



Welcome to **E-XFL.COM** 

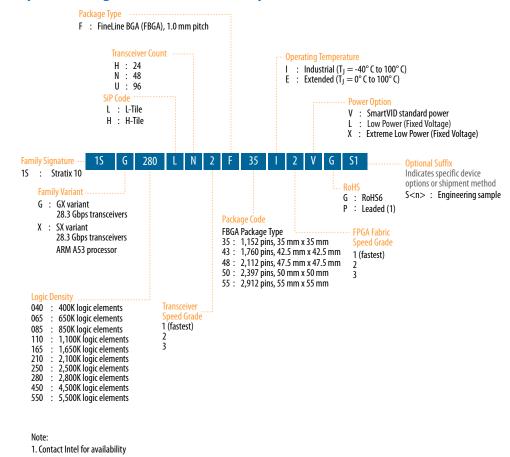
**Embedded - System On Chip (SoC):** The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)?** 

**System On Chip (SoC)** integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

| Details                 |                                                                            |
|-------------------------|----------------------------------------------------------------------------|
| Product Status          | Active                                                                     |
| Architecture            | MCU, FPGA                                                                  |
| Core Processor          | Quad ARM® Cortex®-A53 MPCore™ with CoreSight™                              |
| Flash Size              | -                                                                          |
| RAM Size                | 256KB                                                                      |
| Peripherals             | DMA, WDT                                                                   |
| Connectivity            | EBI/EMI, Ethernet, I <sup>2</sup> C, MMC/SD/SDIO, SPI, UART/USART, USB OTG |
| Speed                   | 1.5GHz                                                                     |
| Primary Attributes      | FPGA - 2500K Logic Elements                                                |
| Operating Temperature   | -40°C ~ 100°C (TJ)                                                         |
| Package / Case          | 1760-BBGA, FCBGA                                                           |
| Supplier Device Package | 1760-FBGA, FC (42.5x42.5)                                                  |
| Purchase URL            | https://www.e-xfl.com/product-detail/intel/1sx250ln2f43i1vg                |


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### 1.1.1. Available Options

Figure 1. Sample Ordering Code and Available Options for Intel Stratix 10 Devices



#### 1.2. Innovations in Intel Stratix 10 FPGAs and SoCs

Intel Stratix 10 FPGAs and SoCs deliver many significant improvements over the previous generation high-performance Stratix V FPGAs.

Table 1. Key Features of Intel Stratix 10 Devices Compared to Stratix V Devices

| Feature             | Stratix V FPGAs                                               | Intel Stratix 10 FPGAs and SoCs                                         |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|
| Process technology  | 28-nm TSMC (planar transistor)                                | 14 nm Intel Tri-Gate (FinFET)                                           |
| Hard processor core | None                                                          | Quad-core 64-bit ARM Cortex-A53 (SoC only)                              |
| Core architecture   | Conventional core architecture with conventional interconnect | HyperFlex core architecture with<br>Hyper-Registers in the interconnect |
| Core performance    | 500 MHz                                                       | 1 GHz                                                                   |
| Power dissipation   | 1x                                                            | As low as 0.3x                                                          |
|                     |                                                               | continued                                                               |



| Feature                                      | Stratix V FPGAs                                                              | Intel Stratix 10 FPGAs and SoCs                                                                                                              |
|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Logic density                                | 952 KLE (monolithic)                                                         | 5,500 KLE (monolithic)                                                                                                                       |
| Embedded memory (M20K)                       | 52 Mbits                                                                     | 229 Mbits                                                                                                                                    |
| 18x19 multipliers                            | 3,926<br>Note: Multiplier is 18x18 in<br>Stratix V devices.                  | 11,520 Note: Multiplier is 18x19 in Intel Stratix 10 devices.                                                                                |
| Floating point DSP capability                | Up to 1 TFLOP, requires soft floating point adder and multiplier             | Up to 10 TFLOPS, hard IEEE 754 compliant single precision floating point adder and multiplier                                                |
| Maximum transceivers                         | 66                                                                           | 96                                                                                                                                           |
| Maximum transceiver data rate (chip-to-chip) | 28.05 Gbps                                                                   | 28.3 Gbps L-Tile<br>28.3 Gbps H-Tile                                                                                                         |
| Maximum transceiver data rate (backplane)    | 12.5 Gbps                                                                    | 12.5 Gbps L-Tile<br>28.3 Gbps H-Tile                                                                                                         |
| Hard memory controller                       | None                                                                         | DDR4 @ 1333 MHz/2666 Mbps<br>DDR3 @ 1067 MHz/2133 Mbps                                                                                       |
| Hard protocol IP                             | PCIe Gen3 x8 (up to 4 instances)                                             | PCIe Gen3 x16 (up to 4 instances)<br>SR-IOV (4 physical functions / 2k<br>virtual functions) on H-Tile devices<br>10GBASE-KR/40GBASE-KR4 FEC |
| Core clocking and PLLs                       | Global, quadrant and regional clocks supported by fractional-synthesis fPLLs | Programmable clock tree synthesis supported by fractional synthesis fPLLs and integer IO PLLs                                                |
| Register state readback and writeback        | Not available                                                                | Non-destructive register state<br>readback and writeback for ASIC<br>prototyping and other applications                                      |

These innovations result in the following improvements:

- **Improved Core Logic Performance**: The HyperFlex core architecture combined with Intel's 14-nm Tri-Gate technology allows Intel Stratix 10 devices to achieve 2X the core performance compared to the previous generation
- **Lower Power**: Intel Stratix 10 devices use up to 70% lower power compared to the previous generation, enabled by 14-nm Intel Tri-Gate technology, the HyperFlex core architecture, and optional power saving features built into the architecture
- Higher Density: Intel Stratix 10 devices offer over five times the level of integration, with up to 5,500K logic elements (LEs) in a monolithic fabric, over 229 Mbits of embedded memory blocks (M20K), and 11,520 18x19 multipliers
- **Embedded Processing**: Intel Stratix 10 SoCs feature a Quad-Core 64-bit ARM Cortex-A53 processor optimized for power efficiency and software compatible with previous generation Arria and Cyclone SoC devices
- Improved Transceiver Performance: With up to 96 transceiver channels implemented in heterogeneous 3D SiP transceiver tiles, Intel Stratix 10 GX and SX devices support data rates up to 28.3 Gbps chip-to-chip and 28.3 Gbps across the backplane with signal conditioning circuits capable of equalizing over 30 dB of system loss
- Improved DSP Performance: The variable precision DSP block in Intel Stratix 10 devices features hard fixed and floating point capability, with up to 10 TeraFLOPS IEEE754 single-precision floating point performance

