devices into a single device, thereby reducing power by up to 70% versus previous generation devices
- Greater Design Functionality—Uses faster clock frequency to reduce bus widths and reduce IP size, freeing up additional FPGA resources to add greater functionality
- Increased Designer Productivity—Boosts performance with less routing congestion and fewer design iterations using Hyper-Aware design tools, obtaining greater timing margin for more rapid timing closure

In addition to the traditional user registers found in the Adaptive Logic Modules (ALM), the HyperFlex core architecture introduces additional bypassable registers everywhere throughout the fabric of the FPGA. These additional registers, called Hyper-Registers are available on every interconnect routing segment and at the inputs of all functional blocks.

#### Figure 3. Bypassable Hyper-Register



The Hyper-Registers enable the following key design techniques to achieve the 2X core performance increases:

- Fine grain Hyper-Retiming to eliminate critical paths
- Zero latency Hyper-Pipelining to eliminate routing delays
- Flexible Hyper-Optimization for best-in-class performance

By implementing these techniques in your design, the Hyper-Aware design tools automatically make use of the Hyper-Registers to achieve maximum core clock frequency.

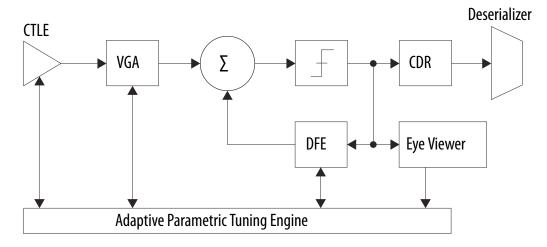


Within each transceiver tile, the transceivers are arranged in four banks of six PMA-PCS groups. A wide variety of bonded and non-bonded data rate configurations are possible within each bank, and within each tile, using a highly configurable clock distribution network.

## **1.8.1. PMA Features**

PMA channels are comprised of transmitter (TX), receiver (RX), and high speed clocking resources.

Intel Stratix 10 device features provide exceptional signal integrity at data rates up to 28.3 Gbps. Clocking options include ultra-low jitter LC tank-based (ATX) PLLs with optional fractional synthesis capability, channel PLLs operating as clock multiplier units (CMUs), and fractional synthesis PLLs (fPLLs).


- ATX PLL—can be configured in integer mode, or optionally, in a new fractional synthesis mode. Each ATX PLL spans the full frequency range of the supported data rate range providing a stable, flexible clock source with the lowest jitter.
- **CMU PLL**—when not being used as a transceiver, select PMA channels can be configured as channel PLLs operating as CMUs to provide an additional master clock source within the transceiver bank.
- **fPLL**—In addition, dedicated fPLLs are available with precision frequency synthesis capabilities. fPLLs can be used to synthesize multiple clock frequencies from a single reference clock source and replace multiple reference oscillators for multiprotocol and multi-rate applications.

On the receiver side, each PMA has an independent channel PLL that allows analog tracking for clock-data recovery. Each PMA also has advanced equalization circuits that compensate for transmission losses across a wide frequency spectrum.

- Variable Gain Amplifier (VGA)—to optimize the receiver's dynamic range
- **Continuous Time Linear Equalizer (CTLE)**—to compensate for channel losses with lowest power dissipation
- Decision Feedback Equalizer (DFE)—to provide additional equalization capability on backplanes even in the presence of crosstalk and reflections
- On-Die Instrumentation (ODI)—to provide on-chip eye monitoring capabilities (Eye Viewer). This capability helps to optimize link equalization parameters during board bring-up and supports in-system link diagnostics and equalization margin testing



#### Figure 7. Intel Stratix 10 Receiver Block Features



All link equalization parameters feature automatic adaptation using the new Advanced Digital Adaptive Parametric Tuning (ADAPT) circuit. This circuit is used to dynamically set DFE tap weights, adjust CTLE parameters, and optimize VGA gain and threshold voltage. Finally, optimal and consistent signal integrity is ensured by using the new hardened Precision Signal Integrity Calibration Engine (PreSICE) to automatically calibrate all transceiver circuit blocks on power-up. This gives the most link margin and ensures robust, reliable, and error-free operation.