#### 1. Intel® Stratix® 10 GX/SX Device Overview



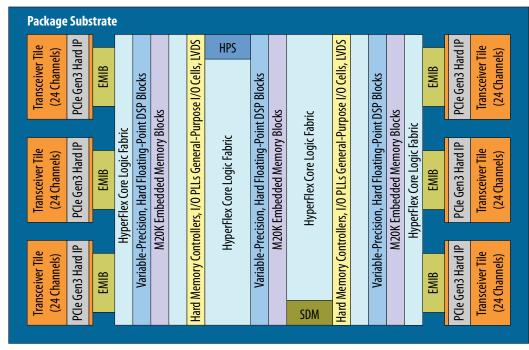


| Feature                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power management                        | <ul> <li>SmartVID controlled core voltage, standard power devices</li> <li>0.85-V fixed core voltage, low static power devices available</li> <li>Intel Quartus<sup>®</sup> Prime Pro Edition integrated power analysis</li> </ul>                                                                                                                                                                                                                              |  |
| High performance monolithic core fabric | HyperFlex core architecture with Hyper-Registers throughout the interconnect routing and at the inputs of all functional blocks  Monolithic fabric minimizes compile times and increases logic utilization  Enhanced adaptive logic module (ALM)  Improved multi-track routing architecture reduces congestion and improves compile times  Hierarchical core clocking architecture with programmable clock tree synthesis  Fine-grained partial reconfiguration |  |
| Internal memory blocks                  | M20K—20-Kbit with hard ECC support     MLAB—640-bit distributed LUTRAM                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Variable precision DSP blocks           | IEEE 754-compliant hard single-precision floating point capability Supports signal processing with precision ranging from 18x19 up to 54x54 Native 27x27 and 18x19 multiply modes 64-bit accumulator and cascade for systolic FIRs Internal coefficient memory banks Pre-adder/subtractor improves efficiency Additional pipeline register increases performance and reduces power                                                                              |  |
| Phase locked loops (PLL)                | <ul> <li>Fractional synthesis PLLs (fPLL) support both fractional and integer modes</li> <li>Fractional mode with third-order delta-sigma modulation</li> <li>Precision frequency synthesis</li> <li>Integer PLLs adjacent to general purpose I/Os, support external memory, and LVDS interfaces, clock delay compensation, zero delay buffering</li> </ul>                                                                                                     |  |
| Core clock networks                     | 1 GHz fabric clocking     667 MHz external memory interface clocking, supports 2666 Mbps DDR4 interface     800 MHz LVDS interface clocking, supports 1600 Mbps LVDS interface     Programmable clock tree synthesis, backwards compatible with global, regional and peripheral clock networks     Clocks only synthesized where needed, to minimize dynamic power                                                                                              |  |



| Feature            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration      | <ul> <li>Dedicated Secure Device Manager</li> <li>Software programmable device configuration</li> <li>Serial and parallel flash interface</li> <li>Configuration via protocol (CvP) using PCI Express Gen1/Gen2/Gen3</li> <li>Fine-grained partial reconfiguration of core fabric</li> <li>Dynamic reconfiguration of transceivers and PLLs</li> <li>Comprehensive set of security features including AES-256, SHA-256/384, and ECDSA-256/384 accelerators, and multi-factor authentication</li> <li>Physically Unclonable Function (PUF) service</li> </ul> |
| Packaging          | Intel Embedded Multi-die Interconnect Bridge (EMIB) packaging technology     Multiple devices with identical package footprints allows seamless migration across different device densities     1.0 mm ball-pitch FBGA packaging     Lead and lead-free package options                                                                                                                                                                                                                                                                                      |
| Software and tools | <ul> <li>Intel Quartus Prime Pro Edition design suite with new compiler and Hyper-Aware design flow</li> <li>Fast Forward compiler to allow HyperFlex architecture performance exploration</li> <li>Transceiver toolkit</li> <li>Platform designer integration tool</li> <li>DSP Builder advanced blockset</li> <li>OpenCL™ support</li> <li>SoC Embedded Design Suite (EDS)</li> </ul>                                                                                                                                                                      |

**Intel Stratix 10 SoC Specific Device Features** Table 3.


| SoC Subsystem            | Feature                                      | Description                                                                                                                                                                                                                                         |
|--------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hard Processor<br>System | Multi-processor unit (MPU) core              | <ul> <li>Quad-core ARM Cortex-A53 MPCore processor with ARM CoreSight debug and trace technology</li> <li>Scalar floating-point unit supporting single and double precision</li> <li>ARM NEON media processing engine for each processor</li> </ul> |
|                          | System Controllers                           | System Memory Management Unit (SMMU)     Cache Coherency Unit (CCU)                                                                                                                                                                                 |
|                          | Layer 1 Cache                                | <ul><li> 32 KB L1 instruction cache with parity</li><li> 32 KB L1 data cache with ECC</li></ul>                                                                                                                                                     |
|                          | Layer 2 Cache                                | 1 MB Shared L2 Cache with ECC                                                                                                                                                                                                                       |
|                          | On-Chip Memory                               | 256 KB On-Chip RAM                                                                                                                                                                                                                                  |
|                          | Direct memory access (DMA) controller        | 8-Channel DMA                                                                                                                                                                                                                                       |
|                          | Ethernet media access controller (EMAC)      | Three 10/100/1000 EMAC with integrated DMA                                                                                                                                                                                                          |
|                          | USB On-The-Go controller (OTG)               | 2 USB OTG with integrated DMA                                                                                                                                                                                                                       |
|                          | UART controller                              | 2 UART 16550 compatible                                                                                                                                                                                                                             |
|                          | Serial Peripheral Interface (SPI) controller | • 4 SPI                                                                                                                                                                                                                                             |
|                          | I <sup>2</sup> C controller                  | 5 I <sup>2</sup> C controllers                                                                                                                                                                                                                      |
|                          | SD/SDIO/MMC controller                       | <ul> <li>1 eMMC version 4.5 with DMA and CE-ATA support</li> <li>SD, including eSD, version 3.0</li> <li>SDIO, including eSDIO, version 3.0</li> <li>CE-ATA - version 1.1</li> </ul>                                                                |
|                          |                                              | continued                                                                                                                                                                                                                                           |



| SoC Subsystem                   | Feature                    | Description                                                                       |
|---------------------------------|----------------------------|-----------------------------------------------------------------------------------|
|                                 | NAND flash controller      | 1 ONFI 1.0, 8- and 16-bit support                                                 |
|                                 | General-purpose I/O (GPIO) | Maximum of 48 software programmable GPIO                                          |
|                                 | Timers                     | 4 general-purpose timers     4 watchdog timers                                    |
| Secure Device<br>Manager        | Security                   | Secure boot     Advanced Encryption Standard (AES) and authentication (SHA/ECDSA) |
| External<br>Memory<br>Interface | External Memory Interface  | Hard Memory Controller with DDR4 and DDR3, and LPDDR3                             |

# 1.4. Intel Stratix 10 Block Diagram

Figure 2. Intel Stratix 10 FPGA and SoC Architecture Block Diagram



HPS: Quad ARM Cortex-A53 Hard Processor System

SDM: Secure Device Manager

EMIB: Embedded Multi-Die Interconnect Bridge

# 1.5. Intel Stratix 10 FPGA and SoC Family Plan

<sup>(1)</sup> The number of 27x27 multipliers is one-half the number of 18x19 multipliers.



Table 4. Intel Stratix 10 GX/SX FPGA and SoC Family Plan—FPGA Core (part 1)

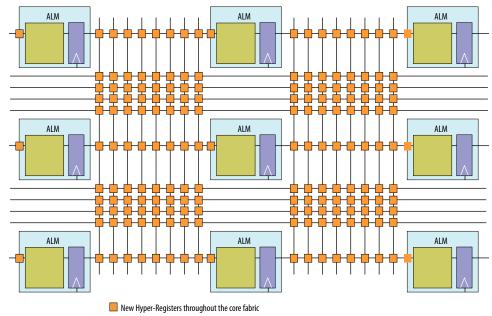
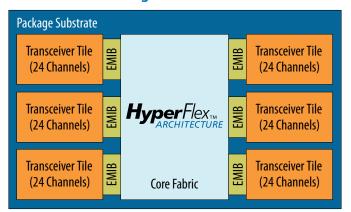

| Intel Stratix 10<br>GX/SX Device<br>Name | Logic Elements<br>(KLE) | M20K Blocks | M20K Mbits | MLAB Counts | MLAB Mbits | 18x19 Multi-<br>pliers <sup>(1)</sup> |
|------------------------------------------|-------------------------|-------------|------------|-------------|------------|---------------------------------------|
| GX 400/<br>SX 400                        | 378                     | 1,537       | 30         | 3,204       | 2          | 1,296                                 |
| GX 650/<br>SX 650                        | 612                     | 2,489       | 49         | 5,184       | 3          | 2,304                                 |
| GX 850/<br>SX 850                        | 841                     | 3,477       | 68         | 7,124       | 4          | 4,032                                 |
| GX 1100/<br>SX 1100                      | 1,092                   | 4,401       | 86         | 9,540       | 6          | 5,040                                 |
| GX 1650/<br>SX 1650                      | 1,624                   | 5,851       | 114        | 13,764      | 8          | 6,290                                 |
| GX 2100/<br>SX 2100                      | 2,005                   | 6,501       | 127        | 17,316      | 11         | 7,488                                 |
| GX 2500/<br>SX 2500                      | 2,422                   | 9,963       | 195        | 20,529      | 13         | 10,022                                |
| GX 2800/<br>SX 2800                      | 2,753                   | 11,721      | 229        | 23,796      | 15         | 11,520                                |
| GX 4500/<br>SX 4500                      | 4,463                   | 7,033       | 137        | 37,821      | 23         | 3,960                                 |
| GX 5500/<br>SX 5500                      | 5,510                   | 7,033       | 137        | 47,700      | 29         | 3,960                                 |

Table 5. Intel Stratix 10 GX/SX FPGA and SoC Family Plan—Interconnects, PLLs and Hard IP (part 2)

| Intel Stratix 10     | Interco       | onnects      |       | PLLs     | Hard IP                |
|----------------------|---------------|--------------|-------|----------|------------------------|
| GX/SX Device<br>Name | Maximum GPIOs | Maximum XCVR | fPLLs | I/O PLLs | PCIe Hard IP<br>Blocks |
| GX 400/<br>SX 400    | 392           | 24           | 8     | 8        | 1                      |
| GX 650/<br>SX 650    | 400           | 48           | 16    | 8        | 2                      |
| GX 850/<br>SX 850    | 736           | 48           | 16    | 15       | 2                      |
| GX 1100/<br>SX 1100  | 736           | 48           | 16    | 15       | 2                      |
| GX 1650/<br>SX 1650  | 704           | 96           | 32    | 14       | 4                      |
| GX 2100/<br>SX 2100  | 704           | 96           | 32    | 14       | 4                      |
| GX 2500/<br>SX 2500  | 1160          | 96           | 32    | 24       | 4                      |
|                      |               |              |       |          | continued              |