#### Table 8.Transceiver PMA Features

| Feature                                                    | Capability                                                                                                                                                                                                |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Chip-to-Chip Data Rates                                    | 1 Gbps <sup>(8)</sup> to 28.3 Gbps (Intel Stratix 10 GX/SX devices)                                                                                                                                       |  |
| Backplane Support                                          | Drive backplanes at data rates up to 28.3 Gbps, including 10GBASE-KR compliance                                                                                                                           |  |
| Optical Module Support                                     | SFP+/SFP, XFP, CXP, QSFP/QSFP28, QSFPDD, CFP/CFP2/CFP4                                                                                                                                                    |  |
| Cable Driving Support                                      | SFP+ Direct Attach, PCI Express over cable, eSATA                                                                                                                                                         |  |
| Transmit Pre-Emphasis                                      | 5-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss                                                                                                                         |  |
| Continuous Time Linear<br>Equalizer (CTLE)                 | Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss                                                                                               |  |
| Decision Feedback Equalizer<br>(DFE)                       | 15 fixed tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments                                                                                                   |  |
| Advanced Digital Adaptive<br>Parametric Tuning (ADAPT)     | Fully digital adaptation engine to automatically adjust all link equalization parameters—<br>including CTLE, DFE, and VGA blocks—that provide optimal link margin without intervention<br>from user logic |  |
| Precision Signal Integrity<br>Calibration Engine (PreSICE) | Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance                                   |  |
| ATX Transmit PLLs                                          | Low jitter ATX (inductor-capacitor) transmit PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols, with optional fractional frequency synthesis capability       |  |
| Fractional PLLs                                            | On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost                                                                                                  |  |
|                                                            | continued                                                                                                                                                                                                 |  |

<sup>&</sup>lt;sup>(8)</sup> Stratix 10 transceivers can support data rates below 1 Gbps with over sampling.



| Feature                                                              | Capability                                                                                                                                                                          |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Digitally Assisted Analog<br>CDR                                     | Superior jitter tolerance with fast lock time                                                                                                                                       |  |
| On-Die Instrumentation—<br>Eye Viewer and Jitter Margin<br>Tool      | Simplify board bring-up, debug, and diagnostics with non-intrusive, high-resolution eye monitoring (Eye Viewer). Also inject jitter from transmitter to test link margin in system. |  |
| Dynamic Reconfiguration                                              | Allows for independent control of each transceiver channel Avalon memory-mapped interface for the most transceiver flexibility.                                                     |  |
| Multiple PCS-PMA and PCS-<br>Core to FPGA fabric interface<br>widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency                                                     |  |

## **1.8.2. PCS Features**

Intel Stratix 10 PMA channels interface with core logic through configurable and bypassable PCS interface layers.

The PCS contains multiple gearbox implementations to decouple the PMA and PCS interface widths. This feature provides the flexibility to implement a wide range of applications with 8, 10, 16, 20, 32, 40, or 64-bit interface width between each transceiver and the core logic.

The PCS also contains hard IP to support a variety of standard and proprietary protocols across a wide range of data rates and encoding schemes. The Standard PCS mode provides support for 8B/10B encoded applications up to 12.5 Gbps. The Enhanced PCS mode supports 64B/66B and 64B/67B encoded applications up to 17.4 Gbps. The enhanced PCS mode also includes an integrated 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) circuit. For highly customized implementations, a PCS Direct mode provides an interface up to 64 bits wide to allow for custom encoding and support for data rates up to 28.3 Gbps.

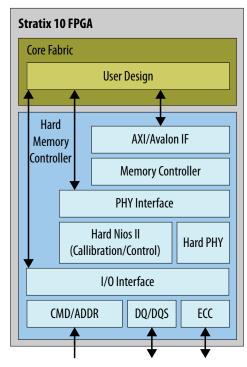
For more information about the PCS-Core interface or the double rate transfer mode, refer to the *Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide*, and the *Intel Stratix 10 E-Tile Transceiver PHY User Guide*.