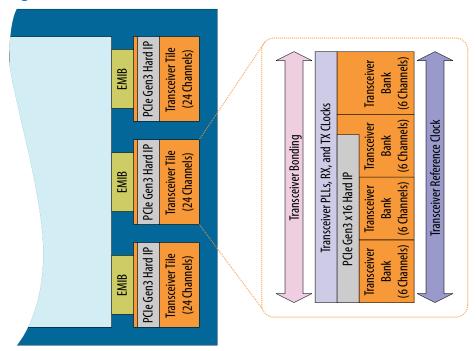





### 1.7. Heterogeneous 3D SiP Transceiver Tiles

Intel Stratix 10 FPGAs and SoCs feature power efficient, high bandwidth, low latency transceivers. The transceivers are implemented on heterogeneous 3D System-in-Package (SiP) transceiver tiles, each containing 24 full-duplex transceiver channels. In addition to providing a high-performance transceiver solution to meet current connectivity needs, this allows for future flexibility and scalability as data rates, modulation schemes, and protocol IPs evolve.

Figure 5. Monolithic Core Fabric and Heterogeneous 3D SiP Transceiver Tiles






Each transceiver tile contains:

- 24 full-duplex transceiver channels (PMA and PCS)
- · Reference clock distribution network
- Transmit PLLs
- High-speed clocking and bonding networks
- One instance of PCI Express hard IP

Figure 6. Heterogeneous 3D SiP Transceiver Tile Architecture



### 1.8. Intel Stratix 10 Transceivers

Intel Stratix 10 devices offer up to 96 total full-duplex transceiver channels. These channels provide continuous data rates from 1 Gbps to 28.3 Gbps for chip-to-chip, chip-to-module, and backplane applications. In each device, two thirds of the transceivers can be configured up to the maximum data rate of 28.3 Gbps to drive 100G interfaces and C form-factor pluggable CFP2/CFP4 optical modules. For longer-reach backplane driving applications, advanced adaptive equalization circuits are used to equalize over 30 dB of system loss.

All transceiver channels feature a dedicated Physical Medium Attachment (PMA) and a hardened Physical Coding Sublayer (PCS).

- The PMA provides primary interfacing capabilities to physical channels.
- The PCS typically handles encoding/decoding, word alignment, and other preprocessing functions before transferring data to the FPGA core fabric.



Within each transceiver tile, the transceivers are arranged in four banks of six PMA-PCS groups. A wide variety of bonded and non-bonded data rate configurations are possible within each bank, and within each tile, using a highly configurable clock distribution network.

#### 1.8.1. PMA Features

PMA channels are comprised of transmitter (TX), receiver (RX), and high speed clocking resources.

Intel Stratix 10 device features provide exceptional signal integrity at data rates up to 28.3 Gbps. Clocking options include ultra-low jitter LC tank-based (ATX) PLLs with optional fractional synthesis capability, channel PLLs operating as clock multiplier units (CMUs), and fractional synthesis PLLs (fPLLs).

- **ATX PLL**—can be configured in integer mode, or optionally, in a new fractional synthesis mode. Each ATX PLL spans the full frequency range of the supported data rate range providing a stable, flexible clock source with the lowest jitter.
- **CMU PLL**—when not being used as a transceiver, select PMA channels can be configured as channel PLLs operating as CMUs to provide an additional master clock source within the transceiver bank.
- **fPLL**—In addition, dedicated fPLLs are available with precision frequency synthesis capabilities. fPLLs can be used to synthesize multiple clock frequencies from a single reference clock source and replace multiple reference oscillators for multiprotocol and multi-rate applications.

On the receiver side, each PMA has an independent channel PLL that allows analog tracking for clock-data recovery. Each PMA also has advanced equalization circuits that compensate for transmission losses across a wide frequency spectrum.

- Variable Gain Amplifier (VGA)—to optimize the receiver's dynamic range
- **Continuous Time Linear Equalizer (CTLE)**—to compensate for channel losses with lowest power dissipation
- **Decision Feedback Equalizer (DFE)**—to provide additional equalization capability on backplanes even in the presence of crosstalk and reflections
- **On-Die Instrumentation (ODI)**—to provide on-chip eye monitoring capabilities (Eye Viewer). This capability helps to optimize link equalization parameters during board bring-up and supports in-system link diagnostics and equalization margin testing



| Feature                                                              | Capability                                                                                                                                                                          |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digitally Assisted Analog<br>CDR                                     | Superior jitter tolerance with fast lock time                                                                                                                                       |
| On-Die Instrumentation—<br>Eye Viewer and Jitter Margin<br>Tool      | Simplify board bring-up, debug, and diagnostics with non-intrusive, high-resolution eye monitoring (Eye Viewer). Also inject jitter from transmitter to test link margin in system. |
| Dynamic Reconfiguration                                              | Allows for independent control of each transceiver channel Avalon memory-mapped interface for the most transceiver flexibility.                                                     |
| Multiple PCS-PMA and PCS-<br>Core to FPGA fabric interface<br>widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency                                                     |

#### 1.8.2. PCS Features

Intel Stratix 10 PMA channels interface with core logic through configurable and bypassable PCS interface layers.

The PCS contains multiple gearbox implementations to decouple the PMA and PCS interface widths. This feature provides the flexibility to implement a wide range of applications with 8, 10, 16, 20, 32, 40, or 64-bit interface width between each transceiver and the core logic.

The PCS also contains hard IP to support a variety of standard and proprietary protocols across a wide range of data rates and encoding schemes. The Standard PCS mode provides support for 8B/10B encoded applications up to 12.5 Gbps. The Enhanced PCS mode supports 64B/66B and 64B/67B encoded applications up to 17.4 Gbps. The enhanced PCS mode also includes an integrated 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) circuit. For highly customized implementations, a PCS Direct mode provides an interface up to 64 bits wide to allow for custom encoding and support for data rates up to 28.3 Gbps.

For more information about the PCS-Core interface or the double rate transfer mode, refer to the *Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide*, and the *Intel Stratix 10 E-Tile Transceiver PHY User Guide*.

**Table 9.** Transceiver PCS Features

| PCS Protocol<br>Support                         | Data Rate (Gbps) | Transmitter Data Path                                                                                                                                        | Receiver Data Path                                                                                                                                                                              |
|-------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard PCS                                    | 1 to 12.5        | Phase compensation FIFO, byte serializer, 8B/10B encoder, bit-slipper, channel bonding                                                                       | Rate match FIFO, word-aligner, 8B/10B decoder, byte deserializer, byte ordering                                                                                                                 |
| PCI Express<br>Gen1/Gen2 x1,<br>x2, x4, x8, x16 | 2.5 and 5.0      | Same as Standard PCS plus PIPE 2.0 interface to core                                                                                                         | Same as Standard PCS plus PIPE 2.0 interface to core                                                                                                                                            |
| PCI Express Gen3<br>x1, x2, x4, x8,<br>x16      | 8.0              | Phase compensation FIFO, byte serializer, encoder, scrambler, bit-slipper, gear box, channel bonding, and PIPE 3.0 interface to core, auto speed negotiation | Rate match FIFO (0-600 ppm mode), word-aligner, decoder, descrambler, phase compensation FIFO, block sync, byte deserializer, byte ordering, PIPE 3.0 interface to core, auto speed negotiation |
| CPRI                                            | 0.6144 to 9.8    | Same as Standard PCS plus deterministic latency serialization                                                                                                | Same as Standard PCS plus deterministic latency deserialization                                                                                                                                 |
|                                                 |                  |                                                                                                                                                              | continued                                                                                                                                                                                       |



| PCS Protocol<br>Support | Data Rate (Gbps) | Transmitter Data Path                                                                                                         | Receiver Data Path                                                                               |
|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Enhanced PCS            | 2.5 to 17.4      | FIFO, channel bonding, bit-slipper, and gear box                                                                              | FIFO, block sync, bit-slipper, and gear box                                                      |
| 10GBASE-R               | 10.3125          | FIFO, 64B/66B encoder, scrambler,<br>FEC, and gear box                                                                        | FIFO, 64B/66B decoder, descrambler, block sync, FEC, and gear box                                |
| Interlaken              | 4.9 to 17.4      | FIFO, channel bonding, frame<br>generator, CRC-32 generator,<br>scrambler, disparity generator, bit-<br>slipper, and gear box | FIFO, CRC-32 checker, frame sync,<br>descrambler, disparity checker, block<br>sync, and gear box |
| SFI-S/SFI-5.2           | 11.3             | FIFO, channel bonding, bit-slipper, and gear box                                                                              | FIFO, bit-slipper, and gear box                                                                  |
| IEEE 1588               | 1.25 to 10.3125  | FIFO (fixed latency), 64B/66B encoder, scrambler, and gear box                                                                | FIFO (fixed latency), 64B/66B decoder, descrambler, block sync, and gear box                     |
| SDI                     | up to 12.5       | FIFO and gear box                                                                                                             | FIFO, bit-slipper, and gear box                                                                  |
| GigE                    | 1.25             | Same as Standard PCS plus GigE state machine                                                                                  | Same as Standard PCS plus GigE state machine                                                     |
| PCS Direct              | up to 28.3       | Custom                                                                                                                        | Custom                                                                                           |

#### **Related Information**

Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

### 1.9. PCI Express Gen1/Gen2/Gen3 Hard IP

Intel Stratix 10 devices contain embedded PCI Express hard IP designed for performance, ease-of-use, increased functionality, and designer productivity.

The PCI Express hard IP consists of the PHY, Data Link, and Transaction layers. It also supports PCI Express Gen1/Gen2/Gen3 end point and root port, in x1/x2/x4/x8/x16 lane configurations. The PCI Express hard IP is capable of operating independently from the core logic (autonomous mode). This feature allows the PCI Express link to power up and complete link training in less than 100 ms, while the rest of the device is still in the process of being configured. The hard IP also provides added functionality, which makes it easier to support emerging features such as Single Root I/O Virtualization (SR-IOV) and optional protocol extensions.

The PCI Express hard IP has improved end-to-end data path protection using Error Checking and Correction (ECC). In addition, the hard IP supports configuration of the device via protocol (CvP) across the PCI Express bus at Gen1/Gen2/Gen3 rates.

### 1.10. Interlaken PCS Hard IP

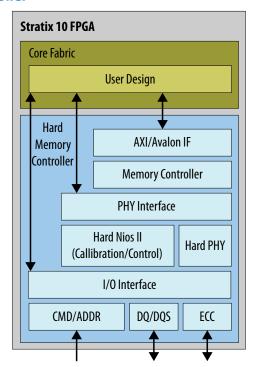
Intel Stratix 10 devices have integrated Interlaken PCS hard IP supporting rates up to 17.4 Gbps per lane.

The Interlaken PCS hard IP is based on the proven functionality of the PCS developed for Intel's previous generation FPGAs, which has demonstrated interoperability with Interlaken ASSP vendors and third-party IP suppliers. The Interlaken PCS hard IP is present in every transceiver channel in Intel Stratix 10 devices.



#### 1.11. 10G Ethernet Hard IP

Intel Stratix 10 devices include IEEE 802.3 10-Gbps Ethernet (10GbE) compliant 10GBASE-R PCS and PMA hard IP. The scalable 10GbE hard IP supports multiple independent 10GbE ports while using a single PLL for all the 10GBASE-R PCS instantiations, which saves on core logic resources and clock networks.


The integrated serial transceivers simplify multi-port 10GbE systems compared to 10 GbE Attachment Unit Interface (XAUI) interfaces that require an external XAUI-to-10G PHY. Furthermore, the integrated transceivers incorporate signal conditioning circuits, which enable direct connection to standard 10G XFP and SFP+ pluggable optical modules. The transceivers also support backplane Ethernet applications and include a hard 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) circuit that can be used for both 10G and 40G applications. The integrated 10G Ethernet hard IP and 10G transceivers save external PHY cost, board space and system power. The 10G Ethernet PCS hard IP and 10GBASE-KR FEC are present in every transceiver channel.