| PCS Protocol<br>Support                         | Data Rate (Gbps) | Transmitter Data Path                                                                                                                                                     | Receiver Data Path                                                                                                                                                                                             |
|-------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard PCS                                    | 1 to 12.5        | Phase compensation FIFO, byte<br>serializer, 8B/10B encoder, bit-slipper,<br>channel bonding                                                                              | Rate match FIFO, word-aligner, 8B/10B decoder, byte deserializer, byte ordering                                                                                                                                |
| PCI Express<br>Gen1/Gen2 x1,<br>x2, x4, x8, x16 | 2.5 and 5.0      | Same as Standard PCS plus PIPE 2.0 interface to core                                                                                                                      | Same as Standard PCS plus PIPE 2.0 interface to core                                                                                                                                                           |
| PCI Express Gen3<br>x1, x2, x4, x8,<br>x16      | 8.0              | Phase compensation FIFO, byte<br>serializer, encoder, scrambler, bit-<br>slipper, gear box, channel bonding, and<br>PIPE 3.0 interface to core, auto speed<br>negotiation | Rate match FIFO (0-600 ppm mode),<br>word-aligner, decoder, descrambler,<br>phase compensation FIFO, block sync,<br>byte deserializer, byte ordering, PIPE<br>3.0 interface to core, auto speed<br>negotiation |
| CPRI                                            | 0.6144 to 9.8    | Same as Standard PCS plus deterministic latency serialization                                                                                                             | Same as Standard PCS plus deterministic latency deserialization                                                                                                                                                |
|                                                 | •                | •                                                                                                                                                                         | continued                                                                                                                                                                                                      |

#### Table 9. Transceiver PCS Features

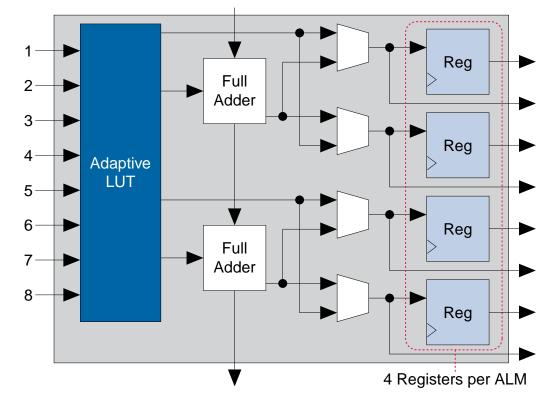


# 1.11. 10G Ethernet Hard IP


Intel Stratix 10 devices include IEEE 802.3 10-Gbps Ethernet (10GbE) compliant 10GBASE-R PCS and PMA hard IP. The scalable 10GbE hard IP supports multiple independent 10GbE ports while using a single PLL for all the 10GBASE-R PCS instantiations, which saves on core logic resources and clock networks.

The integrated serial transceivers simplify multi-port 10GbE systems compared to 10 GbE Attachment Unit Interface (XAUI) interfaces that require an external XAUI-to-10G PHY. Furthermore, the integrated transceivers incorporate signal conditioning circuits, which enable direct connection to standard 10G XFP and SFP+ pluggable optical modules. The transceivers also support backplane Ethernet applications and include a hard 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) circuit that can be used for both 10G and 40G applications. The integrated 10G Ethernet hard IP and 10G transceivers save external PHY cost, board space and system power. The 10G Ethernet PCS hard IP and 10GBASE-KR FEC are present in every transceiver channel.

# 1.12. External Memory and General Purpose I/O


Intel Stratix 10 devices offer substantial external memory bandwidth, with up to ten 72-bit wide DDR4 memory interfaces running at up to 2666 Mbps.

This bandwidth is provided along with the ease of design, lower power, and resource efficiencies of hardened high-performance memory controllers. The external memory interfaces can be configured up to a maximum width of 144 bits when using either hard or soft memory controllers.



#### Figure 8. Hard Memory Controller





#### Figure 9. Intel Stratix 10 FPGA and SoC ALM Block Diagram

Key features and capabilities of the ALM include:

- High register count with 4 registers per 8-input fracturable LUT, operating in conjunction with the new HyperFlex architecture, enables Intel Stratix 10 devices to maximize core performance at very high core logic utilization
- Implements select 7-input logic functions, all 6-input logic functions, and two independent functions consisting of smaller LUT sizes (such as two independent 4-input LUTs) to optimize core logic utilization

The Intel Quartus Prime software leverages the ALM logic structure to deliver the highest performance, optimal logic utilization, and lowest compile times. The Intel Quartus Prime software simplifies design reuse as it automatically maps legacy designs into the Intel Stratix 10 ALM architecture.