## 1.12. External Memory and General Purpose I/O

Intel Stratix 10 devices offer substantial external memory bandwidth, with up to ten 72-bit wide DDR4 memory interfaces running at up to 2666 Mbps.

This bandwidth is provided along with the ease of design, lower power, and resource efficiencies of hardened high-performance memory controllers. The external memory interfaces can be configured up to a maximum width of 144 bits when using either hard or soft memory controllers.

Figure 8. Hard Memory Controller





Each I/O bank contains 48 general purpose I/Os and a high-efficiency hard memory controller capable of supporting many different memory types, each with different performance capabilities. The hard memory controller is also capable of being bypassed and replaced by a soft controller implemented in the user logic. The I/Os each have a hardened double data rate (DDR) read/write path (PHY) capable of performing key memory interface functionality such as:

- Read/write leveling
- FIFO buffering to lower latency and improve margin
- Timing calibration
- · On-chip termination

The timing calibration is aided by the inclusion of hard microcontrollers based on Intel's Nios® II technology, specifically tailored to control the calibration of multiple memory interfaces. This calibration allows the Intel Stratix 10 device to compensate for any changes in process, voltage, or temperature either within the Intel Stratix 10 device itself, or within the external memory device. The advanced calibration algorithms ensure maximum bandwidth and robust timing margin across all operating conditions.

#### **Table 10.** External Memory Interface Performance

The listed speeds are for the 1-rank case.

| Interface     | Controller Type | Performance |
|---------------|-----------------|-------------|
| DDR4          | Hard            | 2666 Mbps   |
| DDR3          | Hard            | 2133 Mbps   |
| QDRII+        | Soft            | 1,100 Mtps  |
| QDRII+ Xtreme | Soft            | 1,266 Mtps  |
| QDRIV         | Soft            | 2,133 Mtps  |
| RLDRAM III    | Soft            | 2400 Mbps   |
| RLDRAM II     | Soft            | 533 Mbps    |

In addition to parallel memory interfaces, Intel Stratix 10 devices support serial memory technologies such as the Hybrid Memory Cube (HMC). The HMC is supported by the Intel Stratix 10 high-speed serial transceivers, which connect up to four HMC links, with each link running at data rates of 15 Gbps (HMC short reach specification).

Intel Stratix 10 devices also feature general purpose I/Os capable of supporting a wide range of single-ended and differential I/O interfaces. LVDS rates up to 1.6 Gbps are supported, with each pair of pins having both a differential driver and a differential input buffer. This enables configurable direction for each LVDS pair.

# 1.13. Adaptive Logic Module (ALM)

Intel Stratix 10 devices use a similar adaptive logic module (ALM) as the previous generation Arria 10 and Stratix V FPGAs, allowing for efficient implementation of logic functions and easy conversion of IP between the devices.

The ALM block diagram shown in the following figure has eight inputs with a fracturable look-up table (LUT), two dedicated embedded adders, and four dedicated registers.



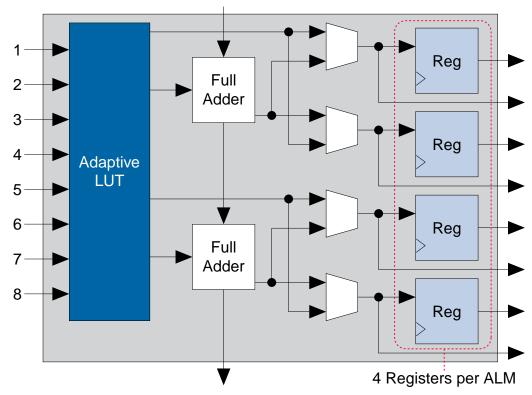



Figure 9. Intel Stratix 10 FPGA and SoC ALM Block Diagram

Key features and capabilities of the ALM include:

- High register count with 4 registers per 8-input fracturable LUT, operating in conjunction with the new HyperFlex architecture, enables Intel Stratix 10 devices to maximize core performance at very high core logic utilization
- Implements select 7-input logic functions, all 6-input logic functions, and two independent functions consisting of smaller LUT sizes (such as two independent 4-input LUTs) to optimize core logic utilization

The Intel Quartus Prime software leverages the ALM logic structure to deliver the highest performance, optimal logic utilization, and lowest compile times. The Intel Quartus Prime software simplifies design reuse as it automatically maps legacy designs into the Intel Stratix 10 ALM architecture.

# 1.14. Core Clocking

Core clocking in Intel Stratix 10 devices makes use of programmable clock tree synthesis.

This technique uses dedicated clock tree routing and switching circuits, and allows the Intel Quartus Prime software to create the exact clock trees required for your design. Clock tree synthesis minimizes clock tree insertion delay, reduces dynamic power dissipation in the clock tree and allows greater clocking flexibility in the core while still maintaining backwards compatibility with legacy global and regional clocking schemes.



The core clock network in Intel Stratix 10 devices supports the new HyperFlex core architecture at clock rates up to 1 GHz. It also supports the hard memory controllers up to 2666 Mbps with a quarter rate transfer to the core. The core clock network is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs.

## 1.15. Fractional Synthesis PLLs and I/O PLLs

Intel Stratix 10 devices have up to 32 fractional synthesis PLLs (fPLL) available for use with transceivers or in the core fabric.

The fPLLs are located in the 3D SiP transceiver H-tiles, eight per tile, adjacent to the transceiver channels. The fPLLs can be used to reduce both the number of oscillators required on the board and the number of clock pins required, by synthesizing multiple clock frequencies from a single reference clock source. In addition to synthesizing reference clock frequencies for the transceiver transmit PLLs, the fPLLs can also be used directly for transmit clocking. Each fPLL can be independently configured for conventional integer mode, or enhanced fractional synthesis mode with third-order delta-sigma modulation.

In addition to the fPLLs, Intel Stratix 10 devices contain up to 34 integer I/O PLLs (IOPLLs) available for general purpose use in the core fabric and for simplifying the design of external memory interfaces and high-speed LVDS interfaces. The IOPLLs are located in each bank of 48 general purpose I/O, 1 per I/O bank, adjacent to the hard memory controllers and LVDS SerDes in each I/O bank. This makes it easier to close timing because the IOPLLs are tightly coupled with the I/Os that need to use them. The IOPLLs can be used for general purpose applications in the core such as clock network delay compensation and zero-delay clock buffering.

## 1.16. Internal Embedded Memory

Intel Stratix 10 devices contain two types of embedded memory blocks: M20K (20-Kbit) and MLAB (640-bit).

The M20K and MLAB blocks are familiar block sizes carried over from previous Intel device families. The MLAB blocks are ideal for wide and shallow memories, while the M20K blocks are intended to support larger memory configurations and include hard ECC. Both M20K and MLAB embedded memory blocks can be configured as a single-port or dual-port RAM, FIFO, ROM, or shift register. These memory blocks are highly flexible and support a number of memory configurations as shown in Table 11 on page 25

**Table 11. Internal Embedded Memory Block Configurations** 

| MLAB (640 bits)                                  | M20K (20 Kbits)                     |
|--------------------------------------------------|-------------------------------------|
| 64 x 10 (supported through emulation)<br>32 x 20 | 2K x 10 (or x8)<br>1K x 20 (or x16) |
| 32 X 20                                          | 512 x 40 (or x32)                   |

#### 1.17. Variable Precision DSP Block

The Intel Stratix 10 DSP blocks are based upon the Variable Precision DSP Architecture used in Intel's previous generation devices. They feature hard fixed point and IEEE-754 compliant floating point capability.



The DSP blocks can be configured to support signal processing with precision ranging from 18x19 up to 54x54. A pipeline register has been added to increase the maximum operating frequency of the DSP block and reduce power consumption.

Figure 10. DSP Block: Standard Precision Fixed Point Mode

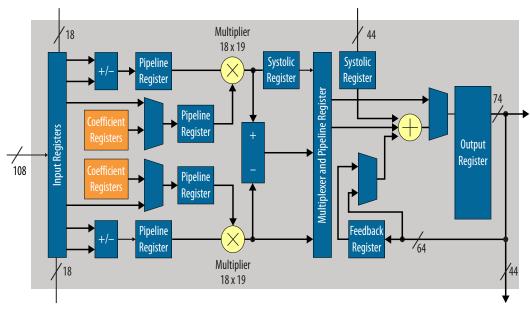



Figure 11. DSP Block: High Precision Fixed Point Mode

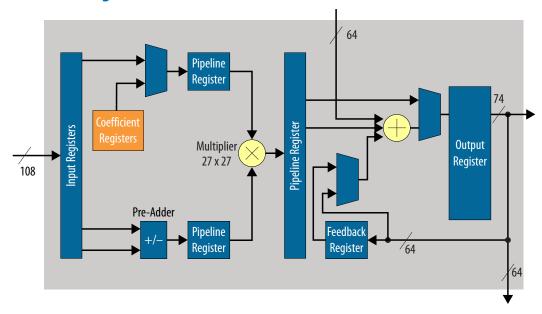
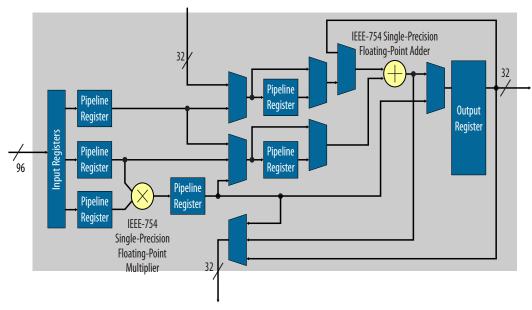






Figure 12. DSP Block: Single Precision Floating Point Mode

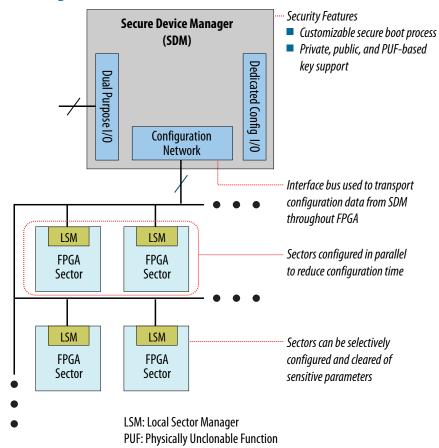


Each DSP block can be independently configured at compile time as either dual 18x19 or a single 27x27 multiply accumulate. With a dedicated 64-bit cascade bus, multiple variable precision DSP blocks can be cascaded to implement even higher precision DSP functions efficiently.

In floating point mode, each DSP block provides one single precision floating point multiplier and adder. Floating point additions, multiplications, mult-adds and mult-accumulates are supported.

The following table shows how different precisions are accommodated within a DSP block, or by utilizing multiple blocks.

**Table 12.** Variable Precision DSP Block Configurations


| Multiplier Size                 | DSP Block Resources                                                                      | Expected Usage                  |
|---------------------------------|------------------------------------------------------------------------------------------|---------------------------------|
| 18x19 bits                      | 1/2 of Variable Precision DSP Block                                                      | Medium precision fixed point    |
| 27x27 bits                      | 1 Variable Precision DSP Block                                                           | High precision fixed point      |
| 19x36 bits                      | 1 Variable Precision DSP Block with external adder                                       | Fixed point FFTs                |
| 36x36 bits                      | 2 Variable Precision DSP Blocks with external adder                                      | Very high precision fixed point |
| 54x54 bits                      | 4 Variable Precision DSP Blocks with external adder                                      | Double Precision floating point |
| Single Precision floating point | 1 Single Precision floating point adder, 1 Single<br>Precision floating point multiplier | Floating point                  |