## 1.14. Core Clocking

Core clocking in Intel Stratix 10 devices makes use of programmable clock tree synthesis.

This technique uses dedicated clock tree routing and switching circuits, and allows the Intel Quartus Prime software to create the exact clock trees required for your design. Clock tree synthesis minimizes clock tree insertion delay, reduces dynamic power dissipation in the clock tree and allows greater clocking flexibility in the core while still maintaining backwards compatibility with legacy global and regional clocking schemes.



The core clock network in Intel Stratix 10 devices supports the new HyperFlex core architecture at clock rates up to 1 GHz. It also supports the hard memory controllers up to 2666 Mbps with a quarter rate transfer to the core. The core clock network is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs.

# **1.15.** Fractional Synthesis PLLs and I/O PLLs

Intel Stratix 10 devices have up to 32 fractional synthesis PLLs (fPLL) available for use with transceivers or in the core fabric.

The fPLLs are located in the 3D SiP transceiver H-tiles, eight per tile, adjacent to the transceiver channels. The fPLLs can be used to reduce both the number of oscillators required on the board and the number of clock pins required, by synthesizing multiple clock frequencies from a single reference clock source. In addition to synthesizing reference clock frequencies for the transceiver transmit PLLs, the fPLLs can also be used directly for transmit clocking. Each fPLL can be independently configured for conventional integer mode, or enhanced fractional synthesis mode with third-order delta-sigma modulation.

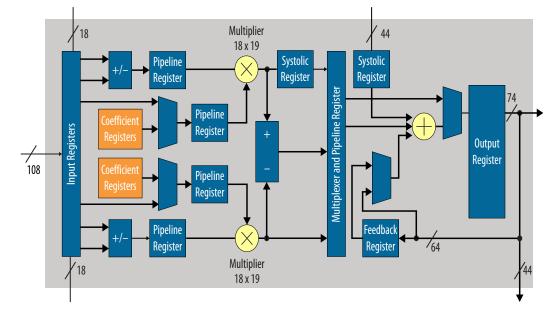
In addition to the fPLLs, Intel Stratix 10 devices contain up to 34 integer I/O PLLs (IOPLLs) available for general purpose use in the core fabric and for simplifying the design of external memory interfaces and high-speed LVDS interfaces. The IOPLLs are located in each bank of 48 general purpose I/O, 1 per I/O bank, adjacent to the hard memory controllers and LVDS SerDes in each I/O bank. This makes it easier to close timing because the IOPLLs are tightly coupled with the I/Os that need to use them. The IOPLLs can be used for general purpose applications in the core such as clock network delay compensation and zero-delay clock buffering.

# 1.16. Internal Embedded Memory

Intel Stratix 10 devices contain two types of embedded memory blocks: M20K (20-Kbit) and MLAB (640-bit).

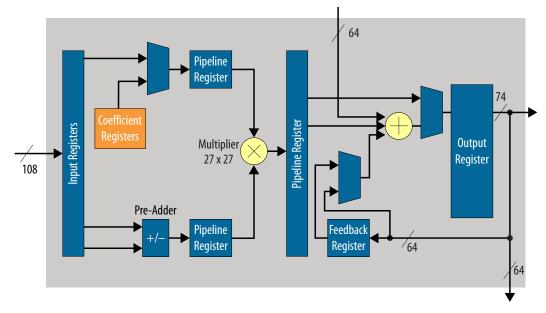
The M20K and MLAB blocks are familiar block sizes carried over from previous Intel device families. The MLAB blocks are ideal for wide and shallow memories, while the M20K blocks are intended to support larger memory configurations and include hard ECC. Both M20K and MLAB embedded memory blocks can be configured as a single-port or dual-port RAM, FIFO, ROM, or shift register. These memory blocks are highly flexible and support a number of memory configurations as shown in Table 11 on page 25.

#### Table 11. Internal Embedded Memory Block Configurations

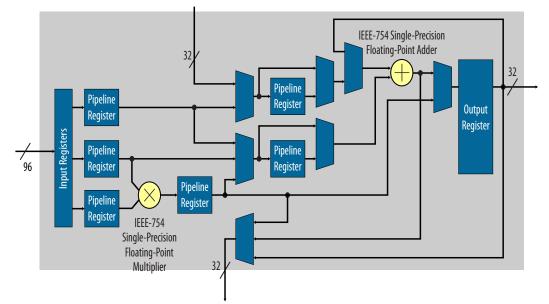

| MLAB (640 bits)                                  | M20K (20 Kbits)                                          |
|--------------------------------------------------|----------------------------------------------------------|
| 64 x 10 (supported through emulation)<br>32 x 20 | 2K x 10 (or x8)<br>1K x 20 (or x16)<br>512 x 40 (or x32) |

# **1.17. Variable Precision DSP Block**

The Intel Stratix 10 DSP blocks are based upon the Variable Precision DSP Architecture used in Intel's previous generation devices. They feature hard fixed point and IEEE-754 compliant floating point capability.




The DSP blocks can be configured to support signal processing with precision ranging from 18x19 up to 54x54. A pipeline register has been added to increase the maximum operating frequency of the DSP block and reduce power consumption.




#### Figure 10. DSP Block: Standard Precision Fixed Point Mode

#### Figure 11. DSP Block: High Precision Fixed Point Mode







#### Figure 12. DSP Block: Single Precision Floating Point Mode

Each DSP block can be independently configured at compile time as either dual 18x19 or a single 27x27 multiply accumulate. With a dedicated 64-bit cascade bus, multiple variable precision DSP blocks can be cascaded to implement even higher precision DSP functions efficiently.

In floating point mode, each DSP block provides one single precision floating point multiplier and adder. Floating point additions, multiplications, mult-adds and mult-accumulates are supported.

The following table shows how different precisions are accommodated within a DSP block, or by utilizing multiple blocks.

| Multiplier Size                    | DSP Block Resources                                                                      | Expected Usage                  |
|------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|
| 18x19 bits                         | 1/2 of Variable Precision DSP Block                                                      | Medium precision fixed point    |
| 27x27 bits                         | 1 Variable Precision DSP Block                                                           | High precision fixed point      |
| 19x36 bits                         | 1 Variable Precision DSP Block with external adder                                       | Fixed point FFTs                |
| 36x36 bits                         | 2 Variable Precision DSP Blocks with external adder                                      | Very high precision fixed point |
| 54x54 bits                         | 4 Variable Precision DSP Blocks with external adder                                      | Double Precision floating point |
| Single Precision<br>floating point | 1 Single Precision floating point adder, 1 Single<br>Precision floating point multiplier | Floating point                  |

#### Table 12. Variable Precision DSP Block Configurations



| Feature                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | <ul> <li>Superscalar, variable length, out-of-order pipeline with dynamic branch prediction</li> <li>Improved ARM NEON<sup>™</sup> media processing engine</li> <li>Single- and double-precision floating-point unit</li> <li>CoreSight<sup>™</sup> debug and trace technology</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| System Memory<br>Management Unit                      | Enables a unified memory model and extends hardware virtualization into peripherals implemented in the FPGA fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cache Coherency unit                                  | Changes in shared data stored in cache are propagated throughout the system providing bi-directional coherency for co-processing elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cache                                                 | <ul> <li>L1 Cache <ul> <li>32 KB of instruction cache w/ parity check</li> <li>32 KB of L1 data cache w /ECC</li> <li>Parity checking</li> </ul> </li> <li>L2 Cache <ul> <li>1MB shared</li> <li>8-way set associative</li> <li>SEU Protection with parity on TAG ram and ECC on data RAM</li> <li>Cache lockdown support</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| On-Chip Memory                                        | 256 KB of scratch on-chip RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| External SDRAM and Flash<br>Memory Interfaces for HPS | <ul> <li>Hard memory controller with support for DDR4, DDR3, LPDDR3         <ul> <li>40-bit (32-bit + 8-bit ECC) with select packages supporting 72-bit (64-bit + 8-bit ECC)</li> <li>Support for up to 2666 Mbps DDR4 and 2166 Mbps DDR3 frequencies</li> <li>Error correction code (ECC) support including calculation, error correction, writeback correction, and error counters</li> <li>Software Configurable Priority Scheduling on individual SDRAM bursts</li> <li>Fully programmable timing parameter support for all JEDEC-specified timing parameters</li> <li>Multiport front-end (MPFE) scheduler interface to the hard memory controller, which supports the AXI® Quality of Service (QoS) for interface to the FPGA fabric</li> </ul> </li> <li>NAND flash controller         <ul> <li>ONFI 1.0</li> <li>Integrated descriptor based with DMA</li> <li>Programmable hardware ECC support</li> <li>Support for 8- and 16-bit Flash devices</li> </ul> </li> <li>Secure Digital SD/SDIO/MMC controller         <ul> <li>eMMC 4.5</li> <li>Integrated descriptor based DMA</li> <li>CE-ATA digital commands supported</li> <li>50 MHz operating frequency</li> </ul> </li> <li>Direct memory access (DMA) controller         <ul> <li>8-channel</li> <li>Supports up to 32 peripheral handshake interface</li> </ul> </li> </ul> |