| Feature                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Interface Controllers | Three 10/100/1000 Ethernet media access controls (MAC) with integrated DMA  — Supports RGMII and RMII external PHY Interfaces  — Option to support other PHY interfaces through FPGA logic  • GMII  • MII  • RMII (requires MII to RMII adapter)  • RGMII (requires GMII to RGMII adapter)  • SGMII (requires GMII to SGMII adapter)  • SGMII (requires GMII to SGMII adapter)  — Supports IEEE 1588-2002 and IEEE 1588-2008 standards for precision networked clock synchronization  — Supports IEEE 802.1Q VLAN tag detection for reception frames  — Supports Ethernet AVB standard  • Two USB On-the-Go (OTG) controllers with DMA  — Dual-Role Device (device and host functions)  • High-speed (480 Mbps)  • Full-speed (12 Mbps)  • Low-speed (1.5 Mbps)  • Supports USB 1.1 (full-speed and low-speed)  — Integrated descriptor-based scatter-gather DMA  — Support for external ULPI PHY  — Up to 16 bidirectional endpoints, including control endpoint  — Up to 16 bidirectional endpoints, including control endpoint  — Up to 16 host channels  — Support speneric root hub  — Configurable to OTG 1.3 and OTG 2.0 modes  • Five I²C controllers (three can be used by EMAC for MIO to external PHY)  — Support both 100Kbps and 400Kbps modes  — Support Master and Slave operating mode  • Two UART 16550 compatible  — Programmable baud rate up to 115.2Kbaud  • Four serial peripheral interfaces (SPI) (2 Master, 2 Slaves)  — Full and Half duplex |
| Timers and I/O                      | Timers  — 4 general-purpose timers  — 4 watchdog timers  4 8 HPS direct I/O allow HPS peripherals to connect directly to I/O  Up to three IO48 banks may be assigned to HPS for HPS DDR access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Interconnect to Logic Core          | <ul> <li>FPGA-to-HPS Bridge         <ul> <li>Allows IP bus masters in the FPGA fabric to access to HPS bus slaves</li> <li>Configurable 32-, 64-, or 128-bit AMBA AXI interface</li> </ul> </li> <li>HPS-to-FPGA Bridge         <ul> <li>Allows HPS bus masters to access bus slaves in FPGA fabric</li> <li>Configurable 32-, 64-, or 128-bit AMBA AXI interface allows high-bandwidth HPS master transactions to FPGA fabric</li> </ul> </li> <li>HPS-to-SDM and SDM-to-HPS Bridges         <ul> <li>Allows the HPS to reach the SDM block and the SDM to bootstrap the HPS</li> </ul> </li> <li>Light Weight HPS-to-FPGA Bridge         <ul> <li>Light weight 32-bit AXI interface suitable for low-latency register accesses from HPS to soft peripherals in FPGA fabric</li> </ul> </li> <li>FPGA-to-HPS SDRAM Bridge         <ul> <li>Up to three AMBA AXI interfaces supporting 32, 64, or 128-bit data paths</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



Figure 14. SDM Block Diagram



During configuration, Intel Stratix 10 devices are divided into logical sectors, each of which is managed by a local sector manager (LSM). The SDM passes configuration data to each of the LSMs across the on-chip configuration network. This allows the sectors to be configured independently, one at a time, or in parallel. This approach achieves simplified sector configuration and reconfiguration, as well as reduced overall configuration time due to the inherent parallelism. The same sector-based approach is used to respond to single-event upsets and security attacks.

While the sectors provide a logical separation for device configuration and reconfiguration, they overlay the normal rows and columns of FPGA logic and routing. This means there is no impact to the Intel Quartus Prime software place and route, and no impact to the timing of logic signals that cross the sector boundaries.



powered up and active within the 100 ms time allowed by the PCI Express specification. Intel Stratix 10 devices also support partial reconfiguration across the PCI Express bus which reduces system down time by keeping the PCI Express link active while the device is being reconfigured.

## 1.23. Partial and Dynamic Reconfiguration

Partial reconfiguration allows you to reconfigure part of the FPGA while other sections continue running. This capability is required in systems where uptime is critical, because it allows you to make updates or adjust functionality without disrupting services.

In addition to lowering power and cost, partial reconfiguration also increases the effective logic density by removing the necessity to place in the FPGA those functions that do not operate simultaneously. Instead, these functions can be stored in external memory and loaded as needed. This reduces the size of the required FPGA by allowing multiple applications on a single FPGA, saving board space and reducing power. The partial reconfiguration process is built on top of the proven incremental compile design flow in the Intel Quartus Prime design software

Dynamic reconfiguration in Intel Stratix 10 devices allows transceiver data rates, protocols and analog settings to be changed dynamically on a channel-by-channel basis while maintaining data transfer on adjacent transceiver channels. Dynamic reconfiguration is ideal for applications that require on-the-fly multiprotocol or multirate support. Both the PMA and PCS blocks within the transceiver can be reconfigured using this technique. Dynamic reconfiguration of the transceivers can be used in conjunction with partial reconfiguration of the FPGA to enable partial reconfiguration of both core and transceivers simultaneously.

## 1.24. Fast Forward Compile

The innovative Fast Forward Compile feature in the Intel Quartus Prime software identifies performance bottlenecks in your design and provides detailed, step-by-step performance improvement recommendations that you can then implement. The Compiler reports estimates of the maximum operating frequency that can be achieved by applying the recommendations. As part of the new Hyper-Aware design flow, Fast Forward Compile maximizes the performance of your Intel Stratix 10 design and achieves rapid timing closure.

Previously, this type of optimization required multiple time-consuming design iterations, including full design re-compilation to determine the effectiveness of the changes. Fast Forward Compile enables you to make better decisions about where to focus your optimization efforts, and how to increase your design performance and throughput. This technique removes much of the guesswork of performance exploration, resulting in fewer design iterations and as much as 2X core performance gains for Intel Stratix 10 designs.

# 1.25. Single Event Upset (SEU) Error Detection and Correction

Intel Stratix 10 FPGAs and SoCs offer robust SEU error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running parity checker circuit with integrated ECC that automatically corrects one or two bit errors and detects higher order multibit errors.