#### 1. Intel<sup>®</sup> Stratix<sup>®</sup> 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08



| Feature                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Interface<br>Controllers | <ul> <li>Three 10/100/1000 Ethernet media access controls (MAC) with integrated DMA <ul> <li>Supports RGMII and RMII external PHY Interfaces</li> <li>Option to support other PHY interfaces through FPGA logic</li> <li>GMII</li> <li>MII</li> <li>RMII (requires GMII to RMII adapter)</li> <li>RGMII (requires GMII to RGMII adapter)</li> <li>SGMII (requires GMII to SGMII adapter)</li> <li>SUpports IEEE 1588-2002 and IEEE 1588-2008 standards for precision networked clock synchronization</li> <li>Supports IEEE 802.1Q VLAN tag detection for reception frames</li> <li>Supports IEEE 402.1Q VLAN tag detection for reception frames</li> <li>Supports Ethernet AVB standard</li> </ul> Two USB On-the-Go (OTG) controllers with DMA <ul> <li>Dual-Role Device (device and host functions)</li> <li>High-speed (12 Mbps)</li> <li>Low-speed (1.5 Mbps)</li> <li>Supports IDS 1.1 (full-speed and low-speed)</li> </ul> Integrated descriptor-based scatter-gather DMA <ul> <li>Support for external ULPI PHY</li> <li>Up to 16 bidirectional endpoints, including control endpoint</li> <li>Up to 16 host channels</li> <li>Supports to TG 1.3 and OTG 2.0 modes</li> </ul> Five I<sup>2</sup>C controllers (three can be used by EMAC for MIO to external PHY) <ul> <li>Support both 100Kbps and 400Kbps modes</li> <li>Support Master and Slave operating mode</li> <li>Two UART 16550 compatible</li> <li>Programmable baud rate up to 115.2Kbaud</li> <li>Four serial peripheral interfaces (SPI) (2 Master, 2 Slaves)</li> <li>Full and Half duplex</li> </ul></li></ul> |
| Timers and I/O                         | <ul> <li>Timers <ul> <li>4 general-purpose timers</li> <li>4 watchdog timers</li> </ul> </li> <li>48 HPS direct I/O allow HPS peripherals to connect directly to I/O</li> <li>Up to three IO48 banks may be assigned to HPS for HPS DDR access</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Interconnect to Logic Core             | <ul> <li>FPGA-to-HPS Bridge         <ul> <li>Allows IP bus masters in the FPGA fabric to access to HPS bus slaves</li> <li>Configurable 32-, 64-, or 128-bit AMBA AXI interface</li> </ul> </li> <li>HPS-to-FPGA Bridge         <ul> <li>Allows HPS bus masters to access bus slaves in FPGA fabric</li> <li>Configurable 32-, 64-, or 128-bit AMBA AXI interface allows high-bandwidth HPS master transactions to FPGA fabric</li> <li>HPS-to-SDM and SDM-to-HPS Bridges                 <ul> <li>Allows the HPS to reach the SDM block and the SDM to bootstrap the HPS</li> <li>Light Weight HPS-to-FPGA Bridge</li> <li>Light weight 32-bit AXI interface suitable for low-latency register accesses from HPS to soft peripherals in FPGA fabric</li> <li>FPGA-to-HPS SDRAM Bridge</li></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



## 1.19. Power Management

Intel Stratix 10 devices leverage the advanced Intel 14-nm Tri-Gate process technology, the all new HyperFlex core architecture to enable Hyper-Folding, power gating, and several optional power reduction techniques to reduce total power consumption by as much as 70% compared to previous generation high-performance Stratix V devices.

Intel Stratix 10 standard power devices (-V) are SmartVID devices. The core voltage supplies (VCC and VCCP) for each SmartVID device must be driven by a PMBus voltage regulator dedicated to that Intel Stratix 10 device. Use of a PMBus voltage regulator for each SmartVID (-V) device is mandatory; it is not an option. A code is programmed into each SmartVID device during manufacturing that allows the PMBus voltage regulator to operate at the optimum core voltage to meet the device performance specifications.

With the new HyperFlex core architecture, designs can run 2X faster than previous generation FPGAs. With 2X performance and same required throughput, architects can cut the data path width in half to save power. This optimization is called Hyper-Folding. Additionally, power gating reduces static power of unused resources in the FPGA by powering them down. The Intel Quartus Prime software automatically powers down specific unused resource blocks such as DSP and M20K blocks, at configuration time.

The optional power reduction techniques in Intel Stratix 10 devices include:

• Available Low Static Power Devices—Intel Stratix 10 devices are available with a fixed core voltage that provides lower static power than the SmartVID standard power devices, while maintaining device performance

Furthermore, Intel Stratix 10 devices feature Intel's industry-leading low power transceivers and include a number of hard IP blocks that not only reduce logic resources but also deliver substantial power savings compared to soft implementations. In general, hard IP blocks consume up to 50% less power than the equivalent soft logic implementations.

## **1.20.** Device Configuration and Secure Device Manager (SDM)

All Intel Stratix 10 devices contain a Secure Device Manager (SDM), which is a dedicated triple-redundant processor that serves as the point of entry into the device for all JTAG and configuration commands. The SDM also bootstraps the HPS in SoC devices ensuring that the HPS can boot using the same security features that the FPGA devices have.



The SDM enables robust, secure, fully-authenticated device configuration. It also allows for customization of the configuration scheme, which can enhance device security. For configuration and reconfiguration, this approach offers a variety of advantages:

- Dedicated secure configuration manager
- Reduced device configuration time, because sectors are configured in parallel
- Updateable configuration process
- Reconfiguration of one or more sectors independent of all other sectors
- Zeroization of individual sectors or the complete device

The SDM also provides additional capabilities such as register state readback and writeback to support ASIC prototyping and other applications.

## **1.21. Device Security**

Building on top of the robust security features present in the previous generation devices, Intel Stratix 10 FPGAs and SoCs include a number of new and innovative security enhancements. These features are also managed by the SDM, tightly coupling device configuration and reconfiguration with encryption, authentication, key storage and anti-tamper services.

Security services provided by the SDM include:

- Bitstream encryption
- Multi-factor authentication
- Hard encryption and authentication acceleration; AES-256, SHA-256/384, ECDSA-256/384
- Volatile and non-volatile encryption key storage and management
- Boot code authentication for the HPS
- Physically Unclonable Function (PUF) service
- Updateable configuration process
- Secure device maintenance and upgrade functions
- Side channel attack protection
- Scripted response to sensor inputs and security attacks, including selective sector zeroization
- Readback, JTAG and test mode disable
- Enhanced response to single-event upsets (SEU)

The SDM and associated security services provide a robust, multi-layered security solution for your Intel Stratix 10 design.

## **1.22. Configuration via Protocol Using PCI Express**

Configuration via protocol using PCI Express allows the FPGA to be configured across the PCI Express bus, simplifying the board layout and increasing system integration. Making use of the embedded PCI Express hard IP operating in autonomous mode before the FPGA is configured, this technique allows the PCI Express bus to be